The seminar meets on Fridays 2:30pm--4:30pm at Fine Hall 314 (Princeton).
Organizers: Greg Andreychev, Vadim Vologodsky, and Bogdan Zavyalov
| Spring | ||||
| 1 | January 26 | G. Andreychev | Introductory Talk | |
| 2 | February 2 | M. Morrow | Recollections on K-theory | |
| 3 | February 9 | A. Krause | Dualizable Categories | |
| 4 | February 16 | J. Lurie | Efimov K-theory | |
| 5 | February 23 | G. Bosco | Analytic Animated Rings | |
| 6 | March 1 | T. Moulinos | Trace Class Maps | |
| 7 | March 22 | S. Howe | Analytic Adic Spaces and Descent | |
| 8 | April 2 | J. E. Rodriguez Camargo | 6-functor Formalism in Non-Archimedean Analytic Geometry | |
| 9 | April 5 | E. Reinecke | Nuk(X) is dualizable | |
| 10 | April 12 | L. Tang | Nisnevich Descent for K-theory | |
| 11 | April 19 | S. Gilles | Etale Hyperdescent | |
| 12 | April 26 | V. Vologodsky | Grothendieck-Riemann-Roch, Part I | |
| 13 | May 3 | M. Kubrak | Grothendieck-Riemann-Roch, Part II | |
Useful links:
1) Condensed math:
[CS] First Lecture Notes, D. Clausen and P. Scholze
[CS2] Second Lecture Notes, D. Clausen and P. Scholze
[A1] Pseudocoherent and Perfect Complexes and Vector Bundles on Analytic Adic Spaces, G. Andreychev
2) K-theory:
[Heb] Lecture Notes for Algebraic and Hermitian K-Theory, F. Hebestreit
[Hoy] K-Theory of Dualizable Categories (After A. Efimov), M. Hoyois
[Cla] IHES Lectures on Efimov K-theory, Lecture 1, Lecture 2, Lecture 3, D. Clausen
3) K-theory of adic spaces and Grothendieck-Riemann-Roch:
[A2] K-Theorie adischer Raume, G. Andreychev
[CS3] Third Lecture Notes
[the relevant material is Lectures XIV and XV], D. Clausen and P. Scholze