
SIX FUNCTOR FORMALISM FOR SOLID QUASI-COHERENT SHEAVES ON
RIGID SPACES

In this talk we shall discuss the construction of the six functor formalism of solid quasi-coherent
sheaves on (derived) rigid spaces over a complete non-archimedean field K. First, we briefly discuss
the abstract theory of six functor formalisms following [Man22]. Then, we define derived rigid
spaces and show that the functor X 7→ D□(X) of solid quasi-coherent sheaves can be promoted to
a six functor formalism.

1. Definition of six functor formalisms

The idea behind a six functor formalism is the following: let C be a category (more generally
an ∞-category) of geometric objects. Attached to X ∈ C we have defined a category D(X) of
coefficients, together with the six functors ⊗, Hom, f ∗, f∗, f! and f !, where ⊗ is a symmetric
monoidal structure on D(X) and Hom is its right adjoint, where the last four functors are attached
to a morphism f : Y → X in C , and where the !-functors are defined for a possibly smaller class of
maps E.

The six functors are subject to certain compatibilities: the formation of f ∗ and f! is contravariant
and covariant respectively, and they have right adjoints f∗ and f !. In particular all the structure
of a six functor formalism is totally encoded in the functors ⊗, f ∗ and f!. The ∗ and !-functors are
compatible with composition and (proper) base change, and there is a projection formula involving
all three functors ⊗, f ∗ and f!.

In practice, constructing the functors ⊗ and f ∗ is not hard. For example, if C is the category
of derived schemes, the functor D : C → Cat⊗∞ of quasi-coherent sheaves is such an example.
The difficulty in the construction of six functors relies in the functor f! and all the compatibilities
with respect to the other two. The problem is that features such as projection formula and proper
base change are not properties attached to f! but additional structure that needs to be coherently
defined. We can encode all such compatibilities in the following construction:

Definition 1.1. [[Man22, Definition A.5.2] and [Sch23, Definition 2.3]] A geometric set up is a pair
(C , E) consisting on an ∞-category C with finite limits and E a family of arrows in C containing
all the equivalences and stable under pullbacks and compositions. We let Corr(C , E) be the ∞-
category of correspondences of (C , E).

To give some intuition of what the category Corr(C , E) is let us describe its homotopy category.
The objects of Corr(C , E) are the same objects of C . A morphism from X to Y is given by a
correspondence

V

X Y

f g
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where g ∈ E. Finally, a composite of two morphisms X ← V → Y and Y ← W → Z is given by
the outer correspondence of the pullback

V ×Y W

V W

X Y Z.

Note that, for the composition of correspondences to be well defined, we need the class E to be
stable under pullbacks and compositions.

The category Cat(C , E) is moreover symmetric monoidal (here we use that C has finite products,
see [Man22, Remark A.5.5]) with symmetric monoidal structure given by the cartesian product in
C . We can then define a six functor formalism as follows:

Definition 1.2. Let (C , E) be a geometric set up as before. A three functor formalism on (C , E)
is a lax symmetric monoidal functor

D : Corr(C , E)→ Cat∞

where Cat∞ is endowed with the cartesian symmetric monoidal structure. A six functor formalism
is a three functor formalism as before for which f ∗, f! and ⊗ have right adjoints.

We have a natural functor C op → Corr(C , E) by mapping X 7→ X and a morphism f : Y → X
to X ← Y = Y . The composite with the six functor formalism produces a lax symmetric monoidal
functor D : C op → Cat∞ which is the same datum as a functor D : C op → Cat⊗∞. This encodes the
functors ⊗ and f ∗. The functors f! are encoded in the right vertical arrows of the correspondences
in such a way that a morphism X

f←− V
g−→ Y is mapped to the morphism

g!f
∗ : D(X)→ D(Y )

in Cat∞. Additional structures such as base change and projection formula are also encoded in the
category Corr(C , E), see the discussion after [Sch23, Definition 3.12].

2. Construction of six functor formalisms

Let (C , E) be a geometric set up. When C is an ∞-category (and not just a category) it is
difficult to construct a six functor formalism due to all the higher coherences that one needs to
keep track in the correspondence category. To remedy this problem one can construct six functor
formalisms out from a minimal amount of datum that heuristically corresponds to "compactifying"
the maps in E.

Definition 2.1. Let (C , E) be a geometric set up. A suitable decomposition of E is a pair (I, P )
consisting on families of arrows I and P in E satisfying the following conditions:

(1) Any arrow in E can be written as p ◦ j with p ∈ P and j ∈ I.
(2) An arrow f ∈ I ∩ P is n-truncated for some n ≥ −2 (which might depend in f).
(3) The families I and P contain all the isomorphisms, are stable under pullbacks and compo-

sitions.
(4) Given two composable arrows f : Z → Y and g : Y → X in C , if g ◦ f and g are in I (resp.

P ), then f ∈ I (resp. P ).

Proposition 2.2 ([Man22, Proposition A.5.10]). Let (C , E) be a geometric set up and (I, P ) a
suitable decomposition. Let D : C op → Cat⊗∞ be a functor. Suppose that the following conditions
are satisfied:
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(a) For every j : U → X in I the following is true:
– The functor j∗ admits a left adjoint j!.
– j! satisfies proper base change and the projection formula.

(b) For every f : Y → X in P the following is true:
– The functor f ∗ admits a right adjoint f∗.
– The functor f∗ satisfies proper base change and the projection formula.

(c) For every cartesian diagram

U ′ X ′

U X

j′

f ′ f

j

with j ∈ I and f ∈ P the natural map j!f
′
∗

∼−→ f∗j
′
! is an isomorphism.

Then D can be extended to a three functor formalism

D : Corr(C , E)→ Cat∞

such that for j ∈ I the functor j! is the left adjoint of j! and for f ∈ P the functor f! is the right
adjoint of f ∗.

Remark 2.3. The map j!f
′
∗ → f∗j

′
! in the condition (c) of Theorem 2.2 is adjoint to a map

f ∗j!f
′
∗
∼= j′∗f

′,∗f ′
∗ → j′∗

where in the left isomorphism we use proper base change of condition (a) and the right map follows
from the adjunction between f

′,∗ and f ′
∗. There is another way to construct the map j!f

′
∗ → f∗j

′
!

which is by taking the adjoint of the map

f ′
∗ → f ′

∗j
′,∗j′!
∼= j∗f∗j

′
!

where in the right isomorphism we use condition (b) and the left map follows from the adjunction
between j′∗ and j

′,∗. The fact that both adjuctions produce the same map follows from an inductive
argument and the truncated condition (2) in Definition 2.1, see [Sch23, Constructions 4.3-4.5].

Given a six functor formalism D in a geometric set up (C , E), one would like to extend the
category of objects C to stacks and the class of morphisms E to a class of "stacky !-able maps".
The key statements that make this possible are [Man22, Lemma A.5.11 and Propositions A.5.12,
A.5.14 and A.5.16]. A more geometric point of view is explained in [Sch23, Appendix of Lecture
IV].

3. Pseudo-coherent modules and derived Tate algebras

In the second part of this talk we shall construct the six functor formalism for solid quasi-coherent
sheaves of rigid spaces. In the definition of a six functor formalism we assumed that the geometry
set up (C , E) was such that C has finite limits. In order to get the correct finite limits for rigid
spaces we need to jump to the world of derived algebraic geometry. We shall follow the analogue
discussion of [CS22, Lecture XI]

Definition 3.1. Let R be a ring, a module M ∈ D+(R) is said pseudo-coherent if HomR(M,−)
commutes with filtered colimits of diagrams in D≤0(R) (equivalently arbitrary direct sums). We let
D(R)pscoh denote the full subcategory of pseudo-coherent modules.

Lemma 3.2. Let R be a noetherian ring. Then M ∈ D+(R) is pseudo-coherent if and only if
H i(M) is of finite type for all i ∈ Z.

Proof. This is [Sta22, Tag 066E]. □

https://stacks.math.columbia.edu/tag/066E
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Definition 3.3. Let R = (R▷,D(R)) be an analytic ring, consider the fully faithful embedding
D(R▷(∗)) → D(R) arising from the fact that RHomR(R

▷, R▷) = R▷(∗). We let D(R)dis denote
its essential image and call it the full subcategory of relative discrete R-modules. We also let
D(R)dis,pscoh be the essential image of D(R▷(∗))pscoh.

Remark 3.4. The terminology of discrete modules in Definition 3.3 might be confusing. If the
condensed ring R▷ has a non-trivial topology (eg. a Banach ring) then R▷ itself is not a discrete
condensed ring. However, relative discrete modules are obtained by taking "discrete" colimits of
the ring R▷ (namely, colimits without any kind of further completion), this justifies the name of
"relative discrete modules".

Lemma 3.5. Let R be a noetherian Banach algebra. Then D(R(∗))→ Dcond(R) is t-exact.

Proof. Let I(∗) ⊂ R(∗) be an ideal, since R is noetherian we have a resolution M• of I by finite
free R-modules. By the open Banach theorem, the resolution is strictly exact which is equivalent
to being exact as condensed R-modules. This shows that I(∗) ⊗L

R(∗) R = I is in degree 0, proving
what we wanted. □

Theorem 3.6 (Andreychev). Let (A,A+) be an analytic Huber pair, then pseudo-coherent modules
satisfy analytic descent. Moreover, if A is strongly noetherian then the t-structure of D(A)dis,pscoh

satisfies analytic descent.

Proof. Descent of pseudo-coherent complexes on analytic adic spaces is [And21, Theorem 5.44].
Flatness of rational localizations of rigid spaces and Lemma 3.5 show that we also have descent for
the t-structures in pseudo-coherent sheaves. □

From now on we fix a complete non-archimedean field (K,K+) and work with adic spaces over
(K,K+).

Definition 3.7. We let Tn,K := K⟨T1, . . . , Tn⟩ denote the Tate algebra over K in n-variables. An
animated solid K-algebra A is a derived Tate algebra if there is a morphism of K-algebras

Tn,K → A

such that A is a pseudo-coherent Tn,K-module.

Proposition 3.8. Let A be a solid K-algebra. The following are equivalent.
(1) A is a derived Tate algebra.
(2) π0(A) is a classical Tate algebra of finite type and πi(A) is a coherent π0(A)-module for all

i ≥ 0.
Moreover, under the previous equivalent assumptions we can find a morphism Tn,K → A that is

surjective on π0.

Proof. Suppose that (1) holds, then π0(A) is a finite Tn,K-module and so a classical Tate algebra
of finite type. Since the Tn,K-modules πi(A) are finite for all i ≥ 0, then so are as A modules
proving (2) since Tate algebra of finite type are noetherian. Conversely, suppose that (2) holds.
Let Tn,K → π0(A) be a surjection of derived Tate algebras, and take any lift f : K[T1, . . . , Tn]→ A.
We claim that f localizes to Tn,K → A. Indeed, the morphism K[T1, . . . , Tn]→ Tn,K is idempotent
as solid K-algebras. Then, since π∗(A) is a module over π0(A) and so is over Tn,K , the map f will
naturally extend to Tn,K since ModTn,K

(D□(K[T1, . . . , Tn])) is stable under small limits and colimits.
Note that the proof of "(2) implies (1)" also constructs the map Tn,K → A that is surjective in
π0. □

Lemma 3.9. The category of derived Tate K-algebras is stable under finite colimits.
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Proof. Since AffRingK has an inital object it suffices to show that it is stable under pushouts. Let
B ← A→ C be a diagram in AffRingK . We can compute

B ⊗A C = (B ⊗ C)⊗A⊗A A.

Thus, we can either assume that A = K or that A → B is surjective on π0. If A = K consider
surjections Tn,K → A and Tm,K , then Tn+m,K → A⊗B is a surjective map and a standard spectral
sequence argument shows that πi(A⊗B) is a finite Tn+m,K-module proving that A⊗B is Tn+m,K-
pseudo-coherent by Lemma 3.2. Finally, suppose that A → B is a surjection on π0, then πi(B)
is a finite π0(A)-module for all i ∈ Z and the standard spectral sequence argument shows that
πi(B ⊗A C) is a finite π0(C)-module for all i ∈ Z. Since π0(C) → π0(B ⊗A C) is surjective, the
second term is a classical Tate algebra and so B ⊗A C is a derived Tate algebra by Proposition
3.8. □

4. Derived affinoid rings

Having introduced derived Tate algebras we can define derived affinoid rings. For this we adopt
an extension of Huber’s theory of affinoid pairs. First recall an homotopical invariance of analytic
ring structures.

Proposition 4.1 ([CS20, Proposition 12.22]). Let R▷ be a condensed animated ring. Then the map
sending an (uncompleted) analytic ring structure R over R▷ to π0(R) := π0(R

▷)R/ = R ⊗R▷ π0(R
▷)

induces a bijection between (uncompleted) analytic ring structures over R▷ and π0(R
▷). Under this

equivalence, an R▷-module M is R-complete if and only if πi(M) is π0(R)-complete for all i ∈ Z.

In other words, the previous proposition says that (uncompleted) analytic ring structures over
a fixed condensed animated ring R▷ only depend on the abelian heart of complete modules. This
allows the construction of analytic rings just by declaring what complete modules are for static
rings.

Definition 4.2. A derived affinoid pair over K is a pair (A,A+) consisting on a derived Tate K-
algebra A and a power bounded, open and integrally closed subring A+ ⊂ π0(A)(∗). A morphism
(A,A+) → (B,B+) of derived affinoid pairs is a map A → B that sends A+ to B+. The adic
spectrum of (A,A+) is defined as | Spa(A,A+)| := | Spa(π0(A), A

+)|. We let AffRingK denote the
∞-category of derived affinoid rings over K.

Recall that for a static Z-algebra of finite type R there is the solid ring R□ whose measures at a
profinite set S written as a limit of finite sets S = lim←−i

Si are given by

R□[S] = lim←−
i

R[Si].

More generally, for a discrete static ring R one defines R□ = lim−→B⊂R
B□ where B runs over all the

subalgebras of R of finite type over Z.

Definition 4.3. Let (A,A+) be a derived affinoid pair. We define the analytic ring (A,A+)□ to be
the analytic ring structure over A associated to π0(A)A+

□/ under Proposition 4.1. In other words,
an A module M is (A,A+)□ complete if and only if πi(M) is A+

□-complete for all i ∈ Z.

Theorem 4.4 (Andreychev). The functor (A,A+) 7→ (A,A+)□ is a right exact fully faithful em-
bedding from the category of derived affinoid pairs to the category of analytic K-algebras.

Proof. [And21, Proposition 3.34] shows that the functor (A,A+) 7→ (A,A+)□ is fully faithful
for static analytic Huber pairs. To deduce the theorem for general derived Tate algebras, note
that A is (A,A+)□-complete and so it is the unit in D((A,A+)□). Moreover, we can recover
A+ as π0MapZ(Z[T ]□, (A,A+)□ thanks to [And21, Proposition 3.34]. Thus, the mapping space
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MapK((A,A
+)□, (B,B+)□) is the subspace of MapK(A,B) that sends A+ to B+, which is precisely

the mapping space in affinoid pairs.
Finally, to show that the functor is right exact it suffices to see that it sends push-outs of derived

affinoid rings to pushouts of analytic rings. The pushout of a diagram (B,B+)← (A,A+)→ (C,C+)
AffRingK is given by the affinoid ring (D,D+) where D = B⊗L

(A,Z)□ C is a derived Tate algebra by
Lemma 3.9, and D+ is the open integral closure of the image of B+ and C+ in π0(D). On the other
hand, the pushout of (B,B+)□ ← (A,A+)□ → (C,C+)□ is the analytic ring (E,E+) obtained as
the completion of the analytic ring structure on D with respect to the solid variables in B+ and C+.
But D being a Banach K-algebra (and so nuclear) is already B+

□ and C+
□ -complete (see [Man22,

Proposition 2.3.22 (ii)]). Then E = D and by Proposition 4.1 and [And21, Propositions 3.32 and
3.34] the ring E+ is the open integral closure of the images of B+ and C+ in π0(D). This proves
the theorem. □

5. Derived rigid spaces

Next we defined derived rigid spaces. Roughly speaking these are constructed from derived
affinoid pairs by gluing in the analytic topology. However, in order to make the gluing compatible
with the theory of analytic rings it is convenient to discuss the notion of smash spectrum and open
and closed immersions in stable symmetric monoidal categories.

Definition 5.1. Let C be a presentably symmetric monoidal stable ∞-category. The smash spec-
trum of C is the poset S (C ) of idempotent algebras in C . In other words, S (C ) is the category
of objects A in C endowed with an arrow 1C

µ−→ A such that the natural map

A
µ⊗idA−−−→ A⊗ A

is an equivalence.

From a categorical point of view idempotent algebras behave as closed subspaces in a topological
space.

Proposition 5.2 ([CS22, Proposition 5.3]). The poset S (C ) is a locale whose closed subspaces
Z ∈ S (C ) correspond to idempotent algebras A. Moreover, the following is satisfied:

(1) The whole space is given by A = 1C .
(2) The empty space is given by A = 0.
(3) The intersection Z(A) ∩ Z(B) is given by Z(A⊗B).
(4) More generally, given a diagram {Z(Ai)}i∈I in the locale, its intersection is given by Z(lim−→i

Ai).
(5) The union Z(A) ∪ Z(B) is given by the idempotent algebra fib(A⊕ B → A⊗ B) where the

unit
1C → fib(A⊕B → A⊗B)

is induced by 1C
(µA,−µB)−−−−−→ A⊕B.

The formalism of the smash spectrum allows the construction of "closed" and "open" localizations
of the category C from a six functors point of view.

Definition 5.3. Let Z ∈ S (C ) be a closed subspace corresponding to the idempotent algebra
A = A(Z), we write U for its formal open complement. We define C (Z) := ModA(C ) and C (U) =
C /CA. Moreover, we define the following functors:

(1) ι∗Z : C → C (Z) to be the natural base change and j∗U : C → C (U) to be the natural
localization functor.

(2) ι∗,Z and j∗,U to be the (fully faithful) right adjoints of ι∗Z and j∗U respectively.
(3) ι!,Z = ι∗,Z and j!,U to be the (fully faithful) left adjoint of j∗U .
(4) j!U = j∗U and ι!Z to be the right adjoint of ι∗,Z .
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Lemma 5.4. We have semi-orthogonal decompositions

C (Z)
ιZ,∗−−→ C

j∗U−→ C (U) and C (U)
j!,U−−→ C

ι∗Z−→ C (Z).

Proof. This follows by unravelling the definitions. For example, we have that
ιZ,∗ι

∗
ZM = A⊗M,

ιZ,∗ι
!
ZM = Hom(A,M),

jU,!j
∗
UM = fib(1C → A)⊗M

and
jU,∗j

∗
UM = Hom(fib(1C → A),M).

□

Definition 5.5. A morphism f ∗ : C → D of presentably symmetric monoidal stable ∞-categories
is a closed (resp. an open) immersion if it is of the form ι∗Z (resp. j∗U) for an idempotent algebra
A(Z) ∈ S (C ).

The following proposition characterizes open and closed immersions in terms of six functors.

Proposition 5.6. Let f ∗ : C → D be a morphism of presentably symmetric monoidal stable ∞-
categories.

(1) f is a closed immersion if and only if f∗ is a colimit preserving fully faithful functor satisfying
the projection formula: for N ∈ C and M ∈ D the natural map

f∗M ⊗N → f∗(M ⊗ f ∗N)

is an equivalence.
(2) f is an open immersion if and only if it admits a fully faithful left adjoint f! satisfying the

projection formula: for N ∈ C and M ∈ D the natural map

f!(M ⊗ f ∗N)→ f!M ⊗N

is a equivalence.
Moreover, the adjunctions are preserved under base change in presentably symmetric monoidal

stable ∞-categories.

The formal descent result in the framework of locales is the following theorem.

Theorem 5.7 ([CS22, Theorem 6.7]). Let Sym := CAlg(PrL,ex) be the ∞ category of presentably
symmetric monoidal stable ∞-categories with colimit preserving pullbacks.

(1) There is a Grothendieck topology on Symop where the covering sieves over a given C are
those which contain some set of open immersions whose corresponding open subsets cover
S (C).

(2) The identity functor (Symop)op → Sym is a sheaf with respect to this Grothendieck topology.
(3) The poset of open (resp. closed) immersions also satisfy descent for this Grothendieck topol-

ogy.

Remark 5.8. In the set up of Theorem 5.7, one could ask for a more refined Grothendieck topology,
namely the one generated by disjoint unions of locally closed immersions C → D that in addition
satisfy !-descent (for the !-functors defined as in Definition 5.3). For example, a cover of C by finitely
many closed subspaces would be a cover in this topology (this amounts to a descendable map of
algebras in the sense of [Mat16]). Then the theorem will hold for this Grothendieck topology.

More generally, consider Lurie’s tensor product in Sym which induces a cartesian structure in
Symop. It is possible to construct a whole six functor formalism in Symop by taking I to be the
category of open immersions and P the morphisms of algebras f ∗ : C → D where f∗ is a colimit
preserving functor satisfying projection formula. Equivalently, the maps P are those f for which
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D = ModA(C) for some algebra object A ∈ C. Then, within this six functor formalism one can
define the !-topology by declaring C → D to be a !-cover if the category satisfies !-descent. This
condition is strong enough to guarantee usual ∗-descent and Theorem 5.7 will hold for this very
strong Grothendieck topology. The topology used in the theory of analytic stacks is the pullback
to analytic rings of the !-topology in Symop.

Proposition 5.9. The following morphisms of analytic rings induce open immersions of symmetric
monoidal categories.

(1) (Z[T ],Z)□ → (Z[T ],Z[T ])□.
(2) (Z[T ],Z)□ → (Z[T±1],Z[T−1])□.

Proof. The map in (1) is the complement of the idempotent (Z[T ],Z)□-algebra Z((T−1)) while the
map in (2) is the complement of the algebra Z[[T ]]. □

Theorem 5.10 (Andreychev). Let (A,A+) be a classical affinoid ring over K. Then for U ⊂
Spa(A,A+) an open affinoid subspace the map of analytic rings

(A,A+)□ → (O(U),O+(U))□ (5.1)

is an open immersion and defines a sheaf on ∞-categories. In other words, we have a morphism of
locales

S (D((A,A+)□))→ Spa(A,A+).

Proof. This is essentially [And21, Theorem ]. The only part to justify is that (5.1) induces an open
immersion of symmetric monoidal categories. For this, by covering U with rational localizations, it
suffices to show that (A,A+)□ → (B,B+)□ is an open immersion, where

(B,B+) = (A,A+)(
f1, . . . , fd

g
)

with fd = π a pseudo-uniformizer. But any rational localization in an analytic Huber ring is an
iteration of localizations of the form (A,A+)( 1

f
) and (A,A+)(f

1
) for f ∈ A. Finally, by [And21,

Proposition 4.11] we have

(A(
1

f
), A(

1

f
)+)□ = (A,A+)□ ⊗(Z[T ],Z) (Z[T±1],Z[T−1])□

and
(A(

f

1
), A(

f

1
)+)□ = (A,A+)□ ⊗(Z[T ],Z) (Z[T ],Z[T ])□

where T 7→ f . The theorem follows from Proposition 5.9. □

Corollary 5.11. Let (A,A+) be a derived affinoid pair over K. Then the map of locales

S (D((π0(A), A
+)□))→ Spa(A,A+)

of Theorem 5.10 lifts uniquely to a map of locales S (D((A,A+)□))→ Spa(A,A+).

Proof. By Theorems 5.10 and 3.6 we have a sheaf π∗OX on the classical adic space X = Spa(π0(A), A
+)

with πi(OX) a coherent π0(OX)-module. Thus, by Proposition 4.1, given an open affinoid U ⊂ X
we have a morphism of analytic rings

(A,A+)□ → (O(U),O+(U))□ (5.2)

that is equivalent to a morphism of derived affinoid rings by Theorem 4.4. Then, to prove the
corollary it suffices to show that (5.2) is an open immersion. By taking a covering of U we can
assume without loss of generality that it is a rational localization of X, and by induction we can
even assume that it is of the form X( 1

f
) or X(f

1
). But then we have that

(O(U),O+(U))□ = (A,A+)□ ⊗(Z[T ],Z) (Z[T±1],Z[T−1])□
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or
(O(U),O+(U))□ = (A,A+)□ ⊗(Z[T ],Z) (Z[T ],Z[T ])□

for any lift Z[T ] → A of Z[T ] → π0(A) mapping f to A. One deduces that (5.2) is an open
immersion by Proposition 5.9. □

After the analytic localization of Corollary 5.11 we can define derived adic spaces of finite type
over K.

Definition 5.12. Let AffRingK be the category of derived affinoid K-algebras and let AffK be its
opposite category. We let Shan(AffK) be the category of sheaves on anima of AffK for the analytic
topology. A derived adic space of finite type over K is a sheaf X ∈ Shan(AffK) that is locally in the
analytic topology representable by an object in AffK . We let Spa(A,A+) be the sheaf correpresented
by (A,A+) and call it its adic spectrum.

6. Six functors for solid quasi-coherent sheaves

We finally put all the pieces together to construct the six functor formalism for solid quasi-coherent
sheaves on rigid spaces.

Definition 6.1. A map X → Y of derived adic spaces of finite type over K is locally compactifiable
if, locally in the analytic topology of X and Y , the map X → X/Y from X into its relative
compactification is an open immersion.

Theorem 6.2. Let C be the ∞-category of derived adic spaces of finite type over K. Then the
functor X 7→ D(X) of solid quasi-coherent sheaves on X can be naturally extended to a six functor
formalism

D : Corr(C , E)→ PrL

with E the family of locally compactifiable maps. In particular, E includes all the arrows of classical
rigid spaces over K.

In order to construct the six functors of Theorem 6.2 we need to start with some basic input:

Definition 6.3. Let I be the class of open immersions Spa(B,B+) → Spa(A,A+) in AffRingK .
Let P be the class of arrows Spa(B,B+)→ Spa(A,A+) with B+ being the open integral closure of
A+ in π0(B).

Proposition 6.4. The pair (I, P ) is a suitable decomposition of (AffK , E). Moreover, the tuple
(AffK , E, I, P ) satisfies the conditions of Proposition 2.2 and there is a six functor formalism

D : Corr(AffK , E)→ PrL

extending Spa(A,A+) 7→ D((A,A+)□) such that the arrows in I are open immersions and the arrows
in P are proper.

Sketch of the proof. We first prove that (I, P ) is a suitable decomposition of (AffK , E), see Definition
2.1. We need to show that any map Spa(B,B+)→ Spa(A,A+) of derived affinoid K-algebras that
is locally compactifiable factors as a composite of I and P . At the level of rings this correspond to

(A,A+)□ → (B,A+)□ → (B,B+)□

where the first arrow is in P since has the induced structure, and the second arrow is an open
immersion by assumption of being (locally) compactifiable (for example a map weakly of +-finite
type). This shows (1).

Open immersions are (−1)-truncated, this shows (2). It is clear that the arrows I and P contain
all the isomorphisms. P is stable under compositions and pullbacks being just the induced analytic
ring structure. The class I is stable under pullbacks and composition by the criterion of Proposition
5.6. This shows (3).
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Finally, one easily verifies (4) using that the arrows in P have the induced analytic structure and
Proposition 5.6 for the arrows in I.

To finish the proof of the proposition, we need to show that the conditions (a)-(c) in Proposition
2.2 hold. Condition (a) is immediate from Proposition 5.6 and the definition of I as open immersions.
Condition (b) can be proven easily using that the arrows in P have the induced analytic structure
(and so the statement becomes the classical affine base change and projection formula in algebra).
Condition (c) is also easy to verify by a computation that we left to the reader (hint: recall that
open immersions are complements of idempotent algebras). See [RC24, Lemma 3.2.5] for more
details. □

The key proposition that allows the extension of six functors from affinoid rings to arbitrary rigid
spaces is the following !-descent result:

Proposition 6.5. The functor Spa(A,A+) 7→ D((A,A+)□) satisfies !-descent for the analytic topol-
ogy.

Proof. This is a special case of smooth descent [Sch23, Proposition 6.18]. See also Theorem 5.7 and
Remark 5.8. □

Remark 6.6. Instead of giving a formal proof of Theorem 6.2 that would involve applying several
times [Man22, Propositions A.5.12, A.5.14 and A.5.16], let us explain how the six functors are
computed. Let f : Y → X be a locally compactifiable map of derived adic spaces of finite type over
K. Theorem 6.2 provides a natural and functorial way to describe the functor f! as follows:

• First, by replacing X with open affinoid subspaces, we can assume that X = Spa(A,A+).
• If Y is affinoid then the functor f! is constructed as in Proposition 6.4 by composing Y with

an open immersion and a partially proper map (a suitable decomposition).
• If Y =

⊔
i Spa(B,Bi) is a disjoint union of affinoid spaces we then have f! =

⊕
fi,!.

• If f is separated, let U = {Spa(Bi, B
+
i )}i be an open cover of Y by open affinoid spaces and

set Z =
⊔

i Spa(Bi, B
+
i ). Then g : Z → Y is a locally compactifiable morphism of derived

rigid spaces represented in AffK , and so it is !-able (i.e. it admits !-functors). Then, we have

f! = lim−→
[n]∈∆op

(f ◦ gn)! ◦ g!n

where gn : Z×Y n+1 → Y is the Čech nerve, and the map f ◦ gn is a disjoint union of affinoid
maps (so !-able).
• For general f , take U an affinoid cover of Y and let Z be as before. Then the map g : Z → Y

is separated and locally compactifiable so it is !-able. Since g has !-descent the map f is
!-able and we can compute

f! = lim−→
[n]∈∆op

(f ◦ gn)! ◦ g!n

where gn being the Čech nerve as before, and the map f ◦ gn is separated and locally
compactifiable (so !-able).
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