Trace class maps & nuclearity (\downarrow) E Abstract context Fix C an arbitrary closed symm. monoidal co-category Notation: X, yEC, internal hom yx X:= 1[×] (where 1 is the unit) & X(t) == Hom (1, r) E.S. (mapping pour) Riemach There is a natural map X & Y -> Y X given via adjunction from evoil, × &× &y -> y st Hom(1,-), we obtain a natural map Evaluating X @y (*) -> Hon (X, y) of Gnime. Def: Let fix-it be a map in C. Le say f is trace - class it it lives in the image of the rip X @y(*) -> Hom (ruy)

Limra! Let C be as above 1) If fix-ry trace class and giy-ry', hix'-rx a bitury the gotal is trace class 2) If fixing & f'x'ny' are trace class then for Kox' -> Yoy' is trace class 3) If f'x-77 is trace-class & CC is arbitrary, the three just in Case ILC diagonal rup $C \otimes K \longrightarrow C \otimes \gamma$ $\int \overline{3} = 2 \int C \otimes \gamma$ $\int C \otimes \gamma$ ×^C-¬C[®]y \times^{c} mhis both triangles commute. Let's now assume that 1) C is stable of compactly generated 2) the mit JEC is a compact object. Def. Lit C be as above. The Due say xel is nuclear if & compact object ceC, the natural map (c@x)(*) -> Hon(c,x) is an equivalence. 2) KeC is basic nuclear if it is isomorphic to the Of a sequence of frace class maps, and Ki are compact.

Rmh: The object, X: in 2) above don't neel to be assumed Compact, but the on Car prove that X.-7X,-7X2 - can be refined to a diase Correlate all compact. Remark : Le cur replan mapping anima will mapping spectra condition 1) is insensitive to such a Choice forma Basic nuclear objects are themselve, nuclear Pf: Fir X= colin X, basic huclear, Choese Mcps 1-7 X: OXin corresponding to trace class Maps X: -7Xin Set c be any corpect object; we want to show that (COX) (*) -> Home (c, x) is an equivalence Nov, bott side, connect with colimits in C and there are neutural backswards maps. Mon (c,x;) & Hom (c,1) $\text{Hom} (C, X_i) \rightarrow (\text{Hom} (C, x_i) \otimes X_i \otimes K_{i+1})(*) \rightarrow (C \otimes K_{i+1})(*)$ Thus, we obtain equivalent colimits, and so, x is nuclear. Nou let's study the category of nuclear object. Theorer - fet & satisfy starling assumptions. The i) the full subcategory Nuc of nuclear objects in C is stable, closed and colimits, & closed under terror product, 2) The stable of-category Nuc is St. corporation generated and the Mit compact objects are exactly the basic nuclear objects.

Proof: Stability & cocompleteness of Nuc follows (4)
sike the (spectrum-Valued) functors
$(c \otimes -) (k)$ and $Hom(c, -)$
Commute with all colimits (again, c is compart here)
Closure under tensor products will follow from (2) since
basic nuclears are clearly closed under tensor products.
Now lets more or to proving 2). Le remark that besic nuclears
are Mi-compact in C, here in Nucled. (b, definition)
Claim! Basic nuclear objects form a stable subcategory of Nuc, closed under <u>countable colimits</u> trougs to Verify closury
closed under <u>countable colimits</u> troys to verify closure
under cones & countable direct sums.
For stability under cones, let
f'x-7x' he may of basis nuclear objects)
i.e. colim Xi -> Colim Xi'.
Up to reindexing the Xi, Ca. accome in dividual maps Xi->Xi
fet Q_i : cone $(X_i \neg X_i')$
WT.S Qi->Qitz trace class to Choftim generally that Qi->Quitz trace class to Qi->Quitz trace Class.
Lat need to letin 1-) Qi ORing witnessing this map.
for view this of filer ef map
he need to letin 1-) Qi OQin witnessing this map. (ca view this as fike et map (Ki) OQin -7 (Ki) OQin)
· · · · · · · · · · · · · · · · · · ·

It is therefore enough to define a a a a a a a a <u>(5</u>1) (-) (K, ') & Xin Xi B Xitz agree. whose images in)-7 Xi & Xi+2 To define this, pick sections $\lambda' = 1 \longrightarrow \chi' \otimes \chi'_{i1}$ Litnessir, the かいー たりょう 6: (-) (X'y) & Xin Kin, - Xinz frace Class Not take the indual map,) this shows thus that (Gi-iQin is trae class so basic nucleurs are closel unter cones. (Frite colimits) $\mathcal{L}^{(-)}$ $X_{i}^{\vee} \mathcal{O} X_{i+2}$ b (-) $(K, \cdot) \otimes K_{i+2}$ It remains to check for countable direct sums. Choose a representative of each term as a sequential colimit along trace Class maps. The rewite countable direct sum as a sequential colimit of finite direct sums. Par, to diagonal in sequential colomit of sequential colimit Thus, we see that every basic nuclear is NJ,-comparet, and this part. that they are closed under counteble Col.mits.

It remains to show, $\forall K \in Nuc(e)$,
if Hom(y,x)=0 & basic nuclear y, then x=0.
It not, thus there is some comparet co, with non-zero rup
C? X.
By nuclearity, (C. &x) (x) = Hon (C, x)
Non, since bott side of the above commt with Filter Walinity & Since X= colimy; with y: conpart, then is a lift to
Som class in TT. (C. & Y:) (*) for some is giving a trace-class map. Let C:= Y:.
Iteration this, he find a nonzoro map from Some basi. nuclear colin(co-)c, -1) to C, which is a contradiction
& Nuclearity & Incligability
Proposition: With the above assumptions, an object xEC is dualizable liff it is compact & nuclear.
$\frac{P_{\text{coot}}}{\text{is e server}} \text{fact that if the tensor unit}$ is compact, then all dualiable objects are compact as well. Indel $ Hon(X, colling Ni) = Hom(1, X \otimes colling Ni) $ $ = Hon(X, colling Ni) = Hom(1, colling (X \otimes Ni)) $
\subseteq colimitor (1, $\times ^{\circ} ONi$) $\cong Colimitor (X, N:)$
· · · · · · · · · · · · · · · · · · ·

Dut of this we also see that every duelized object is basic nuclear, as it follows from the axions that idm. M-M is trace class. (this is an if b only if)
For the reverse implication, assume M is miclear & compact. Then, For any compact Ob ; P, we have $(P^{\vee} \otimes M)(x) : Hor(P, M)$,
but we also have $(P^{\nu}\mathcal{B}_{\mathcal{M}}) \cong 1$ don $(1, P^{\nu}\mathcal{B}_{\mathcal{M}}) \xrightarrow{for any} P$
Let P=M, to set a map is: 1-> M&M, coning from i dentity map id_:M-1M One now checks that m: 1-> M&OM & ev: MOM->1 give, the duality.
Sphelearity in D(A,M), Let C= D(A,M), for (A,M) an analytic (animatil) ring,
The nuclearity will be phraset as: \forall extremelly $f_{i,C}$ set S, $(MCS]^{*} \otimes^{L} X)(*) = \gamma Hom (MCSJ, X)$ $= \chi(S)$
is an equivalence in D(Ab)
Bohi IF M is compart, the it is a retract of a finite complur with terr, of the form $\bigoplus_{i=1}^{\infty} M[Si]$ for some non-negative n, & profinith set Si.

There is r. fait, an Obisions "innear nuclearity" variants which.
In this Case will be satisfied.
Defore station, the following proportion, is describe how to extend the functor of measures to all profinite soft.
extend the functor of measures to all profinite soft.
For $S \in (\#)_{p_{i} \to \hat{k}}$
$M(S) := A(S) \Theta_{A}(A,M) \qquad \begin{pmatrix} Corput by fahr, \\ hyprion \\ S - 1S & of S & b_{7} \end{pmatrix}$ $e_{xt} \cdot J_{ic} \cdot Stuff.$
ext. Jic stuff.
Fast'. If (A,M) is as analytic ring over 20, the M(CS) is
Concentratel in degree zero, compact 6 projective. Mouver, M[S,]@L M(S,] A.M.
$\simeq \mathcal{M}(\mathcal{S}_i \times \mathcal{S}_{*})$
Prop'- Let K c D (A, M) be nuclear. Then, for any profinite set S, the natural map
$M(S) \otimes Y \longrightarrow hor (M(S), X)$
is itself a- equivalence.
Nervition prost
Seeringh stranger characterisation of nuclearity i XENuc VNOD(A,M), (hom (MESJ, N) @X)(*) -> N&X (S) Set N=1, to set previou, verio-
Set N=1, to set previous, verion.
One show, the that form (MES], N) & X = hom (MCS], X)
<u>4597</u>
If Neol to check VGEExt. 1:, how (M[Q], him (MCG), N) & X) ~ him (MCQ), how (MCS] Nox) him (MCQKS)= MCQJQMCCJ

§ Nuclearit, our discrete Huber pries
Recall (A, A^{\dagger}) , A discrete (bot not necessarily istatic) $A^{\dagger} \leq \pi_{0}(A)$ integrally close 1.
The there is a filly faithful functor (discrete Huber price) -> An Ring (A, A ⁺) H> (A, MA ⁺)
Lift M_{A^*} : Ex Dirc $\longrightarrow \mathcal{D}_{2,}(A)$ (SH7 AES) $\mathfrak{B}_{A^*} + \mathcal{A}_{o}^*$
We will see that for analytic rings coming from discrete Huber pairs, nuclearity is the sam as "discreteness" limber
bet: Let (A,M). Vrewing A a, a condense ring A, un range taken A (*), siving a functor condition condition
D(A,M) -> ModA(x), admitting an exact fully fullA left adjoint M-> M ⁶ == M@ _{A(x)} We say M is discret if it lies in the image of the above
Renard: Dealing with discrete (taber pair, (44)) to will be the will it particules even as colimits of A.
Proprietion? Let (A, A,) be a discrete Italier pair. The XGD (A, A+), in nuclear iff it is discrete.

Pinot: Fir X nuclear,	\bigcirc
Piul S= lin Si extremella dis with Si firite	
the MAR (S) = Hon (MAR (S), A) by are lation	
= (tom, (ACS), A)	
= ton(S, A)	
= cilin Hom (Si, A) = colin A ^{Si} .	
Thus, b, nuclearity, we obtain	
$X(\varsigma) = \left(M_{A_{+}}(\varsigma) \otimes X \right)(*) = \left(\underset{(A, A_{n})}{\underset{(A, A_{n})}{\otimes}} \right) (*)$	
- Culim X ^S (A)	· · · ·
= colir X(Si)	
This immediately implies that X is discrete	
Conversely, if X is discrete, it is a colimit of copie.	f · · ·
A. But A is nuclear and nuclear objects are stable	
under colimits.	
$\S R_{i_s}, j; L_{j_s}$	
Give (A, M), Nuc (A, M), Lill be a fisil category.	
The cre CECAlg (Pist) which can be size the following chere. to	Min
() ?trace class maps } - ' ' Compact if ' While s.t ling 2	ج لا ج ن
() { trace class Naps} = { compact maps} + + -72 compact if the Weil s.t lin 2 + + 72 compact maps} + + -72 compact if the Weil s.t lin 2	<i>Z</i>
2) dealizable.	

	Consp guen		category i.	s Self		· · · · · · · ·	· · ·
					i, fl	risiditiention	· · ·
of	DLA	(,M) _@ .	· · · · · · ·	· · · · ·		· · · · · · · ·	
			· · · · · · ·	· · · · ·			
	· · · · ·		· · · · · · ·				
	· · · · ·		· · · · · · ·	· · · · ·			
	· · · · ·		· · · · · · ·	· · · · ·			
	· · · · ·		· · · · · · ·	· · · · ·			
	· · · · ·		· · · · · · ·	· · · · ·			
	· · · · ·		· · · · · · ·	· · · · ·			
	· · · · ·		· · · · · · ·	· · · · ·			
	· · · · ·		· · · · · · ·	· · · · ·			
	· · · · ·		· · · · · · ·	· · · · ·			
							· · ·