
We first recall the Nisnevich topology. All schemes and adic spaces here are qcqs.

Definition 1 (Nisnevich topology on schemes). A family of étale maps of schemes
{fi : Ui → X}i∈I is called a Nisnevich cover if for every x ∈ X, there exist i ∈ I
and u ∈ Ui, such that fi(u) = x and k(u) = k(x). For a scheme X, the (small)
Nisnevich site of X, denoted XNis, is the site with underlying category that of
schemes étale over X and with covers Nisnevich covers.

Definition 2 (Nisnevich squares of schemes). A Nisnevich square of schemes is a
commutative square

W V

U X

f

j

where j is an open immersion, f is étale, and f is an isomorphism over X \ U .

Proposition 3. Let X be a scheme and {fi : Ui → X}i∈I is a family of étale maps.
The following are equivalent:

(1) {fi : Ui → X}i∈I is a Nisnevich cover.
(2) There is a chain of finitely presented closed subschemes

∅ = Z0 ⊂ Z1 ⊂ · · · ⊂ Zn = X

and a family of étale maps {gj : Vj → X}nj=1 refining {fi : Ui → X}i∈I ,
such that gj is an isomorphism over Zj \ Zj−1.

Proof. This is a standard Zorn argument. See [BH21, Lemma A.1]. □

Corollary 4. The Nisnevich topology is generated by the empty cover of the empty
scheme and the families {j, f} for all Nisnevich squares as in Definition 2.

Definition 5 (Étale maps of analytic adic spaces).

(1) A map of analytic adic spaces is finite étale if it is locally on the target the
Spa of a map (R,R+) → (A,A+) of Huber pairs, where R → A is finite
étale and A+ is the integral closure of R+ in A.

(2) A map of analytic adic spaces is étale if, locally on both the source and the
target, it can be written as an open immersion into a finite étale map.

Definition 6 (Nisnevich topology on adic spaces). A family of étale maps of
schemes {fi : Ui → X}i∈I is called a Nisnevich cover if for every x ∈ X, there
exist i ∈ I and u ∈ Ui, such that fi(u) = x and k(u) = k(x). For a scheme X, the
(small) Nisnevich site of X has underlying category the category of schemes étale
over X, with Nisnevich covers as covers.

Definition 7 (Nisnevich squares of analytic adic spaces). A Nisnevich square of
analytic adic spaces is a commutative square

W V

U X

f

j

where j is an open immersion, f is étale, and each x ∈ X \U has only one preimage
in V and it has the same residue field as x.
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Proposition 8. Let X be an analytic adic space and {fi : Ui → X}i∈I is a family
of étale maps. The following are equivalent:

(1) {fi : Ui → X}i∈I is a Nisnevich cover.
(2) There is a chain of finitely presented closed subspaces

∅ = Z0 ⊂ Z1 ⊂ · · · ⊂ Zn = X

and a family of étale maps {gj : Vj → X}nj=1 refining {fi : Ui → X}i∈I ,
such that each zj ∈ Zj \ Zj−1 has only one preimage under gj and it has
the same residue field as zj.

Proof. This is more complicated than the scheme case. See [And23, Satz A.24]. □

Corollary 9. The Nisnevich topology is generated by the empty cover of the empty
scheme and the families {j, f} for all Nisnevich squares as in Definition 7.

We also need the basic theory of cd-structures.

Definition 10 (cd-structure). A cd-structure on a small category C is a family
of square diagrams in it. More formally, a cd-structure on C is a full subcategory
χ ⊆ Fun([1]2, C). For a cd-structure χ on C, the topology associated to χ, denoted
τχ, is the topology on C generated by families {U → X,V → X} for all

W V

U X

∈ χ.

Definition 11. Let C be a small category with a cd-structure χ. Let D be a
category and F : Cop → D be a functor. We say that F satisfies:

• χ-excision, if F takes diagrams in χ to pullbacks.
• χ-descent, if F is a τχ-sheaf.

Our statement here is slightly more general than [AHW17, Theorem 3.2.5].

Theorem 12 (Voevodsky). Let C be a small category and χ be a cd-structure on
C. Consider the following conditions:

(1) C has pullbacks and χ is closed under them, namely for any

Q =

W V

U X

∈ χ

and any map Y → X, we have

Q×X Y =

W ×X Y V ×X Y

U ×X Y Y

∈ χ.

(2) All diagrams in χ are pullbacks. Moreover, for any

Q =

W V

U X

∈ χ,



3

there exists n ∈ N such that both U → X and V → X are n-truncated, and

W V

W ×U W V ×X V

∆W/U ∆V/X ,

W W ×V W

U U ×X U

∆W/V

∆U/X

∈ χ.

If (1) holds, then χ-excision implies χ-descent. If furthermore (2) holds, then χ-
excision and χ-descent are equivalent.

Proof. For every

Q =

W V

U X

∈ χ,

consider the two natural maps

eQ : hU ⊔hW
hV → hX , cQ : colim

n∈∆op
(hU ⊔ hV )

×hX
(n+1) → hX

in the presheaf category P(C), where hX denotes the Yoneda presheaf. Let

Eχ = {eQ | Q ∈ χ}, Cχ = {cQ | Q ∈ χ},
and we want to compare the Bousfield localizations of P(C) with these two families
of maps. Denote by Eχ and Cχ the families of maps that become invertible after
the corresponding localizations. Then they contain Eχ and Cχ respectively, and
they are closed under colimits. Consider the commutative diagram

(hU ⊔hW
hV )×hX

colimn∈∆op(hU ⊔ hV )
×hX

(n+1) hU ⊔hW
hV

colimn∈∆op(hU ⊔ hV )
×hX

(n+1) hX

∼

fQ eQ

cQ

where the upper arrow is an isomorphism, because it is the pushout of the Čech
nerves of the base changes of the map hU ⊔hV → hX to hU , hV , and hW , which are
all isomorphisms as they are Čech nerves of maps admitting sections. Therefore,
eQ ∈ Cχ if and only if fQ ∈ Cχ, and cQ ∈ Eχ if and only if fQ ∈ Eχ.

Note that fQ is a colimit of base changes of eQ along some representable maps,

so if (1) holds, these base changes remain in Eχ, so fQ ∈ Eχ and thus eQ ∈ Eχ.
Hence χ-excision implies χ-descent.

Assume furthermore that (2) holds. We do induction on integers n,m ≥ −2 to
prove that, if U → X is m-truncated and V → X is n-truncated, then eQ ∈ Cχ.

By the above, this is equivalent to fQ ∈ Cχ. If m or n is −2, this is obvious, as
then eQ is an isomorphism. If m,n > −2, consider the commutative diagram

W W ×V W W

U U ×X U U

∆W/V pr1

∆U/X
pr1

where the right square is the base change QU of Q along U → X. Since the left
square belongs to χ by assumption and is more truncated than Q, the induction
hypothesis implies that its e map is in Cχ. In other words, the left square becomes a
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pushout square after τχ-sheafification. Obviously the large square does, too. Hence

so does the right square, namely eQU
∈ Cχ. Similarly, eQV

∈ Cχ. Since χ is closed
under base change, we can base change the above diagram along any map Y → U
before doing the same reasoning, so whenever a map Y → X factors through either
U or V , we have eQY

∈ Cχ. Now note that fQ is a colimit of such eQY
’s, so

fQ ∈ Cχ, and thus eQ ∈ Cχ. Hence χ-descent implies χ-excision. □

Corollary 13. A Nisnevich presheaf is a Nisnevich sheaf if and only if it satisfies
Nisnevich excision and takes the empty scheme to the initial object.

Corollary 14. Let X be a scheme, C a presentable stable category, and E : PrdualD(X) →
C a localizing invariant. Then E(D(−)) is a sheaf on XNis.

Proof. By faithfully flat descent of quasicoherent complexes, D(−) is even an fpqc
sheaf, so in particular it is a Nisnevich sheaf. Thus Corollary 13 implies that
D(∅) = 0, and that for any Nisnevich square

W V

U Y

j′

f ′ f

j

the resulting square

D(W ) D(V )

D(U) D(Y )

j′∗

f ′∗

j∗

f∗

is a pullback. Denote Z = Y \ U = V \W and DZ(Y ) = ker(j∗) = 0 ×D(U) D(Y ).
Then by the three pullback lemma, this is also DZ(V ) = ker(j′∗). Since both j∗

and j′∗ has fully faithful right adjoints, namely the lower stars, we see that the
horizontal sequences of the diagram

D(W ) D(V ) DZ(V )

D(U) D(Y ) DZ(Y )

j′∗

f ′∗

j∗

f∗

are exact sequences of dualizable categories and hence are mapped by E to fiber
sequences in C. Therefore, E(D(−)) maps the empty scheme to 0 and Nisnevich
squares to fiber squares, so again by Corollary 13 it is a Nisnevich sheaf. □

To adapt the argument above to nuclear modules on analytic adic spaces, it
suffices to verify Nisnevich descent for Nuc(−), as we also have the adjoint pair
(j∗, j∗) with j∗ fully faithful in the nuclear setting. In fact there is étale descent:

Proposition 15. Nuc(−) is an étale sheaf on analytic adic spaces.

Proof. By definition it is a sheaf for the analytic topology, so by the definition
of étale covers of analytic adic spaces, it suffices to verify finite étale descent. In
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other words, it suffices to verify for any finite étale cover of analytic Huber pairs
(A,A+) → (B,B+) that

Nuc(A) = lim
n∈∆op

Nuc(B⊗A(n+1)).

By the definition of finite étale maps, the analytic ring structure of (B,B+)■ is
induced from (A,A+)■. Also, B is nuclear as an (A,A+)■-module. So by previous
lectures, Nuc(B) is the category of B-modules in Nuc(A). Since B ∈ Nuc(A) is the
image of B ∈ D(A) under the canonical functor D(A) → Nuc(A) which is a sym-
metric monoidal left adjoint, we see that Nuc(B) = D(B)⊗D(A) Nuc(A). Similarly,

Nuc(B⊗A(n+1)) = D(B⊗A(n+1)) ⊗D(A) Nuc(A). Now the proposition follows from
the lemma below, noting that B, as a finite projective A-module supported on the
whole Spec(A), is obviously descendable. Alternatively, one can also deduce this
from that D(A) = limn∈∆op D(B⊗A(n+1)) and that −⊗D(A)Nuc(A) commutes with
limits as Nuc(A) is dualizable over D(A). □

Lemma 16 ([Mat16, Corollary 3.42]). Let A → B be a descendable ring map.

Then for any D(A)-module C ∈ PrL,

C = lim
n∈∆op

(D(B⊗A(n+1))⊗D(A) C).

Proof. We first check comonoidality of the left adjoint C → D(B)⊗D(A)C. By Barr–
Beck–Lurie, this amounts to checking that every augmented cosimplicial diagram
F : ∆+ → C that splits after D(B)⊗D(A) − is a limit diagram. For this, consider{

M ∈ D(A)

∣∣∣∣ (M ⊗A F (−1))n∈N →
(
M ⊗A lim

∆≤n

F

)
n∈N

is a pro-equivalence

}
.

It is obviously a thick ⊗-ideal containing B, so by descendability it contains A,
giving the desired comonoidality. Therefore, C is the category of comodules of the
comonad B⊗A− on D(B)⊗D(A)C, which unwinds to the limit in the statement. □

Corollary 17. Let X be an analytic adic space, C a presentable stable category,
and E : PrdualNuc(X) → C a localizing invariant. Then E(Nuc(−)) is a sheaf on XNis.

References

[And23] Grigory Andreychev. K-Theorie adischer Räume. 2023. arXiv: 2311.
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