
Dualizable stable ∞-categories
Talk in analytic K-theory seminar

Achim Krause

February 9, 2024

Last week, we defined algebraic K-theory of a stable ∞-category. For rings R,

K(R) = K(Perf(R)).

In some sense, the more fundamental stable ∞-category attached to a ring R is D(R).
However, it is “too big”:

Lemma 1. If C admits countable coproducts, K(C) = 0.

Proof. We have the functor F : C → C, X 7→
⊕

N C. It satisfies

F ≃ F ⊕ id,

and so K(F ) = K(F ) +K(id), so the identity is zero on K(C) and thus K(C) = 0.

So: K-theory is only interesting for “small enough” categories! We now want to see
how D(R) and Perf(R) determine each other.

Definition 1. An ∞-category I is filtered if every finite subcategory extends over a
(right) cone. Colimits of shape I are called filtered colimits.

An object X of an ∞-category C is called compact if MapC(X,−) preserves filtered
colimits.

We write Cω for the full subcategory of compact objects.

Example 1. D(R)ω = Perf(R).

Definition 2. We call an ∞-category compactly generated if it admits all small colimits,
and every object can be written as a colimit of compact objects.

There are other characterisations, for example C is also compactly generated if it
admits all small colimits and MapC(K,−) jointly detect equivalences. One can also see
that compact objects are already closed under finite colimits, so it suffices to ask for
filtered colimits.
Compactly generated categories are not just generated by Cω, in a sense they are freely

generated by Cω. Given a small ∞-category C0, we can build one with C0 as its compact
objects, by “freely adjoining filtered colimits”.

1



Definition 3. For a small ∞-category C0, we let

Ind(C0) ⊆ Fun(Cop
0 ,An)

be the full subcategory generated by the Yoneda image under filtered colimits.

(Equivalently, this agrees with the full subcategory FunLex(Cop
0 ,An) if C0 admits finite

colimits.)
From this construction, one can relatively directly see a universal property: filtered-

colimit preserving functors
Ind(C0) → D

are the same as functors C0 → D.
Mapping spaces in Ind(C0) can be computed as

MapInd(cC0)(colimi∈I Xi, colimj∈J Yj) ≃ limi∈I colimj∈J MapC0(Xi, Yj),

and from that we see that the filtered-colimit preserving functor

Ind(Cω) → C

is fully faithful. It is essentially surjective if and only if C is compactly generated, so
compactly generated categories are always of the form Ind(Cω). Conversely, if we start
with a small ∞-category C0, Ind(C0)ω almost agrees with C0, with one caveat: Compact
objects in Ind(C0) are easily seen to be retracts of objects from C0, but don’t have to
be from C0 itself. In fact, Ind(C0)ω is always the idempotent completion of C0. (Think
Free(R) ⊆ Proj(R))

Theorem 1. Let PrLω denote the category whose objects are compactly generated ∞-
categories, and morphisms are colimit-preserving functors F : C → D with F (Cω) ⊆ Dω.
Let Catperf∞ denote the category whose objects are small idempotent-complete ∞-categories

with finite colimits, and morphisms are finite colimit preserving functors.
Then Ind and (−)ω give inverse equivalences

Catperf∞ ≃ PrLω .

Proof. We sketched this above, except for the colimits. This amounts to a different
universal property of Ind, relating functors

Ind(C0) → D

preserving all colimits to functors
C0 → D

preserving finite colimits. This follows the philosophy

small colimits = filtered colimits + finite colimits

2



For example, Perf(R) and D(R) correspond to each other here.
The philosophy is that this allows us to think of K(R) as something attached to the

big category D(R) (by passing to compact objects). More generally, this makes sense
for all compactly generated categories.
One can generalize this to higher cardinals than ω, but already for the next one, ω1,

Cω1 is closed under countable colimits, so has trivialK-theory. However, it turns out that
there is a class of categories between compactly generated and ω1-compactly generated
ones, which K-theory can be extended to. This contains many natural examples, such as
almost module categories and categories of sheaves on locally compact Hausdorff spaces.

This arises most naturally in the following setting:

Definition 4. We call an ∞-category presentable if it has all small colimits and is
generated by a small collection of κ-compact objects for some κ.

PrL is the category with objects presentable ∞-categories and morphisms colimit-
preserving functors.

Remark 1. Note that PrLω is not a full subcategory of PrL, since we also restricted the
morphisms to be compact-object preserving.

Theorem 2. PrL carries a symmetric-monoidal structure characterized by the universal
property that colimit-preserving functors

C ⊗ D → E

agree with functors C ×D → E which preserve colimits in both variables separately. The
unit is An.
This restricts to a symmetric-monoidal structure on PrLst with unit Sp.

Example 2. 1. Sp⊗C is the stabilisation of C, and agrees with C if C is already stable
(so PrLst is modules over Sp in PrL).

2. Shv(X; An)⊗ C = Shv(X; C), and Shv(X; An)⊗ Shv(Y ; An) = Shv(X × Y ; An).

3. D(R)⊗D(S) = D(R⊗S S) for ring spectra R and S.

4. Ind(C0)⊗Ind(D0) = Ind(C0⊗RexD0), where the inside tensor product is analogously
defined with respect to finite-colimit preserving functors between small ∞-categories
with finite colimits.

Recall that a symmetric-monoidal structure gives rise to a notion of dualizability:

Definition 5. An object X ∈ C is dualizable if there exists X∨ with maps

1 → X ⊗X∨

and
X∨ ⊗X → 1

3



such that the two composites

X → X ⊗X∨ ⊗X → X

and
X∨ → X∨ ⊗X ⊗X∨ → X∨

are identities.

Example 3. 1. Dualizable objects in VectK are exactly the finite-dimensional vector
spaces.

2. Dualizable objects in D(R) are exactly Perf(R).

What are the dualizable objects in PrLst? (This question does not make much sense
for PrL itself). Note

FunL(Ind(C0),Sp) = FunRex(C0, Sp) = FunLex(C0,Sp) = FunLex(C0,An) = Ind(Cop
0 )

So it seems that Ind(C0) and Ind(Cop
0 ) are dual! Indeed:

Ind(Cop
0 )⊗ Ind(C0) → Sp

can be defined as Ind-extension of MapC0 , and

Sp → Ind(C0)⊗ Ind(Cop
0 ) = Ind(C0 ⊗ Cop

0 )

corresponds to an object of Ind(C0 ⊗ Cop
0 ) which agrees with

FunLex((C0 ⊗ Cop
0 )op,An),

where we can again take MapC0 .
So compactly generated categories are dualizable! But there are more dualizable

categories.

Definition 6. We call a morphism X → Y in an ∞-category C compact if for each
map Y → colimi∈I Zi into a filtered colimit there exists a dashed lift

X Zi

Y colimi∈I Zi.

We call an object X ∈ C compactly exhausted if it can be written as

X = colim(X0 → X1 → . . .),

where all morphisms are compact.
We call C compactly assembled if filtered colimits are exact and C is generated by

compactly exhausted objects under colimits.

4



If C is compactly generated, the compact morphisms are exactly those which factor
through compact objects. But this notion makes sense even if we do not have enough
compact objects, and turns out to be the correct “intrinsic” characterisation of dualizable
stable ∞-categories. More precisely, we have the following:

Theorem 3. For C ∈ PrLst, the following are equivalent.

1. C is dualizable.

2. C is compactly assembled.

3. The “colimit” functor k : Ind(C) → C admits a left adjoint ĵ : C → Ind(C).

4. C is ω1-compactly generated and k : Ind(Cω1) → C admits a left adjoint ĵ : C →
Ind(Cω1).

5. C is a retract of a compactly generated category in PrL (so along colimit-preserving
functors).

6. Filtered colimits distribute over small limits, i.e.

limK colimI = colimIK limK

in C. (Analogue of AB5 + AB6)

Proof. (1) ⇒ (5) works by tensoring Ind(Cκ) → C with C∨ and lifting the coevaluation
through C∨⊗Ind(Cκ), i.e. the identity of C through C → Ind(Cκ). Conversely, (5) implies
(1) since retracts of dualizables are dualizable. (5) implies (3) by observing that we have
such an adjoint for C = Ind(C0) (Yoneda “inside”), and observing that adjointability
here is stable under retracts. (3) is also equivalent to (6) by an explicit analysis of what
k preserving limits means.
Once one has ĵ, one can characterize compact morphisms X → Y as those where

jX → jY factors as jX → ĵY . This allows one to construct enough compactly ex-
hausted objects to prove (2). Conversely, given (2), ĵ is characterized as filtered-colimit
preserving functor which takes a compactly exhausted

X = colimXn

to the Ind-object colim jXn. This also shows that ĵ takes those to ω1-compact objects
and therefore in total takes values in Ind(Cω1). This shows (4). Finally, (4) clearly
implies (5).

Note that all versions except (1) makes sense also unstably!

Example 4. Shv(X; C) for C compactly assembled and X a locally compact Hausdorff
space is compactly assembled (=dualizable if C is stable)
(It is typically not compactly generated, Shv(X) only is compactly generated if X is

locally profinite.)

5



Proof. It suffices to do this for C = An. If U ⊆ V is an inclusion of opens with a compact
K in between, then restriction

Γ(V, colimFi) → Γ(U, colimFi)

factors through Γ(K, colimFi) = colimΓ(K,Fi), so we have dashed lifts in

U Fi

V colimFi.

so these are compact morphisms. If we have a “compactly exhaustible open” in X, this
shows that U is compactly exhaustible. In a locally compact Hausdorff space, “compactly
exhaustible opens” form a basis. So Shv(X) is generated compactly exhaustible objects,
so it is compactly assembled.

Example 5. Let R be some ring, I ⊆ R an ideal, and assume the canonical map
I ⊗R I → I is an equivalence (all tensor products derived!) Then

D(R, I) = ker(D(R) → D(R/I))

is dualizable.

Proof. The inclusion D(R, I) → D(R) admits a right adjoint which takes M to

fib(M → M ⊗R (R/I)).

That map(N, fib(M → M ⊗R (R/I))) = map(N,M) if N ∈ D(R, I) is clear, but for

fib(M → M ⊗R (R/I)) ∈ D(R, I)

we need (R/I)⊗R (R/I) = R/I. As the left hand side is the total cofiber of the square

I ⊗R I I

I R,

this is equivalent to I ⊗R I = I, which we assumed.
This adjoint provides a retraction D(R) → D(R, I), and evidently preserves colimits,

so D(R, I) is a retract of D(R) in PrL and thus compactly assembled. It is typically
not compactly generated, since compact objects in D(R, I) would be compact in D(R)
as well, but for example if I is local, compact objects in D(R) in the kernel of D(R) →
D(R/I) are zero by Nakayama.

6


