
Nuc(X) IS DUALIZABLE

EMANUEL REINECKE

In this talk, we want to define the category Nuc(X) of nuclear sheaves on an analytic adic space
X and prove the following result of Andreychev.

Theorem 1 ([And23, Satz 4.6]). Let X be a qcqs analytic adic space. Then Nuc(X) is a dualizable
category.

Using Theorem 1 and the Efimov K-theory introduced in Talk 4, we can finally define the
K-theory of qcqs analytic adic spaces.

Definition 2. Let X be a qcqs analytic adic space. Then the (continuous) K-theory of X is the
presheaf valued in spectra given by

Kcont : {qc open U ⊆ X} −→ Sp, U 7→ KEf(Nuc(U)
)
.

1. Dualizability for affinoid analytic adic spaces

We first study Theorem 1 for affinoid adic spaces subject to the following condition, which was
first appeared in [Har67, § 2].

Definition 3. A complete Huber ring A is called weakly proregular if there exists a pair of definition
(A0, I) and a sequence a1, . . . , ar ∈ A0 such that I = (a1, . . . , ar) and the system of Koszul complexes
K(A0; an

1 , . . . , an
r ) is protrivial; that is, for all q > 0 and all n ≥ 0, there exists m ≥ n such that the

transition maps Hq
(
K(A0; am

1 , . . . , am
r )

)
→ Hq

(
K(A0; an

1 , . . . , an
r )

)
induced by multiplication with

am−n
i are 0. A complete Huber pair (A, A+) is weakly proregular if A is so.

It is easy to check that if the condition on the progregularity of the ideal I ⊂ A0 holds for one
pair of definition (A0, I), then it holds for all pairs of definition; see [And23, Lem. 3.5].

Example 4 ([Har67, Lem. 2.5]). If A admits a noetherian ring of definition A0, then A is weakly
proregular.

Example 5. Any complete Tate ring A is weakly proregular: Let ϖ ∈ A◦◦ be a pseudouniformizer.
Then the topology of a ring of definition A0 ⊂ A containing ϖ is the (ϖ)-adic one. Since ϖ is a
unit in A, the subring A0 is ϖ-torsionfree and hence H1

(
K(A0; ϖn)

)
= 0 for all n.

Example 5 shows that the analytic adic spaces relevant to this talk always satisfy the weak
proregularity condition locally. Though not strictly necessary to set up our theory for analytic adic
spaces, we find conceptually pleasing to generalize this example to all affinoid analytic adic spaces:

Example 6. Let A be an analytic complete Huber ring, that is, a complete Huber ring whose
topologically nilpotent elements generate the unit ideal; these are exactly the Huber rings which un-
derlie affinoid analytic adic spaces. We claim that A is weakly proregular. To see this, pick
topologically nilpotent ϖ1, . . . , ϖr ∈ A that generate the unit ideal and a ring of definition
A0 ⊂ A which contains the ϖi and has the (ϖ1, . . . , ϖr)-adic topology. It suffices to prove
that colimn Extq(K(A0; ϖn

1 , . . . , ϖn
r ), I) = 0 for all q > 0 and all injective A0-modules I [Har67,

Lem. 2.4].

Many thanks to Greg Andreychev, Juan Esteban Rodŕıguez Camargo and Bogdan Zavyalov for illuminating
discussions during the preparation of this talk.
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Since A0 ⊂ A is an open subring, the localizations A0[1/ϖi] → A[1/ϖi] are isomorphisms
for 1 ≤ i ≤ r. This implies that Spec A → Spec A0 is an open immersion whose complement
is given by V (ϖ1, . . . , ϖr). The long exact sequence for local cohomology and the vanishing
H>0(

Spec A, Ĩ
)

= H>0(
Spec A0, Ĩ

)
= 0 then show that colimn Extq(K(A0; ϖn

1 , . . . , ϖn
r ), I) = 0 for

q > 1 and that it suffices to prove that I → I ⊗A0 A is surjective.
Let s ∈ I ⊗A0 A. Since coker(I → I ⊗A0 A) is (ϖ1, . . . , ϖr)-power torsion, there exists an integer

m > 0 such that ϖm
i · s can be lifted to s̃i ∈ I for all 1 ≤ i ≤ r. The ϖm

i still generate the unit
ideal in A, so we can pick a1, . . . , ar ∈ A such that a1ϖm

1 + · · · + arϖm
r = 1. Again, there exists

an integer n > 0 with ϖn
j ai ∈ A0 for all 1 ≤ i, j ≤ r. Since I is injective, we can find tij ∈ I for

1 ≤ i, j ≤ r that induce the dashed map rendering the following diagram commutative:

0 A0 A⊕r
0

I⊕r

(·ϖn
j )

(s̃i)
(tij)

In particular, s = ∑r
i=1 aiϖ

m
i · s = ∑r

i=1 s̃i ⊗ ai = ∑r
i,j=1(ϖn

j · tij) ⊗ ai = ∑r
i,j=1(ϖn

j ai) · (tij ⊗ 1)
lies in im(I → I ⊗A0 A) because ϖn

j ai ∈ A0. This proves the claim.

Now we can state a version of Theorem 1 in the affinoid case.

Theorem 7 ([And23, Satz 3.17]). Let (A, A+) be a weakly proregular complete Huber pair. Denote
by (A , M ) := (A, A+)□ the associated analytic ring and by Dnuc(A , M ) the ∞-category of nuclear
modules over (A , M ). Then Dnuc(A , M ) is a dualizable category.

Let us review some of the notions used in the statement.

Recollection 8. (i) We saw in Talk 7 that the analytic ring (A , M ) := (A, A+)□ attached to
a complete Huber pair (A, A+) is given by M [S] := A[S] ⊗A+

disc
(A+

disc)□ for all profinite S

[And21, § 3.3].1 Here, A+
disc denotes the ring A+ equipped with the discrete topology and

(A+
disc)[S] := colimA′⊆A A′

□[S], where the colimit runs over all finitely generated Z-subalgebras
of A′.

(ii) We saw in Talk 6 that an object X of a closed symmetric monoidal ∞-category C is called
nuclear if for all compact objects Y ∈ C , the natural map (Y ∨ ⊗X)(∗)→ HomC (Y, X) is an
equivalence. When C = D(A , M ), nuclearity amounts to the condition that the natural map

(C(S, A)⊗X)(∗) ≃ (M [S]∨ ⊗X)(∗)→ Hom(A ,M )(M [S], X) ≃ X(S)
is an equivalence in D(Ab) for all extremally disconnected S. By [And21, Prop. 5.35], this is
equivalent to the “inner nuclearity” condition that the natural map

C(S, A)⊗X →H om(A ,M )(M [S], X)
is an equivalence in D(A , M ). We recall that the full subcategory of nuclear objects is closed
under colimits (immediate from the definition) and an object of D(A , M ) is dualizable if and
only if it is compact and nuclear [And21, Prop. 5.37].

(iii) Denote by PrL
st the ∞-category of stable presentable ∞-categories. The Lurie tensor product

endows PrL
st with a symmetric monoidal structure whose unit is the ∞-category Sp of spectra.

We saw in Talk 3 that a category C ∈ PrL
st is dualizable (with respect to this symmetric

monoidal structure) if and only if it is a retract in PrL
st of a compactly generated category

D ∈ PrL
st; that is, there exists a fully faithful (colimit preserving) functor C → D in PrL

st
which has a (colimit preserving) right adjoint D → C in PrL

st.
1In this talk, we will omit the derived decorations for all our functors, so for example ⊗ stands for the derived

tensor product, / for the derived quotient, and H om for the derived internal hom.
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The idea for the proof of Theorem 7 is now simple: Since D(A , M ) is compactly generated by the
M [S] for S extremally disconnected [Sch19, Prop. 7.5], it suffices to construct a colimit preserving
right adjoint to the fully faithful inclusion Dnuc(A , M ) ↪→ D(A , M ). We will see soon that such
an adjoint is given by the trace functor (−)tr. But first, we note that the machinery of dualizable
categories and Efimov K-theory seems really necessary if one wants to obtain a reasonable notion
of K-theory in the adic context.

Warning 9. (i) Even though the category D(A , M ) is compactly generated, it has too many
compact objects to support a reasonable notion of K-theory. For example, N ∪ {∞} with the
profinite topology gives rise to a short exact sequence in D(A , M )

0→M [{0}]→M [N ∪ {∞}]→M [N>0 ∪ {∞}]→ 0
Since translation by 1 induces an isomorphism N>0 ∪ {∞}

∼−→ N ∪ {∞} and thus M [N>0 ∪
{∞}] ∼−→M [N ∪ {∞}], we deduce that the class of A ≃M [{0}] in K0(D(A , M )ω) must be
0.

(ii) The stable ∞-category Dnuc(A , M ) is not compactly generated. To see this, consider the
chain of colimit preserving inclusions in the upper row of

D(A) Dnuc(A , M ) D(A , M )

Perf(A) ≃ D(A)ω Dnuc(A , M )ω D(A , M )ω.∼⊂ ⊂ ⊂

Since the inclusion Dnuc(A , M ) ↪→ D(A , M ) has a colimit preserving right adjoint (namely
the trace functor to be defined later), it preserves compact objects, so we obtain the right
dashed arrow. On the other hand, compact and nuclear objects in D(A , M ) are dualizable
and thus discrete when (A , M ) comes from a sheafy analytic complete Huber pair (A, A+)
[And21, Cor. 5.51.1]; therefore, we obtain the left dashed arrow and see that it is in fact an
equivalence of full subcategories. However, when A is not discrete, Dnuc(A , M ) contains
nondiscrete objects and can thus not be generated by Dnuc(A , M )ω.

We return to the construction of the trace functor. Contemplating the definition of nuclear
objects, one arrives at

Definition 10. Let (A , M ) be an analytic ring and C := D(A , M ). Since C is compactly
generated, it is given by the ∞-category of exact functors C ≃ Funex(

(C ω)op, Sp
)
. Via this

equivalence, the trace functor is described by the endofunctor
(−)tr : C → C ≃ Funex(

(C ω)op, Sp
)
, X 7→

(
(−)∨ ⊗(A ,M ) X)(∗).

It follows directly from Recollection 8.(ii) that there is a natural transformation of endofunctors
(−)tr → idC given on an object X ∈ C by Xtr =

(
(−)∨ ⊗(A ,M ) X)(∗) → HomC (−, X) = X and

that X ∈ C is nuclear if and only if Xtr → X is an equivalence. Moreover, one checks easily that
(−)tr preserves small colimits. Following the idea set forth above, the proof of Theorem 7 therefore
amounts to showing that (−)tr factors through Dnuc(A , M ) ↪→ D(A , M ).

To see this, we use that since C is compactly generated, we can alternatively describe the trace
functor as
(1) Xtr ≃ colim

Q∈C ω ,
Q→Xtr

Q ≃ colim
Q∈C ω ,

A →(Q∨⊗X)

Q ≃ colim
P,Q∈C ω ,
P →Q∨,

A →(P ⊗X)

Q ≃ colim
P,Q∈C ω ,
Q→P ∨,

A →(P ⊗X)

Q ≃ colim
P ∈C ω ,

A →(P ⊗X)

P ∨;

here, the fourth equivalence uses that
Hom(P, Q∨) = Hom

(
P, H om(Q, A )

)
≃ Hom(P ⊗Q, A ) ≃ Hom

(
Q, H om(P, A )

)
≃ Hom(Q, P ∨).

Moreoever, we need the following key statement:
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Lemma 11. Let (A, A+) be a weakly proregular complete Huber pair. Denote by (A , M ) :=
(A, A+)□ the associated analytic ring. Then for any profinite S, the dual M [S]∨ ≃ C(S, A) is
nuclear.

Assuming Lemma 11, we can now give the

Proof of Theorem 7. We show that (−)tr factors through Dnuc(A , M ) ↪→ D(A , M ) and Dnuc(A , M )
is thus a retract of a compactly generated category in PrL

st. First, note that any compact
P ∈ D(A , M ) is the retract of a finite complex whose terms are all of the form ⊕n

i=1 M [Si]
for some profinite Si and some n ≥ 0 [SP24, Tag 094B]. Therefore, P ∨ is nuclear by Lemma 11.
Since Dnuc(A , M ) is closed under colimits, we can then conclude from (1) that Xtr is nuclear for
all X ∈ D(A , M ). □

Remark 12. Since C(S, A) does not depend on the choice of subring of integral elements A+, the
formula (1) and Lemma 11 show in particular that the fully faithful embedding D

(
(A, A+)□

)
↪→

D
(
(A, Z)□

)
induces an equivalence

Dnuc(
(A, A+)□

) ∼−→ Dnuc(
(A, Z)□

)
upon applying (−)tr. In fact, it follows from the isomorphism (2) below that this equivalence is
even symmetric monoidal. Therefore, we can suppress the A+ from the notation and simply set

Nuc(A) := Dnuc(
(A, A+)□

)
.

We proceed with the proof of Lemma 11. Note that by Recollection 8.(ii), the (inner) nuclearity
of C(S, A) amounts to showing that for any profinite S′, the natural map

(2) C(S, A)⊗(A ,M ) C(S′, A)→H om(A ,M )
(
M [S], C(S′, A)

)
≃ C(S × S′, A)

is an isomorphism. This will be proven in two steps:
(i) in the special case when (A, A+) = (R, R), where R := ZJt1, . . . , trK equipped with the

m-adic topology for m := (t1, . . . , tr) ⊂ R
(ii) for general (A, A+), using the statement for (R, R).

Remark 13. Since ti ∈ R is topologically nilpotent, we have(
ZJt1, . . . , trK, ZJt1, . . . , trK

)
□ ≃

(
ZJt1, . . . , trK, Z[t1, . . . , tr]

)
□ ≃

(
ZJt1, . . . , trK, Z

)
□

by [And21, Prop. 3.32, Lem. 3.31]. This often simplifies computations because it eliminates the
need to take colimits over finitely generated subalgebras in Recollection 8.(i).

Proof of Lemma 11 for (A, A+) = (R, R) ([And23, Lem. 3.7]). We verify (2). Since R/(tn
1 , . . . , tn

r )
is discrete for all n ∈ N and the module of continuous functions on a profinite set S with values in
a discrete module is free by a result of Nöbeling (see [Sch19, Thm. 5.4]),2 we have

C(S, R) ≃ lim
n

C
(
S, R/(tn

1 , . . . , tn
r

)
≃ lim

n

⊕
J

R/(tn
1 , . . . , tn

r )

for some index set J . On the other hand, the ω1-small sequential limit over n ∈ N commutes with
ω1-filtered colimits, hence

lim
n

⊕
J

R/(tn
1 , . . . , tn

r ) ≃ colim
J̃⊆J

countable

lim
n

⊕
J̃

R/(tn
1 , . . . , tn

r ) ≃ colim
J̃⊆J

countable

lim
n

⊕
N

R/(tn
1 , . . . , tn

r ).

2Strictly speaking, loc. cit. only proves this statements for C(S, Z). However, since a continuous function from a
profinite set to a discrete module X has finite image, the natural map C(S, Z) ⊗Z X → C(S, X) is an isomorphism.

https://stacks.math.columbia.edu/tag/094B
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The last term limn
⊕

N R/(tn
1 , . . . , tn

r ) is the “Tate algebra” over R in r variables. The presentation
of Tate algebras in terms of convergent power series shows that

lim
n

⊕
N

R/(tn
1 , . . . , tn

r ) ≃ colim
f : N→N
f(m)→∞

∏
m∈N

(tf(m)
1 , . . . , tf(m)

r ) ·R

(where the last colimit runs over the set of nonnegative sequences that tend toward ∞). Thus, for
any profinite sets S, S′, we have

C(S, R)⊗R□
C(S′, R)

≃ colim
J̃⊆J, J̃ ′⊆J ′

countable

colim
f, f ′ : N→N

f(m), f ′(m′)→∞

∏
m∈N

(tf(m)
1 , . . . , tf(m)

r ) ·R⊗R□

∏
m′∈N

(tf ′(m′)
1 , . . . , tf ′(m′)

r ) ·R.

Since (tf(m)
1 , . . . , t

f(m)
r ) has a finite (Koszul) resolution by finite free modules and ∏

I R⊗R□

∏
I′ R ≃∏

I×I′ R for all index sets I, I ′, we obtain∏
m∈N

(tf(m)
1 , . . . , tf(m)

r ) ·R⊗R□

∏
m′∈N

(tf ′(m′)
1 , . . . , tf ′(m′)

r ) ·R ≃
∏

m,m′∈N
(tf(m)

i · tf(m′)
j )1≤i,j≤r ·R.

Any function g : N2 → N with g(m, m′)→∞ as (m, m′)→ (∞,∞) can be dominated by a function
of the form g(m, m′) ≤ max{f(m), f ′(m′)} with f(m), f ′(m′)→∞ as m, m′ →∞: one may simply
set f(m) := max{g(ℓ, ℓ′)}1≤ℓ,ℓ′≤m and likewise for f ′(m′). Therefore,

colim
f, f ′ : N→N

f(m), f ′(m′)→∞

∏
m,m′∈N

(tf(m)
i · tf ′(m′)

j )1≤i,j≤r ·R ≃ colim
g : N2→N

g(m,m′)→∞

∏
m,m′∈N

(tg(m,m′)
1 , . . . , tg(m,m′)

r ) ·R.

Similarly, any countable subset J̃ ′′ ⊆ J × J ′ is contained in a countable subset of the form J̃ × J̃ ′

by setting J̃ := {j ∈ J | (j, j′) ∈ J̃ ′′ for some j′ ∈ J ′} and likewise for J̃ ′. Hence,

colim
J̃⊆J, J̃ ′⊆J ′

countable

colim
g : N2→N

g(m,m′)→∞

∏
m,m′∈N

(tg(m,m′)
1 , . . . , tg(m,m′)

r ) ·R

≃ colim
J̃ ′′⊆J×J ′

countable

colim
g : N2→N

g(m,m′)→∞

∏
m,m′∈N

(tg(m,m′)
1 , . . . , tg(m,m′)

r ) ·R ≃ lim
n

⊕
J×J ′

R/(tn
1 , . . . , tn

r ) ≃ C(S × S′).

Combining everything, we obtain (2). □

Before we move on to the proof of Lemma 11 for arbitrary weakly proregular complete Huber pairs
(A, A+), we mention a more general statement for (A, A+) = (R, R) that will be useful later on.
Keeping in mind our convention that all functors are derived, recall

Definition 14. An object X ∈ D(R□) is called derived m-adically complete (or m-complete in short)
if the natural map X → limn X/(tn

1 , . . . , tn
r ) is an equivalence. We denote by D(R□)∧

m ↪→ D(R□)
the resulting full subcategory of m-complete objects. Its left adjoint D(R□)→ D(R□)∧

m which is on
objects given by X 7→ X∧

m := limn X/(tn
1 , . . . , tn

r ) is called the m-adic completion functor.

The more general statement is now

Proposition 15. If X, Y ∈ D−(R□)∧
m, then X ⊗R□

Y is again m-adically complete.

Proof. This is a special case of [Man22, Prop. 2.12.10], applied to A = R and A+ = Z[t1, . . . , tr]disc,
keeping in mind Remark 13. □

When X = C(S, R) and Y = C(S′, R), Proposition 15 recovers Lemma 11 for (R, R) because the
natural map C(S, R)⊗R□

C(S′, R)→ C(S × S′, R) is an isomorphism modulo mn for all n ∈ N as
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observed in the proof above. In fact, the proof of [Man22, Prop. 2.12.10] (or rather that of [Man22,
Lem. 2.12.9] on which it relies) essentially reduces to this case.

We can finally deal with the proof of Lemma 11 for an arbitrary weakly proregular complete Huber
pair (A, A+). Let (A0, I) be a pair of definition. By Definition 3, we can find a sequence a1, . . . , ar ∈ A
such that I = (a1, . . . , ar) and the natural map A0/(an

1 , . . . , an
r ) → π0

(
A0/(an

1 , . . . , an
r )

)
is a pro-

isomorphism of pro-systems in n. The idea is now to consider (A, A+) as an (R, R)-algebra via
ti 7→ ai and bootstrap to the case of (R, R). We will need a series of three lemmas:

Lemma 16. Let S be a profinite set. The condensed module C(S, A0) is the I-adic completion of
C(S, (A0)disc).

Proof. Since A0 is classically I-adically complete and the module of continuous functions on S with
values in a discrete module is free, we have

C(S, A0) ≃ lim
n

C
(
S, π0(A0/(an

1 , . . . , an
r ))

)
≃ lim

n
π0

(
C(S, (A0)disc)/(an

1 , . . . , an
r )

)
.

Now (A, I) is weakly proregular, so A0/(an
1 , . . . , an

r ) → π0
(
A0/(an

1 , . . . , an
r )

)
is a pro-isomorphism

of pro-systems in n and remains a pro-isomorphism after applying any A0-linear functor such as
(infinite) direct sums. Thus,

C(S, (A0)disc)∧
I := lim

n
C(S, (A0)disc)/(an

1 , . . . , an
r )→ lim

n
π0

(
C(S, (A0)disc)/(an

1 , . . . , an
r )

)
is still an isomorphism. Combined with the previous display equation, this finishes the proof. □

Lemma 17 ([And23, Lem. 3.12]). If X is an m∞-torsion module over R, then X ⊗Rdisc R□ ≃ X.
In particular, X is nuclear over (R, R).

Proof. Using Koszul resolutions, one can see that the canonical map
R/(tn

1 , . . . , tn
r )⊗Rdisc R□ → R/(tn

1 , . . . , tn
r )

is an isomorphism for all n ∈ N. The first statement is now a consequence of the fact that −⊗Rdisc R□

preserves small colimits. The second statement then follows from the fact that all discrete modules
are nuclear [And23, Lem. 5.45]. □

Lemma 18 ([And23, Lem. 3.12]). Let A be a weakly proregular complete Huber ring. Then A is
nuclear as a condensed module over R□.

Proof. Consider the short exact sequence of condensed R-modules
0→ A0 → A→ A/A0 → 0.

Since A/A0 is m∞-torsion, Lemma 17 shows that A/A0 is nuclear. As the category of nuclear
modules is closed under extensions (and indeed all colimits), it suffices to show that A0 is nuclear,
that is, that for all profinite sets S, the natural map

C(S, R)⊗R□
A0 −→ C(S, A0)

is an equivalence. The target is m-complete by Lemma 16 and the source is m-complete by
Proposition 15. The statement therefore follows again from the fact that

C
(
S, R/(tn

1 , . . . , tn
r )

)
⊗R/(tn

1 ,...,tn
r ) A0/(an

1 , . . . , an
r ) −→ C

(
S, A0/(an

1 , . . . , an
r )

)
is an equivalence for all n and all profinite S. □

Proof of Lemma 11 for general (A, A+) ([And23, Kor. 3.14]). We verify again (2), which now fol-
lows directly from Lemma 18 and the case (A, A+) = (R, R):
C(S, A)⊗(A,A+)□C(S′, A) ≃ A⊗R□

C(S, R)⊗R□
C(S′, R) ≃ A⊗R□

C(S × S′, R) ≃ C(S × S′, A). □

We conclude our discussion of Nuc(A) for weakly proregular complete Huber rings A by explaining
an additional structural property that it enjoys. Recall the following definitions.
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Definition 19. A morphism X → Y in a dualizable category C is called compact if for any cofiltered
system {Zi}i∈I of C and any morphism Y → colimi∈I Zi, the composition X → Y → colimi∈I Zi

factors through Zj for some j ∈ I.

Example 20. If X is a compact object of a dualizable category, then any morphism X → Y is
compact.

Definition 21. A morphism X → Y in a closed symmetric monoidal ∞-category C is called
trace-class if it lies in the image of the natural map (Y ∨ ⊗X)(∗)→ HomC (X, Y ).

A diagram chase shows that trace-class morphisms form a two-sided ideal in all morphisms of C ;
that is, for any composable morphisms f , g and h of C , the composition h ◦ g ◦ f is trace-class if g
is trace-class. Moreover, it is easy to see that all trace-class morphisms are compact. The additional
structure on Nuc(A) concerns the reverse implication.

Definition 22 (Gaitsgory–Rozenblyum). A symmetric monoidal dualizable ∞-category C ∈
CAlg(PrL

st) is called rigid if all compact morphisms of C are trace-class.

Notice the connection to nuclearity: an object X of a closed symmetric monoidal ∞-category C
is nuclear exactly when any map X → Y to a compact object Y ∈ C ω is trace-class.

Proposition 23. Let A be a weakly proregular complete Huber ring. Then the stable ∞-category
Nuc(A) is rigid.

Proof. We have already seen in Theorem 7 that Nuc(A) is dualizable. Thus, it remains to show
that all compact morphisms of Nuc(A) are trace-class. In fact, by the two-sided ideal property of
trace-class morphisms, it suffices to shows that any compact morphism factors through a trace-class
morphism.

Pick a subring of integral elements A+ ⊂ A and denote by (A , M ) := (A, A+)□ the associated
analytic ring. We will identify Nuc(A) as the full subcategory Dnuc(A , M ) ⊆ D(A , M ). Let
X → Y be a compact morphism of Nuc(A). Since D(A , M ) is compactly generated, we can write
Y as the colimit of a cofiltered system {Zi}i∈I of compact objects of D(A , M ). Moreover, the
trace functor (−)tr from Definition 10 preserves nuclear objects and preserves small colimits, so
Y ≃ colimi∈I Ztr

i . By the defining property of compact morphisms, we can now pick j ∈ I together
with a commutative diagram

X Y colimi∈I Ztr
i colimi∈I Zi

Ztr
i Zi

≃ ∼

in which the right horizontal arrows are given by the counit of adjunction.
We claim that the map Ztr

i → Y is trace-class; as observed before, this will finish the proof. To
prove the claim, we need to chase through the diagram((

H omD(A ,M )(Zi, A )
)tr ⊗ Y

)
(∗)

(
H omD(A ,M )(Zi, A )⊗ Y

)
(∗) HomD(A ,M )(Zi, Y )

((
H omD(A ,M )(Ztr

i , A )
)tr ⊗ Y

)
(∗)

(
H omD(A ,M )(Ztr

i , A )⊗ Y
)
(∗) HomD(A ,M )(Ztr

i , Y )

(
H omDnuc(A ,M )(Ztr

i , A )⊗ Y
)
(∗) HomDnuc(A ,M )(Ztr

i , Y ).

By construction, the map Ztr → Y (considered as an element of the bottom right) can be lifted to a
map Zi → Y (an element of the top right). Since Zi is compact and Y is nuclear, it follows directly
from the definitions that the natural map Zi → Y is trace-class in D(A , M ). In other words, the
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element of the top right can be lifted to the top middle. Since Zi is compact, Lemma 11 guarantees
that Z∨

i = H omD(A ,M )(Zi, A ) is nuclear, so the top left horizontal arrow is an isomorphism and
the element of the top middle can be lifted to the top left. Taken together, this shows that the
element of the bottomw right can be lifted to the bottom left, as claimed. □

2. Dualizability for general qcqs analytic adic spaces

In this section, we prove Theorem 1 in the generality of qcqc analytic adic spaces. To do so, we
first need to make sense of the category of nuclear sheaves on such a gadget. Recall that we already
defined the category of nuclear sheaves on spaces of the form X = Spa(A, A+) for a complete
analytic Huber pair (A, A+). In Remark 12, we observed that this category of nuclear sheaves on
X does not depend on the choice of the ring of integral elements A+ and therefore denoted it by
Nuc(A). Moreover, we saw in Talk 7 that the functor

{affinoid open U ⊆ X}op → PrL
st,

U 7→ Nuc
(
OX(U)

)
(U j

↪−→ V ) 7→ j∗ : Nuc
(
OX(V )

)
→ Nuc

(
OX(U)

)
is a sheaf for the analytic topology on X [And21, Thm. 5.42]; here, the pullback j∗ : Nuc

(
OX(V )

)
→

Nuc
(
OX(U)

)
is induced by the base change functor

−⊗(
OX(V ),O+

X(V )
)
□

(
OX(U), O+

X(U)
)
□ : D

((
OX(V ), O+

X(V )
)
□

)
→ D

((
OX(U), O+

X(U)
)
□

)
,

which was shown in the proof of [And21, Thm. 5.42] to preserve nuclear objects. Using this analytic
descent result, we can formally extend Nuc to all open subsets of X.

Definition 24 ([And23, Def. 4.3]). Let X be an analytic adic space. The ∞-category of nuclear
sheaves on X is

Nuc(X) := lim
U⊆X

affinoid open

Nuc
(
OX(U)

)
.

Since the pullback functors between affinoid opens preserve all small colimits, Nuc(X) ∈ PrL
st; see

[Lur09, Prop. 5.5.3.13].

To make Nuc(−) into a sheaf on X, one can define pullback functors j∗ : Nuc(V )→ Nuc(U) for
any open immersion U

j
↪−→ V of open subspaces of X by gluing the pullback functors on affinoid

open subsets. In fact, the j∗ are commonly functors in PrL
st and their right adjoints are as good as

could be hoped:

Lemma 25 ([And23, Lem. 4.4, Lem. 4.5]). Let U
j

↪−→ V ↪→ X be open subsets. Assume that U is
quasicompact and that V is quasiseparated. Then j∗ : Nuc(V )→ Nuc(U) has a fully faithful right
adjoint j∗ : Nuc(U)→ Nuc(V ) which preserves small colimits.

Actually, the proof we will only need that U is a retrocompact open subset of V .

Proof. We first assume that U and V are affinoid opens of X. Set (A, A+) :=
(
OX(V ), O+

X(V )
)

and (B, B+) :=
(
OX(U), O+

X(U)
)
. Restriction of scalars along the map of analytic complete Huber

pairs (A, A+)→ (B, B+) defines a functor D
(
(B, B+)□

)
→ D

(
(A, A+)□

)
. It is right adjoint to the

base change functor −⊗(A,A+)□ (B, B+)□ and fully faithful by [And21, Prop. 4.12.(i), Def. 4.8]. We
claim that it moreover preserves nuclear objects.

To see this, we now show that for any M ∈ D
(
(B, B+)□

)
, we have M ∈ Nuc(B) if and only if

the restriction of scalars M ∈ Nuc(A). Fix topologically nilpotent elements ϖ1, . . . , ϖr ∈ A which
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generate the unit ideal; they form a weakly proregular sequence for A and B by Example 6 and
make them into algebras over R := ZJt1, . . . , trK via ti 7→ ϖi. We obtain a commutative diagram(

C(S, B)⊗(B,B+)□ M
)
(∗)(

C(S, R)⊗R□
B ⊗(B,B+)□ M

)
(∗)(

C(S, R)⊗R□
M

)
(∗) M(S)(

C(S, R)⊗R□
A⊗(A,A+)□ M

)
(∗)(

C(S, A)⊗(A,A+)□ M
)
(∗)

≃
≃

≃
≃

in which the first and last vertical equivalence of the first column come from the nuclearity of B
and A over R□ from Lemma 18, the second and third vertical equivalence come from the fact that
M ∈ D

(
(B, B+)□

)
and M ∈ D

(
(A, A+)□

)
, and the bent arrows are the morphisms testing the

nuclearity of M over (B, B+)□ and (A, A+)□ from Recollection 8.(ii), respectively. Since one of the
bent arrows is an equivalence if and only if the other one is, the desired statement about M follows.
This finishes the construction of j∗ : Nuc(U)→ Nuc(V ) in case U and V are affinoid opens of X
because Nuc(A) ⊆ D

(
(A, A+)□

)
and Nuc(B) ⊆ D

(
(B, B+)□

)
are closed under colimits.

Next, let V ↪→ X be an affinoid open and U
j

↪−→ V be a general quasicompact open subset.
Choose a finite cover U = ⋃n

i=1 Ui by rational open subspaces Ui of V ; then the intersections
UI := ⋂

i∈I Ui
jI

↪−→ V are still affinoid for all I ⊆ {1, . . . , n}. The first part of the proof produced
pushforward functors jI,∗ : Nuc(UI) → Nuc(V ), which are compatible with another by [And21,
Prop. 4.12.(iii)]. Thanks to the sheaf property of Nuc(−), we can thus define

j∗ := lim
I⊆{1,...,n}

jI,∗ : Nuc(U) ≃ lim
I⊆{1,...,n}

Nuc(UI)→ Nuc(V ).

Since the jI,∗ are right adjoint to j∗
I and fully faithful, j∗ is still right adjoint to j∗ and fully faithful.

Moreover, j∗ commutes with colimits because the limit is taken over a finite index set.
Lastly, let U

j
↪−→ V ↪→ X be general open subsets such that U is quasicompact and V is

quasiseparated. Choose a cover by affinoid open subspaces V = ⋃
j∈J Vj and set VJ̃ := ⋂

j∈J̃ Vj

for all J̃ ⊆ J . Since V is quasiseparated, the intersections UJ̃ := U ∩ VJ̃

jJ̃
↪−→ UJ̃ are quasicompact.

The previous paragraph produced pushforward functors jJ̃ ,∗ : Nuc(UJ̃)→ Nuc(VJ̃) which are again
compatible with another. We can therefore again exploit the sheaf property of Nuc(−) to define a
fully faithful right adjoint

j∗ := lim
J̃⊆J

jJ̃ ,∗ : Nuc(U) ≃ lim
J̃⊆J

Nuc(UJ̃)→ lim
J̃⊆J

Nuc(VJ̃) ≃ Nuc(V )

to j∗. The assertion that j∗ commutes with colimits can be checked locally on V and hence reduces
to the previous paragraph, finishing the proof. □

Thanks to the dual of [Lur09, Cor. 5.2.2.5], the pushforward functors j∗ from Lemma 25 can
all be made compatible with another. We can now promote Nuc(−) to a PrL

st-valued sheaf for the
analytic topology on X:

Definition 26. The nuclear sheaves on an analytic adic space X are given by the functor

Nuc: {qcqs open U ⊆ X}op → PrL
st,

U 7→ Nuc(U)

(U j
↪−→ V ) 7→ j∗ : Nuc(V )→ Nuc(U).
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Theorem 1 in the generality of qcqs analytic adic spaces now follows readily from the next,
general result about sheaves of dualizable categories, whose proof in the case of compactly generated
categories goes back to Bondal–van den Bergh.

Theorem 27 ([BvdB03, Proof of Thm. 3.1.1], [And23, Satz 2.14]). Let X be a qcqs topological
space and B be a basis of quasicompact open subsets of X. Let

C : {qc open U ⊆ X} −→ PrL
st, U 7→ CU

be a sheaf of presentable stable ∞-categories. Assume:
(a) For all V ∈ B, the category CV is compactly generated (resp. dualizable).
(b) For all V ∈ B and all quasicompact open V ′ ⊆ V , the restriction functor CV → CV ′ is a

localization3 whose fully faithful right adjoint preserves small colimits and whose fiber is
compactly generated (resp. dualizable).

Then the category CX is compactly generated (resp. dualizable).

Remark 28. In the dualizable case of assumption (b), the requirement that the fiber of CV → CV ′

be dualizable is automatic: If C
F−→ D

G−→ E is a sequence in PrL
st with G ◦ F ≃ 0, then G has a

fully faithful right adjoint that preserves small colimits if and only if F is fully faithful and has a
right adjoint that preserves small colimits; cf. e.g. the proof of [CDH+20, Lem. A.2.5]. Therefore,
the assumption that CV → CV ′ is a localization whose fully faithful right adjoint preserves small
colimits already guarantees that the fiber is a retract in PrL

st of the dualizable category CV and thus
itself dualizable.

Assuming Theorem 27 for now, we can finally give the

Proof of Theorem 1. The underlying qcqs topological space |X| has a basis of opens B whose
constituents are the underlying spaces of affinoid opens of X. Since X is analytic, Theorem 7
(and Example 6) show that Nuc(V ) is a dualizable category for all V ∈ B. Lemma 25 (and
Remark 28) show that for any V ∈ B and any quasicompact open V ′ j

↪−→ V , the pullback functor
j∗ : Nuc(V )→ Nuc(V ′) has a colimit preserving fully faithful right adjoint j∗ : Nuc(V ′)→ Nuc(V )
and its fiber is again dualizable. The assertion therefore follows from Theorem 27 applied to the
PrL

st-valued sheaf Nuc(−) on |X|. □

In the proof of Theorem 27, we will need the classical Neeman–Thomason localization theorem:

Proposition 29 ([TT90, Lem. 5.5.1, Prop. 5.5.4], [Nee92, Thm. 2.1, Cor. 0.9]). Let F : C → D be a
localization functor of stable ∞-categories whose fully faithful right adjoint preserves small colimits.

(i) If C is compactly generated, then D is also compactly generated and Dω is the idempotent
completion of the essential image of C ω in D. More generally, given any compact object
X ∈ Dω, any object Y ∈ C and any morphism f : X → F (Y ), there exists a compact object
X̃ ∈ C and a morphism f̃ : X̃ → Y such that F (f̃) factors as

F (X̃) ∼−−→ X ⊕X ′ prX−−→ X
f−−→ F (Y )

for some compact object X ′ ∈ Dω.
(ii) If C and the fiber of F are compactly generated, then a compact object of D lies in the essential

image of F if and only if its class in K0(D) lies in the image of K0(F ) : K0(C )→ K0(D).

For completeness, we present (part of) a proof of Proposition 29, following the presentation in
[And23, Satz 2.13].

3in the sense of [Lur09, Def. 5.2.7.2], i.e., it has a fully faithful right adjoint
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Proof. (i). Let us prove the last assertion; for the rest, we refer the reader to [Lur09, Cor. 5.5.7.3].
Let G be the right adjoint to F . Let f : X → F (Y ) be a morphism as in the statement. Since C is
compactly generated, we have G(X) ≃ colim Xi for some compact objects Xi ∈ C ω, and since F is
a localization, X ≃ FG(X) ≃ colim F (Xi). The last isomorphism must factor through one of the
F (Xi) because X is compact, making X into a retract of F (Xi). The natural units of adjunction
and the splitting fi : F (Xi)→ X then give the nondashed arrows in the following diagram:

(3)

X̃ Y

Xi GF (Xi) G(X) GF (Y )

Zj cofib
(
Y → GF (Y )

)
.

f̃

f ′

g

G(fi) G(f)

Next, we fill in the dashed arrows of (3). Writing cofib
(
Y → GF (Y )

)
∈ C as a colimit of compact

objects Zj ∈ C ω, the map from the compact Xi must factor through some g : Xi → Zj , giving the
lower rectangle. Since F

(
cofib

(
Y → GF (Y )

))
≃ cofib

(
F (Y )→ FGF (Y )

)
≃ 0, we may additionally

assume that F (g) = 0. Set X̃ := fib(Xi → Zj). The additional assumption that F (g) = 0
guarantees that F

(
X̃

)
≃ F (Xi)⊕ F (Zj [−1]) and the induced map F

(
X̃

)
→ F (Xi)→ FG(X) ≃ X

is a retraction. Since X̃ → cofib
(
Y → GF (Y )

)
factors through X̃ → Zj and is hence 0, we obtain a

morphism f̃ : X̃ → Y , completing the upper rectangle of (3) and the proof of (i).
(ii). Let Z ∈ Dω and Y ′ ∈ C ω be compact objects such that [Z] =

[
F

(
Y ′)]

in K0(D). First, we
claim that one can find compact objects X ′, Y ∈ C ω together with an isomorphism Z⊕F (X ′) ≃ F

(
Y

)
in D . To see this, note that the definition of K0(D) guarantees the existence of exact triangles
A1 → A2 → A3 and B1 → B2 → B3 such that
(4) Z ⊕A1 ⊕A3 ⊕B2 ≃ F

(
Y ′)⊕A2 ⊕B1 ⊕B3.

By (i), there exist A′
1, A′

3 ∈ Dω such that A1 ⊕ A′
1 and A3 ⊕ A′

3 lie in the essential image of F .
Analogously for B′

1, B′
3 ∈ Dω. Since the essential image of F is closed under extensions, it must

also contain A2 ⊕A′
1 ⊕A′

3 and B2 ⊕B′
1 ⊕B′

3. Thus, there are X ′, Y ′′ ∈ C ω such that
F (X ′) ≃ A1 ⊕A′

1 ⊕A3 ⊕A′
3 ⊕B2 ⊕B′

1 ⊕B′
3 and F (Y ′′) ≃ A2 ⊕A′

1 ⊕A′
3 ⊕B1 ⊕B′

1 ⊕B3 ⊕B′
3.

Set Y := Y ′ ⊕ Y ′′. Taking the direct sum of (4) with A′
1 ⊕ A′

3 ⊕ B′
1 ⊕ B′

3, we obtain the claimed
isomorphism Z ⊕ F (X ′) ≃ F

(
Y

)
.

In order to prove the statement of (ii), it now suffices to show that we can find a compact object
X̃ ∈ C ω and maps X ′ f ′

←− X̃
f̃−→ Y such that F (f ′) is an equivalence and the diagram

F
(
X̃

)
F (X ′) Z ⊕ F (X ′) F (Y )

∼
F (f ′) F (f̃)

0⊕id ∼

commutes; then cofib
(
f̃

)
will be the desired lift of Z. To verify this claim, we can slightly modify

the proof of (i) for X := F (X ′): First, replace the retraction F (Xi) → X by the identity map
F (X ′) =−→ X. Second, since cofib

(
Y → GF (Y )

)
is contained in the fiber of F , which we assume

to be compactly generated, we may also pick the Zj to be in the fiber of F . Taken together, this
means that F

(
X̃

)
≃ F (X ′)⊕ F (Zj [−1]) ∼−→ F (X ′) as claimed. □

Proof of Theorem 27. For simplicity, we only consider the case where X = U ∪V for some U, V ∈ B.
The general statement then follows by an induction on the minimal number of opens in B needed
to cover X; this number is always finite by the quasicompactness of X. First, we prove the version
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of the statement for compactly generated categories. The version for dualizable for dualizable
categories will reduce to this.

Pick M ∈ CX such that any map N → M from a compact object N ∈ C ω
X is trivial. To show

that CX is compactly generated, we need to see that M ≃ 0. By way of contradiction, suppose that
M ̸≃ 0. Since C is a sheaf, we obtain a fiber square

CX CU

CV CU∩V ,

so either M
∣∣
U
̸≃ 0 or M

∣∣
V
̸≃ 0. Without loss of generality, we may assume that M

∣∣
U
̸≃ 0.

By assumption, CU is compactly generated, so there exists a compact NU ∈ C ω
U and a nontrivial

map NU
fU−→ M

∣∣
U

. Moreover, the open U ∩ V is still quasicompact because X is quasiseparated,
so the arrows CU → CU∩V and CV → CU∩V are localizations whose fully faithful right adjoints
preserve small colimits and whose fiber is compactly generated. Thus, by Proposition 29.(i), there
exists compact objects NV ∈ C ω

V and N ′ ∈ C ω
U∩V , a map fV : N →M

∣∣
V

, and a factorization

NV

∣∣
U∩V

M
∣∣
U∩V

NU

∣∣
U∩V

⊕N ′ NU

∣∣
U∩V

.

fV |U∩V

≃
prNU |U∩V

fU |U∩V

The direct sum N ′⊕N ′[1] ∈ C ω
U∩V has class

[
N ′⊕N ′[1]

]
= 0 in K0

(
CU∩V

)
, so by Proposition 29.(ii),

it has a lift N ′′ ∈ C ω
U . Then the two morphisms

NV ⊕NV [1]
prNV−−−→ NV

fV−−→M
∣∣
V

and NU ⊕NU [1]⊕N ′′ prNU−−−→ NU
fU−→M

∣∣
U

agree on U ∩V and thus glue to a map f : N →M . Since N is compact (this can be checked locally
on U and V ) and f is nontrivial (it is nontrivial on U), this produces the desired contradiction.

Now, we prove the version of the statement for dualizable categories. Let ⋆ ∈ {X, U, V, U ∩ V }.
As we saw in Talk 3, the “colimit functor” colim: Ind

(
C⋆

)
→ C⋆ given by the Ind-extension of idC⋆

admits a left adjoint ŷ : C⋆ → Ind
(
C⋆

)
; see [Lur18, Thm. 21.1.2.10.(3)].4 In fact, it follows from

the proof of [Lur09, Prop. 5.4.6.6] and the characterization of dualizable categories as fibers of
localizations of compactly generated stable ∞-categories that C⋆ is ω1-compactly generated, so ŷ
factors through the fully faithful subcategory Ind

(
C ω1

⋆

)
⊂ Ind

(
C⋆

)
.

In particular, we may write C⋆ canonically as a retract of the compactly generated stable ∞-
category Ind

(
C ω1

⋆

)
; cf. the proof of [Lur18, Cor. 21.1.2.18]. The functors C⋆ → CU∩V for ⋆ ∈ {U, V }

carry ω1-compact objects to ω1-compact objects [Lur09, Prop. 5.5.7.2]. The induced functors
Ind

(
C ω1

⋆

)
→ Ind

(
C ω1

U∩V

)
are still localizations whose fully faithful right adjoints preserve small

colimits. Moreover, the functors

Ind
(
fib

(
C ω1

⋆ → C ω1
U∩V

))
→ fib

(
Ind

(
C ω1

⋆

)
→ Ind

(
C ω1

U∩V

))
are equivalences by [NS18, Prop. I.3.5]. Thus, the first part of the proof for compactly generated
categories shows that Ind

(
C ω1

U

)
×Ind(C ω1

U∩V ) Ind
(
C ω1

V

)
is compactly generated.

4Beware that this is not the Yoneda embedding, which is right adjoint to colim.
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We now show that CX is dualizable by expressing it as a retract of Ind
(
C ω1

U

)
×Ind(C ω1

U∩V ) Ind
(
C ω1

V

)
.

For this, consider the diagram
CX CU

Ind
(
C ω1

U

)
×Ind(C ω1

U∩V ) Ind
(
C ω1

V

)
Ind

(
C ω1

U

)

CV CU∩V CX CU

Ind
(
C ω1

V

)
Ind

(
C ω1

U∩V

)

CV CU∩V .

ŷ

colim

ŷ

ŷ

colim colim

We have colim ◦ŷ = id. Using the universal property of Ind(−), it is easy to see that the bottom
and back squares commute (in the upper box, one first has to pass to the adjoint squares). Hence,
the universal properties of the fiber squares in the three “slices” produce the colimit preserving
dashed functors and show that their composition is homotopic to idCX

. This finishes the proof. □
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