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1. Introduction

The main goal of these notes is to provide a reference for some “standard” results about
analytic adic spaces that seem not to be present in the existing literature. Even though
probably none of the results of these notes are surprising, some of them are crucial for the
arguments in our other paper [Zav22]. For this reason, we have decided to write a separate
note collecting all necessary background.

We now summarize the content of each section of this paper:

(1) In Sections (2), (3), and (4), we study the notions of connected components, dimen-
sions, and coherent sheaves in analytic geometry. The content of these sections is
mostly expository;

(2) In Section (5), we develop the notion of lci Zariski-closed immersions in analytic
geometry. In the case of rigid-analytic variety over a non-archimedean field, this
theory has been worked out in [GL21]. However, the notion of lci (immersions) on
more general analytic adic spaces seems to be missing in the literature;

(3) In Section (6), we define the Proj construction in the world of analytic adic spaces. In
the case of rigid-analytic variety over a non-archimedean field, this theory has been
worked out in [Con07]. However, the definition of the relative Proj on more general
analytic adic spaces seems to be missing in the literature;

(4) In Section (7), we study line bundles on the relative projective bundles;
1
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(5) In Section (8), we construct the 6-functor formalism of étale sheaves on (locally
noetherian) analytic adic spaces. Modulo the results from [Man22, Appendix A.5],
this 6-functor formalism was already constructed in [Hub96]. The main work is to
get rid of some boundedness assumptions in [Hub96].

(6) In Sections (9) and (10), we study some basic properties of étale sheaves. In par-
ticular, we give a categorical description of lisse and constructible sheaves. This
description is certainly well-known to the experts, but we do not know if it is explic-
itly spelled out anywhere in the literature.

1.1. Terminology. We say that an analytic adic space X is locally noetherian if there
is an open covering by affinoids X =

⋃
i∈I Spa(Ai, A

+
i ) with strongly noetherian Tate Ai.

Sometimes, such spaces are called locally strongly noetherian.

We follow [Hub96, Def. 1.3.3] for the definition of a locally finite type, locally weakly finite
type, and locally +-weakly finite type morphisms of locally noetherian adic spaces.

For a Grothendieck abelian category A, we denote by D(A) its triangulated derived cate-
gory and by D(A) its ∞-enhancement.

2. Connected Components

In this section, we study connected components of locally noetherian analytic adic spaces.

Lemma 2.1. Let X = Spa(A,A+) be a strongly noetherian Tate affinoid. Then X is
connected if and only if SpecA is connected.

Proof. Both connectivity of Spa(A,A+) and of SpecA are equivalent to the fact that A does
not admits any non-trivial idempotents1. In particular, they are equivalent to each other. □

Lemma 2.2. Let X be a locally noetherian analytic adic space. Then any point x ∈ X
admits a fundamental system of connected affinoid open neighborhoods. In particular, X is
locally connected.

Proof. It suffices to show that, for any strongly noetherian Tate affinoid X = Spa(A,A+)
and a point x ∈ S, the connected component of x is clopen. For this, note that the ring
A is noetherian, and so admits only a finite number of mutually orthogonal non-trivial
idempotent. Therefore, S has only a finite number of connected components, thus they all
must be open and closed. □

Corollary 2.3. Let X be a locally noetherian analytic adic space. Then each connected
component of X is closed and open.

Proof. Connected components are always closed (see [Sta22, Tag 004T]), so it suffices to
show that they are open. This follows from [Sta22, Tag 04ME] and Lemma 2.2. □

1Here, we crucially use that Spa(A,A+) is sheafy.

https://stacks.math.columbia.edu/tag/004T
https://stacks.math.columbia.edu/tag/04ME
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3. Dimension

In this section, we study different possible definitions of dimension in the adic analytic
geometry.

Definition 3.1. ([Hub96, Def. 1.8.1]) The dimension of a locally spectral X is the supremum
of the length d of the chains of specializations x0 ≻ x1 ≻ · · · ≻ xd of points of X.

A locally spectral space X is of pure dimension d if every non-empty open subset U ⊂ X
has dimension d.

The (relative) dimension dim f of a morphism of analytic adic spaces f : X → Y is the
supremum of the dimensions of the fibers of f ,

dim f := sup
y∈Y

dim f−1(y) ∈ Z≥0 ∪ {∞}.

A morphism f : X → Y is of relative pure dimension d if all non-empty fibers f−1(y) is of
pure dimension d.

Firstly, it turns out that one can only consider fibers over rank-1 points.

Lemma 3.2. ([Hub96, Cor. 1.8.7]) Let S be a locally noetherian analytic adic space, and
f : X → S a locally finite type morphism. Then f is of pure relative dimension d if and only
if, for each rank-1 point s ∈ S, the fiber

Xs := X ×S Spa
(
K(s),OK(s)

)
is either empty or of pure dimension d.

It turns out that, in the case of rigid-analytic varieties, Definition 3.1 recovers the usual
notion of dimension:

Lemma 3.3. Let K be a non-archimedean field, and X is a rigid-analytic K-variety. Then
X is of pure dimension d if and only if, for each classical point x ∈ X, dimOX,x = d.

Proof. First we note that [Hub96, Lemma 1.8.6] implies that X is of pure dimension d if
and only if, for every open affinoid subspace Spa(A,A◦) ⊂ X, dimA = d. Then [FK18,
Prop. II.10.1.9 and Cor. 10.1.10] imply that this condition is equivalent to the condition that
dimOX,x = d for any classical point x ∈ X. □

Corollary 3.4. Let S be a locally noetherian analytic adic space, and f : X → S is a
morphism that factors as the compotision

X
g−→ Dd

S

p−→ S,

where g is étale and p is the natural projection. Then f is of pure relative dimension d.

Proof. By Lemma 3.2, it suffices to assume that S = Spa(K,OK) for some non-archimedean
field K. Then the result follows Lemma 3.3 and [Zav21a, Lemma D.3]. □

Now we wish to show that any weakly finite type morphism f is of finite (relative) dimen-
sion. Surprisingly, this claim seems to be missing in [Hub96]. For this, we need a number
of preliminary lemmas that will allow us to reduce the general case to the case when f is of
finite type. The motivation for considering non-finite type morphisms comes from the theory
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of universal compactifications that are (essentially) never finite type (and merely +-weakly
finite type).

Lemma 3.5. Let (A,A+)→ (B,B+) be a morphism of strongly noetherian Tate pairs such
that B is finite over A. Denote by B′+ the integral closure of A+ in B. Then

(1) (B,B′+) is a Huber pair;

(2) (A,A+)→ (B,B′+) is a finite morphism.

Proof. The subring B′+ of B is clearly integrally closed. It is also contained in B◦ because
B′+ ⊂ B+ ⊂ B◦. So, in order to show that (B,B′+) is a Huber pair, we only need to show
that it is open.

Choose a ring of definition A0, a pseudo-uniformizer ϖ ∈ A0, and (b1, . . . , bn) a finite set
of A-module generators of B. Since B is finite over A, for each generator bi ∈ B, we can
choose monic polynomials

bmi
i + ai,1b

mi−1
i + · · ·+ ai,mi

= 0 (1)

with ai,j ∈ A. By construction, there is an integer N such that ϖNai,j ∈ A0 for all i, j.
Using Equation (1), it is easy to see that all elements ϖNbi are integral over A0. Thus, we
can replace each bi with ϖ

Nbi to assume that the A-module generators bi are integral over
A0. In particular, we can assume that each bi is integral over A

+, so they all lie in B′+ ⊂ B◦.

Now consider the unique A-linear morphism

φ : A⟨T1, . . . , Tn⟩ → B

that sends Ti to bi. It is clearly surjective, and therefore it is open by the Open Mapping
theorem (see [Hub93, Lemma 2.4(i)]), so we define

B0 := φ(A0⟨T1, . . . , Tn⟩).

This is then a ring of definition in B with a pseudo-uniformizer given by ϖ. By construction,
the morphism

A0/ϖA0 → B0/ϖB0

is finite. Therefore, using that A0 and B0 are complete, we conclude that B0 is finite over
A0. In particular, elements of B0 are integral over A+, so B0 ⊂ B′+. This ensures that B′+

is open. This finishes the proof that (B,B′+) is a Huber pair.

The morphism (A,A+) → (B,B′+) is now clearly finite. Indeed, A → B is finite by the
assumption, and A+ → B′+ is integral by construction. □

Corollary 3.6. Let f : (A,A+) → (B,B◦) be weakly finite type morphism of strongly
noetherian Tate affinoids. Then there is a Huber pair (B,B+) such that f factors through
(B,B+)→ (B,B◦), and (B,B+) is topologically finite type over (A,A+).

Proof. Since (B,B◦) is weakly finite type over (A,A+), there is a surjective morphism

g : A⟨T1, . . . , Tn⟩ → B.
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Since any morphism of Tate rings is adic, and adic morphisms preserve bounded elements
(see [Hub94, Lemma 1.8]), we conclude g induces a morphism of Huber pairs

g : (A⟨T1, . . . , Tn⟩, A⟨T1, . . . , Tn⟩+)→ (B,B◦)

Thus we can apply Lemma 3.5 to g to get a Huber sub-pair (B,B+) ⊂ (B,B◦) such that B+ is
integral over the image A⟨T1, . . . , Tn⟩+ in B. In particular, the morphism (A,A+)→ (B,B+)
is topologically of finite type. □

Lemma 3.7. Let f : X → Y be a weakly finite type morphism and Y is quasi-compact.
Then f is of finite dimension.

Proof. An easy argument with quasi-compactness reduces the general case to the case of a
weakly finite type morphism of affinoid spaces f : X = Spa(B,B+)→ Y = Spa(A,A+), i.e.,
B is topologically of finite type over A. Now note that the natural inclusion

X ′ = Spa(B,B◦)→ X = Spa(B,B+)

is a bijection on rank-1 points. Therefore, dim.tr(X/Y ) = dim.tr(X ′/Y ) (see [Hub96,
Def. 1.8.4]). In particular, we can replace B+ with B◦.

In this case, we apply Corollary 3.6 and a similar argument once again to reduce to the
case of a finite type morphism Spa(B,B+) → Spa(A,A+). In this case, there is closed
immersion

X → Dn
Y ,

so it suffices to show the claim for the relative closed unit disk Dn
Y → Y . This case follows

from Corollary 3.4. □

4. Coherent sheaves

In this section, we review the basic theory of coherent sheaves on locally noetherian ana-
lytic adic spaces.

We first recall the construction of the OX-module M̃ on a strongly noetherian affinoid
X = Spa(A,A+) associated to a finite A-module M . For each rational subset U ⊂ X, we
have

M̃(U) = OX(U)⊗AM ;

[Ked19, Thm. 1.4.16] and [Ked19, Thm. 1.2.11] (see also [Zav21d, Cor. 1.3]) guarantee that
this assignment is indeed a sheaf.

Definition 4.1. An OX-module F on a locally strongly noetherian analytic adic space X is
coherent if there is an open covering X = ∪i∈IUi by strongly noetherian affinoids such that

F|Ui
∼= M̃i for a finite OX(Ui)-module Mi.

This construction can be clearly promoted to a functor (̃−) : Modcoh
A → CohX . Similarly

to the algebraic situation, this functor turns out to be an equivalence.

Theorem 4.2. Let X = Spa(A,A+) be a strongly noetherian affinoid, and F a coherent
OX-module. Then

(1) the functor (̃−) : Modfg
A →ModX is exact;
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(2) the functor (̃−) : Modfg
A → CohX is an equivalence with quasi-inverse taking F to

Γ(X,F);

(3) for any F ∈ CohX , H
i(X,F) = 0 for i ≥ 1.

(4) the inclusion CohX is a Weak Serre subcategory of ModX . In other words, coherent
sheaves are closed under kernels, cokernels, and extensions;

Proof. First note that A is sheafy by [Ked19, Thm. 1.2.11] or [Zav21d, Cor. 1.3]. So (1) can
be easily deduced from [Ked19, Thm. 1.4.14]. (2) and (3) follow from [Ked19, Thm. 1.4.18].
Finally, (4) can be deduced from all (1-3) by a standard argument. □

Lemma 4.3. Let f : X → Y be a morphism of locally noetherian analytic adic spaces and
F is a coherent OY -module. Then

(1) the pullback f ∗F is a coherent OX-module;

(2) ifX = Spa(B,B+) and Y = Spa(A,A+) are affinoid and F = M̃ for a finite A-module

M , then f ∗F ≃ M̃ ⊗A B.

Proof. Clearly, (1) follows from (2). To prove (2), we use noetherianness of A to find a
partial resolution

An → Am →M → 0.

Then a standard argument using Theorem 4.2(1, 2) and right exactness of f ∗ shows that

f ∗F ≃ ˜(M ⊗A B). □

5. Regular closed immersions

We first review the theory of closed subspaces of locally noetherian analytic adic spaces.
Then we discuss the theory of lci subspaces and, in particular, effective Cartier divisors on
such spaces. In the case of rigid-analytic varieties over a non-archimedean field, (a more
general) theory of lci morphisms is developed in [GL21].

Definition 5.1. A morphism i : X → Y of locally noetherian analytic adic spaces is a
Zariski-closed immersion if i is a homeomorphism of X onto a closed subset of Y , the map
OY → i∗OX is surjective, and the kernel I := ker(OY → i∗OX) is coherent.

We refer to [Zav21c, Appendix B.6] for a detailed discussion of this notion (studied under
the name of closed immersions). In particular, we point out [Zav21c, Cor. B.6.9] that guar-
antees that a Zariski-closed subspace of a strongly noetherian Tate affinoid X = Spa(A,A+)
is a (strongly noetherian Tate) affinoid. Furthermore, Zariski-closed subspaces of X are
parametrized by the ideals I ⊂ A.

Now we show that this definition of Zariski-closed immersions (specific to the locally
noetherian case) is compatible with the definition of Zariski-closed subsets from [Sch17,
Def. 5.7]:

Lemma 5.2. Let X = Spa(A,A+) be a strongly noetherian Tate affinoid over Spa(Qp,Zp),
Z ⊂ X a Zariski-closed immersion (in the sense of Definition 5.1), Y = Spa(R,R+) an
affinoid perfectoid space with a morphism Y → X. Then the fiber product Z ′ := Z ×X Y is
a Zariski-closed perfectoid subspace of Y (in the sense of [Sch17, Def. 5.7]).
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We note that a priori it is not even clear whether Z ′ is a perfectoid space.

Proof. By [Zav21c, Cor. B.6.9], there is an (necessarily finitely generated) ideal I ⊂ A such
that Z = Spa(A/I, (A+/I ∩ A+)c). Choose some generators I = (f1, . . . , fm) and a pseudo-
uniformizer ϖ ∈ A. Then we have

Z ∼ lim
n
X (|f1| ≤ |ϖ|n, . . . , |fm| ≤ |ϖ|n) ,

where ∼ stands for the ∼-limit in the sense of [Hub96, Def. 2.4.2] or [SW13, Def. 2.4.1]. Then
[SW13, Prop. 2.4.3] ensures that

Z ′ ∼ lim
m
Y (|f1| ≤ |ϖ|n, . . . , |fm| ≤ |ϖ|n) .

Now we note that each Y (|f1| ≤ |ϖ|m, . . . , |f1| ≤ |ϖ|m) is an affinoid perfectoid space, so
Z ′ is also an affinoid perfectoid space. Moreover, one easily sees from the above description
that Z ′ is a Zariski-closed subspace of Y corresponding to the ideal IR ⊂ R. □

In this section, we concentrate on a particular class of Zariski-closed immersions.

Definition 5.3. A Zariski-closed immersion i : X → Y of strongly noetherian Tate affinoids
is a regular immersion of pure codimension c if the ideal of immersion I(Y ) ⊂ OY (Y ) is
generated by a regular sequence (gi,1, . . . , gi,c) ⊂ OY (Y ).
A Zariski-closed immersion i : X → Y is an lci immersion (of pure codimension c) if there

is an open affinoid covering Y = ⊔i∈IUi by strongly noetherian Tate affinoids such that the
base change XUi

→ Ui is a regular immersion (of pure codimension c) for every i ∈ I.
A Zariski-closed immersion i : X → Y is an effective Cartier divisor if it an lci immersion

of pure codimension 1.

Lemma 5.4. Let Y = Spa(A,A+) be a strongly noetherian Tate affinoid, i : X → Y a
regular immersion of pure codimension c, and U = Spa(AU , A

+
U) ⊂ Y an open affinoid. Then

the base change iT : XU → U is also a regular immersion of pure codimension c.

Proof. We first note that [Zav21c, Cor. B.6.9] implies that OX(X) = A/I for an ideal I ⊂ A.
Then [Zav21c, Lemma B.6.7] guarantees that the ideal of iT is equal to the ideal IAU ⊂ AU .
Finally, the fact that IAU ⊂ AU is generated by a regular sequence of length c follows from
flatness of A→ AU (see [Zav21c, Lemma B.4.3]) and [Sta22, Tag 00LM]. □

Lemma 5.5. Let i : X → Y be an lci immersion (of pure codimension c), and f : Y ′ → Y a
flat morphism of locally noetherian analytic adic spaces. Then the base change

i′ : X ′ := Y ′ ×Y X → Y ′

is also an lci immersion (of pure codimension c).

Proof. Lemma 5.4 ensures that the question is local on X, Y , and T . So we can assume
that X = Spa(B,B+), Y = Spa(A,A+), and Y ′ = Spa(C,C+) are strongly noetherian Tate
affinoids. We can also assume that i is a regular immersion of pure codimension c, so the
ideal of immersion I = ker(A → B) is generated by a regular sequence (f1, . . . , fc) ⊂ A.
Then [Zav21c, Cor. B.6.9] implies that B = A/I, while [Zav21c, Lemma B.6.7] ensures that
i′ is a Zariski-closed immersion and

OX′(X ′) ≃ C ⊗A A/I ≃ C/IC. (2)

https://stacks.math.columbia.edu/tag/00LM
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We denote by IS := ker(OT → i′∗OS) the ideal of the Zariski-closed immersion i′. Then (2)
and Theorem 4.2(3) ensure that IS(T ) ≃ IC. Thus the question boils down to showing that
IC is generated by a regular sequence of length c. This follows from flatness of A→ C (see
[Zav21c, Lemma B.4.3]) and [Sta22, Tag 00LM]. □

Remark 5.6. Any smooth morphism of locally noetherian analytic adic spaces is flat by
[Zav21c, Remark B.4.7]. In particular, Lemma 5.5 holds for any smooth morphism f : Y ′ →
Y .

Lemma 5.7. Let i : X → Y be an lci immersion of pure codimension c, and f : Y ′ → Y a
morphism of locally noetherian analytic adic spaces. Suppose that the base change

i′ : X ′ := Y ′ ×Y X → Y

is an lci immersion of pure codimension c. Then the natural morphism

f ∗IX → IX′

is an isomorphism, where IX and IX′ are the ideal sheaves of the Zariski-closed immersions
i and i′ respectively.

Proof. Arguing as in the proof of Lemma 5.5, we reduce the question to proving the following
claim:

Claim: Let A be a noetherian ring, I ⊂ A an ideal generated by a regular sequence of
length c, and A → B is a ring homomorphism such that IB is still generated by a regular
sequence of length c. Then I ⊗A B → IB is an isomorphism.

By induction, one can assume that c = 1. In this case, I = (g) ⊂ A is a free A-module
of rank-1. The assumption on B tells us that gB is a free B-module of rank-1. Therefore,
I ⊗A B → IB is a surjection of free B-modules of rank-1. Hence it is an isomorphism. □

Before we give some non-trivial examples of lci immersions, we need to discuss the notion
of dimension in the adic geometry. In general, there are different ways to formalize the notion
of dimension, so we explicitly spell our definitions.

Lemma 5.8. Let S be a locally noetherian analytic adic space, fX : X → S a smooth
morphism of pure dimension dX , fY : Y → S a smooth morphism of pure dimension dY , and
i : X → Y a Zariski-closed immersion of adic S-spaces. Then, for each point x ∈ X, there
is an open affinoid x ∈ Ux ⊂ Y and an étale morphism h : Ux → DdY

S such that there is a
cartesian diagram

Ux ∩X Ux

DdX
S DdY

S ,

i|Ux∩X

h|Ux∩X h

j

where j : DdX
S → DdY

S is the inclusion of DdX
S into DdY

S as the vanishing locus of the first
dY − dX coordinates.

https://stacks.math.columbia.edu/tag/00LM
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Proof. Let us denote by I the ideal sheaf of the Zariski-closed immersion i. The claim is
local on S, so we clearly can assume that S is a Tate affinoid with a pseudo-uniformizer ϖ.

Now [Hub96, Prop. 1.6.9(ii)] and a standard approximation argument imply that there is
an open affinoid x ∈ Ux = Spa(B,B+) ⊂ Y and generators of

g1, . . . , gd′ ∈ I(Ux) ⊂ B

that can be extended to a basis {g1, . . . , gd′ , . . . , gd} of Ω1
Ux/S

. In particular, X ∩ Ux is the
vanishing locus of the functions g1, . . . , gd′ .

We can simultaneously multiply g1, . . . , gd by some power of ϖ to assume that gi ∈ B+

and consider the unique OS(S)-linear morphism

h♯ :
(
OS(S)⟨T1, . . . , Td⟩,OS(S)

+⟨T1, . . . , Td⟩
)
→ (B,B+)

sending Ti to gi. It defines a morphism of S-adic spaces

h : Ux → Dd
S.

that is étale by [Hub96, Prop. 1.6.9(iii)]. By construction (and [Zav21c, Lemma B.6.7]), h
fits into the Cartesian diagram

Ux ∩X Ux

Dd′
S Dd

S,

i|Ux∩X

h|Ux∩X h

j

(3)

where j is the inclusion of Dd′
S into Dd

S as the vanishing locus of the first d− d′ coordinates.
We are only left to show that d = dY and d′ = dX . This follows from Corollary 3.4. □

Remark 5.9. In general, a similar argument shows that, for any smooth morphism f : X →
S and a point x ∈ X, there is an open x ∈ U and an integer d such that f |U factors as the
composition

U → Dd
S → S.

In particular, analytically locally on the source, any smooth morphism is relatively pure of
some dimension d.

Corollary 5.10. In the notation of Lemma 5.8, i is an lci immersion of pure codimension
dY − dX . In particular, a section s : S → X of a separated smooth morphism f : X → S (of
pure relative dimension d) is an lci immersion of (pure codimension d).

Proof. The first claim directly from Lemma 5.8, Lemma 5.5, and Remark 5.6. The “in
particular” part follows from the previous claim if we can show that a section of a separated
morphism is a Zariski-closed immersion. This, in turn, follows from the pullback diagram

S X ×S S

X X ×S X,

s

s

idX×s
∆X/S

the fact that ∆X/S is a Zariski-closed immersion (see [Zav21c, Cor. B.7.4]), and the fact that
Zariski-closed immersions are closed under pullbacks (see [Zav21c, Cor. B.6.10]). □
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6. Analytic Proj construction

This section is devoted to the discussion of the relative Proj construction in the world of
adic spaces. In the case of rigid-analytic varieties over a non-archimedean field, this notion
has been studied in [Con07].

We start with the relative analytification construction. Let S = Spa(A,A+) an strongly
noetherian affinoid space. Then the universal property of affine schemes (see [Sta22, Tag
01I1]) says that

MapLRS(S, SpecA) = MapRings(OS(S), A) = MapRings(A,A),

where LRS is the category of locally ringed spaces. Thus, the identity morphism IdA defines
a morphism of locally ringed spaces

φ : S → SpecA.

Definition 6.1. A relative analytification of a locally finite type A-scheme X is an adic
S-space Xad/S → S with a morphism of locally ringed SpecA-spaces ϕX : Xan/S → X such
that, for every adic S-space U , ϕX induces a bijection

MapAdic/S
(U,Xan/S) ≃ MapLRS/SpecA

(U,X).

Remark 6.2. Clearly, a relative analatytification is unique if it exists. It always exists (for
locally finite type A-schemes) by [Hub94, Prop. 3.8].

Remark 6.3. ([Hub96, Lemma 5.7.3]) If X is a proper OS(S)-scheme, thenXan/S is a proper
adic S-space.

For the next definition, we fix a locally noetherian analytic adic space S.

Definition 6.4. A locally coherent graded OS-algebra A• is a graded OS-algebra A• =⊕
d≥0Ad such that each Ad is a coherent OS-module, and A• is locally finitely generated as

an OS-algebra.
Let S be an affinoid. A coherent graded OS(S)-algebra A• is a graded OS(S)-algebra

A• =
⊕

d≥0Ad such that each Ad is a coherent OS(S)-module, and A• is locally finitely
generated as an OS(S)-algebra.

Now we wish to show that there is an equivalence between locally coherent graded OS-
algebras and coherent graded OS(S)-algebras for a strongly noetherian affinoid space S. For
this, we will need the following lemma:

Lemma 6.5. Let f : S ′ = Spa(B,B+) → S = Spa(A,A+) be a flat (resp. surjective flat)
morphism of strongly noetherian affinoid spaces. Then f ♯ : A → B is flat (resp. faithfully
flat).

Proof. Flatness of A → B follows from [Zav21c, Lemma B.4.3]2. Now we assume that f is
also surjective, and show that f ♯ is faithfully flat. It suffices to show that SpecB → SpecA is
surjective onto the closed points of SpecA. This follows from the fact that, for any maximal

2[Zav21c, Lemma B.4.2 and B.4.3] are formulated for Tate affinoids. However, the same proofs work for
analytic affinoids. One only needs to use [Ked19, Thm. 1.4.14] in place of [Hub94, (II.1), (iv) on page 530]
in the proof of [Zav21c, Lemma B.4.2].

https://stacks.math.columbia.edu/tag/01I1
https://stacks.math.columbia.edu/tag/01I1
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ideal of m ⊂ A, there is a point v ∈ Spa(A,A+) such that supp(v) = m (see [Hub94, Lemma
1.4]) and surjectivity of Spa(B,B+)→ Spa(A,A+). □

Lemma 6.6. Let S be a strongly noetherian affinoid. Then Γ(S,−) defines an equivalence

Γ(S,−) :
{

locally coherent graded
OS-algebras

}
∼−→
{

coherent graded
OS(S)-algebras

}
.

Proof. The proof essentially follows from Lemma 4.2. One easily sees that (̃−) provides
a quasi-inverse to Γ(S,−) provided that, for a locally coherent graded OS-algebra A•, the
OS-algebra

Γ(S,A•)

is naturally graded and coherent as a graded OS(S)-algebra. For the purposes of proving
the first claim, it suffices to show Γ(S,−) commutes with infinite direct sums. This follows
from spectrality of S and [Sta22, Tag 009F].

Now we need to show that Γ(S,A•) is a coherent graded OS(S)-algebra for any locally
coherent graded OS-algebra. The locally coherent assumption together with Lemma 4.3(2)
and Lemma 6.5 imply that there is a faithfully flat ring homomorphism OS(S) → OS′(S ′)
such that

Γ(S,A•)⊗OS(S) OS′(S ′)

is a finitely generated OS′(S ′)-algebra. Therefore, [Sta22, Tag 00QP] ensures that Γ(S,A•)
is a finite type OS(S)-algebra. □

For the next definition, we fix a stronly noetherian affinoid S, a locally coherent graded
OS-algebra A, and a corresponding coherent graded OS(S)-algebra A•.

Definition 6.7. The analytic relative Proj space

Projan
S
A• :=

(
Proj

SpecOS(S)
A•

)an/S
is the relative analytification of the algebraic (relative) Proj scheme3.

Lemma 6.8. Let f : S ′ → S be a morphism of strongly noetherian affinoids, and A• is
locally coherent graded OS-algebra. Then there is a natural isomorphism

ψS,S′ : Projan
S′ (f

∗A•)
∼−→ Projan

S
(A•)×S S ′.

Furthermore, if g : S ′′ → S ′ is another morphism of strongly noetherian affinoids, then the
diagram

Projan
S′′ (g

∗ (f ∗A•)) Projan
S′ (f

∗A•)×S′ S ′′ Projan
S
(A•)×S S ′ ×S′ S ′′

Projan
S′′ ((f ◦ g)

∗
A•) Projan

S
(A•)×S S ′′

∼

ψS′,S′′ ψS,S′×id

≀

ψS′′,S

3See [EGA II, §2] for a detailed discussed of the algebraic Proj construction. In particular, use [EGA II,
Prop. (2.7.1)] to ensure that Proj

SpecOS(S)
A• is a finite type OS(S)-scheme, so its relative analytification is

well-defined.

https://stacks.math.columbia.edu/tag/009F
https://stacks.math.columbia.edu/tag/00QP
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commutes.

Proof. Let A• be a coherent graded OS(S)-algebra corresponding to A•. Then, after unravel-
ling the definitions, it suffices to show that there is a natural isomorphism of OS′(S ′)-schemes

Proj
S′

(
A• ⊗OS(S) OS′(S ′)

)
≃ Proj

S
(A•)×S S ′

that satisfies the “cocycle” formula. This follows from [Sta22, Tag 01N2] and [Sta22, Tag
01MZ]. □

Lemma 6.9. Let S be a locally noetherian analytic adic space, and A• a locally coherent
graded OS-algebra. Then there is an (essentially unique) analytic adic S-space

π : Projan
S
A• → S

with the following properties:

(1) for every affinoid U ⊂ S there exists an isomorphism iU : π
−1(U)

∼−→ Projan
U
A•|U , and

(2) for affinoid opens V ⊂ U ⊂ S the composition

Projan
V
A•|V

i−1
V−−→ π−1(V )

∼−→ π−1(U)×U V
iU×UV−−−−→ Projan

U
A•|U ×U V

is equal to ψU,V from Lemma 6.8.

Proof. This follows formally from Lemma 6.8 and standard gluing arguments. □

For the next definition, we fix a locally noetherian analytic adic space S and a locally
coherent graded OS-algebra A•.

Definition 6.10. The analytic relative Proj of A• is the morphism

Projan
S
A• → S

is the adic S-space constructed in Lemma 6.9.

Remark 6.11. Lemma 6.8 easily implies that the formation of analytic Proj commutes
with arbitrary base change. More precisely, for any morphism f : S ′ → S of locally noe-
therian analytic adic spaces and a locally coherent graded OS-algebra A•, there is a natural
isomorphism

ProjanS′ (f ∗A•) ≃ (ProjanS A•)×S S ′.

Remark 6.12. We note that Projan
S
A• is proper over S by Remark 6.3 and a combination

of [EGA II, Prop. (3.1.9)(i), Prop. (3.1.10), and Thm. (5.5.3)(i)].

Remark 6.13. Similarly to the algebraic situation, the analytic Proj-construction

P := Projan
S
(A•)→ S

comes equipped with the coherent sheaf OP/S(1). If S is affinoid, one just defines OP/S(1) to
be the relative analytification of the algebraic O(1). In general, one glues these line bundles
locally on S. The formation of OP/S(1) commutes with an arbitrary base change S ′ → S. If
A• is generated by A1, then OP/S(1) is a line bundle.

Now we give two particularly interesting examples of the analytic Proj construction:

https://stacks.math.columbia.edu/tag/01N2
https://stacks.math.columbia.edu/tag/01MZ
https://stacks.math.columbia.edu/tag/01MZ
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Definition 6.14. Let E be a vector bundle on S. The projective bundle associated to E is
the morphism

PS(E) := Projan
S
(Sym•

SE)→ S.

Let I be a coherent ideal sheaf on S and Z ⊂ S be the associated closed adic subspace.
The blow-up of S along Z, or the blow-up of S in the ideal sheaf I, is the morphism

BlZ(S) := Projan
S

⊕
d≥0

Id → S.

7. Line bundles on the relative projective bundle

In this section, we study line bundles on the relative projective bundle PS(E)→ S for any
locally noetherian analytic adic space S and a vector bundle E on S. The main goal is to
prove the following theorem:

Theorem 7.1. Let S be a connected locally noetherian analytic adic space, E a vector
bundle on S, and f : P := PS(E) → S the corresponding projective bundle. Then the
natural morphism

Pic (S)
⊕

Z→ Pic (P )

defined by the rule
(L, n) 7→ f ∗L⊗ OP/S(n)

is an isomorphism.

Let us begin with the case of a strongly noetherian Tate affinoid S = Spa(A,A+). In
this case, the relative projective space Pd

S → S is the relative analytification of the rela-

tive algebraic projective space Pd,alg
A → SpecA. In particular, there is the analytification

morphism

i : Pd
S → Pd,alg

A .

Lemma 7.2. In the notation as above, the natural morphism

Pic
(
Pd,alg
A

)
→ Pic

(
Pd
S

)
is an isomorphism.

Proof. The GAGA Theorem [FK18, Theorem 9.5.1] implies that the natural morphism

i∗ : Coh
(
Pd,alg
K

)
→ Coh

(
Pd
S

)
is an equivalence of categories (respecting the symmetric monoidal structures on both sides).
By identifying line bundles with invertible objects inCoh, we get that the pullback morphism

Pic
(
Pd,alg
A

)
→ Pic

(
Pd
S

)
.

is an isomorphism. □

Lemma 7.2 essentially proves Theorem 7.1 in the case of an affinoid base. In order to
globalize the result, we will need to do some extra work.
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Corollary 7.3. Let K be a non-archimedean field with an open bounded valuation subring
K+ ⊂ K, S = Spa(K,K+), and f : Pd

S → S is the relative projective space. Then the
natural morphism

Z→ Pic
(
Pd
S

)
,

defined by the rule
n 7→ OPd

S/S
(n),

is an isomorphism.

Proof. This follows directly from Lemma 7.2 and the standard algebraic computation

Pic
(
Pd
K

)
≃ Z[O(1)].

□

Notation 7.4. Suppose that f : PS(E)→ S is a relative projective bundle over S and x ∈ S
is a point. We will denote by Px(E) the fiber product

PS(E)×S Spa
(
K(x), K(x)+

)
and call it the fiber over x.

Warning 7.5. Unless x is a rank-1 point, the underlying topological space

| Spa
(
K(x), K(x)+

)
|

is not just one point {x}. Instead, it is the set of all generalizations of x. In particular, the
adic space Px(E) is not literally the fiber over x unless x is of rank-1.

Lemma 7.6. Let S = Spa(A,A+) be a connected strongly noetherian Tate affinoid, f : Pd
S →

S the relative projective space, and N a line bundle on Pd
S. Suppose that there is a point

x ∈ S such that
N|Pd

x
≃ O.

Then

(1) f∗N is a line bundle on S;

(2) the natural morphism f ∗f∗N→ N is an isomorphism.

In particular, the restriction of N onto any fiber is trivial.

Proof. Using Lemma 7.2 and the GAGA Theorem (see [FK18, Thm. 9.4.1]), we easily reduce
the claim to an analogous claim for the algebraic relative projective space

g : Pd,alg
A → SpecA.

Then the results are well-known (and left as an exercise to the reader) as long as we know
that SpecA is connected. However, connectedness of SpecA follows from Lemma 2.1. □

Corollary 7.7. Let S be a locally noetherian analytic adic space, f : PS(E)→ S a projective
bundle, and N a line bundle on PS(E). For each integer n, let En(N) be the set

En(N) := {x ∈ S | N|Px(E) ≃ O(n)} ⊂ S.

Then En(N) is a clopen subset of S for each integer n.
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Proof. Since the subsets En(N) are disjoint, it suffices to show that each of them is open.
This follows directly from Lemma 7.6 and Lemma 2.2. □

Lemma 7.8. Let S be a locally noetherian analytic adic space, and f : PS(E)→ S a relative
projective bundle. Then, for any line bundle L ∈ Pic(S), the natural morphism

L→ f∗f
∗L

is an isomorphism.

Proof. The proof is clearly local on S, so we can assume that S is affine and both L and E

are trivial. In this case, it suffices to show that the natural morphism

OS → f∗OPd
S

is an isomorphism. This is standard and follows, for example, from the analogous algebraic
results and the (relative) GAGA Theorem (see [FK18, Thm. 9.4.1]). □

Now we are ready to give a proof of Theorem 7.1.

Theorem 7.9. Let S be a connected locally noetherian analytic adic space, and f : P :=
PS(E)→ S a projective bundle. Then the natural morphism

α : Pic (S)
⊕

Z→ Pic (P )

defined by the rule
(L, n) 7→ f ∗L⊗ OP/S(n)

is an isomorphism.

Proof. Step 1. Injectivity of α : Pic (S)
⊕

Z→ Pic (P ). Suppose that the map is not injetive,
so there is a line bundle N = f ∗L ⊗ OP/S(n) that is isomorphic to OP . Then Corollary 7.3
implies that n = 0 by restricting N onto the fiber over some rank-1 point x ∈ S. Thus

OP ≃ N ≃ f ∗L.

In this case, Lemma 7.8 implies that

L ≃ f∗f
∗L ≃ f∗OP ≃ OS

finishing the proof.

Step 2. Surjectivity of α : Pic (S)
⊕

Z→ Pic (P ). Pick any object N ∈ Pic(P ) and a point
x ∈ S. By Corollary 7.3, we know that Nx ≃ OPx(n) for some integer n. Then Corollary 7.7
implies that, for any point y ∈ S,

Ny ≃ OPy(n).

Therefore, by replacing N with N ⊗ OP/S(−n), we can assume that the restriction of N on
any fiber is trivial. In this case, it suffices to show that

f∗N

is a line bundle on S, and that the natural morphism

f ∗f∗N→ N

is an isomorphism. This question is local on S, so the result follows from Lemma 7.6 and
Lemma 2.2. □
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Corollary 7.10. Let S be a locally noetherian analytic adic space, f : PS(E) → S a pro-
jective bundle, and N is a line bundle on PS(E). Then there is a disjoint decomposition of
S into clopen subsets S = ⊔i∈ISi with the induced morphisms

fi : PSi
(E|Si

)→ Si

such that
N|PSi

(E|Si
) ≃ f ∗

i Li ⊗ O(ni)

for some Li ∈ Pic(Si) and integers ni.

Proof. This follows directly from Theorem 7.9 and Corollary 7.10. □

8. Étale 6-functor formalism

In this section, we construct an étale 6-functor formalism on the category of locally noe-
therian adic spaces. We refer to [Man22, Appendix A.5] for the extensive discussion of
6-functor formalisms and to [Zav22, Def. 2.3.10 and Rem. 2.3.11] for the precise definition of
a 6-functor formalism that we are going to use in these notes. Here, we only say that a data
of a 6-functor formalism is a formal way of encoding the 6-functors(

f ∗, Rf∗, ⊗L, RHom, Rf!, Rf !
)

with all (including “higher”) coherences between these functors. In particular, this encodes
the projection formula and proper base-change.

This formalism was essentially constructed by R.Huber in [Hub96]. However, at some
places he had to work with bounded derived categories and a restricted class of morphisms.
We eliminate all these extra assumptions in this section, and also make everything ∞-
categorical. The main new input is the formalism developed in [Man22, Appendix A.5].

In the rest of the section, we fix an integer n. For each locally noetherian analytic adic
space X, we denote by D(Xét;Z/nZ) the ∞-derived category of étale sheaves of Z/nZ-
modules on X. This is a stable, presentable ∞-category with the standard t-structure (see
[HA, Prop. 1.3.5.9 and Prop. 1.3.5.21]).

We wish to define 6-functors on D(Xét;Z/nZ). We note that 4-functors come for free.
The category D(Xét;Z/nZ) admits the natural symmetric monoidal structure by deriving
the usual tensor product on Shv(Xét;Z/nZ) (see [LZ17, Lemma 2.2.2 and Notation 2.2.3]
for details). We denote this functor by

−⊗L − : D(Xét;Z/nZ)×D(Xét;Z/nZ)→ D(Xét;Z/nZ).

By deriving the inner-Hom functor, we also get the functor

RHomX(−,−) : D(Xét;Z/nZ)
op ×D(Xét;Z/nZ)→ D(Xét;Z/nZ)

that is right adjoint to the tensor product functor. Similarly, for any morphism f : X → Y
of locally noetherian analytic adic spaces, we get a pair of adjoint functors

f ∗ : D(Yét;Z/nZ)→ D(Xét;Z/nZ),

Rf∗ : D(Xét;Z/nZ)→ D(Yét;Z/nZ).
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Thus, the question of constructing 6-functor essentially reduces to the question of con-
structing Rf! and f

!-functors and showing certain compatibilities.

Lemma 8.1. Let f : X → Y be a weakly finite type morphism of locally noetherian analytic
adic spaces, and n invertible in O+

Y . Then

(1) if Y is quasi-compact, Rf∗ is of finite cohomological dimension;

(2) Rf∗ commutes with all (homotopy) colimits. So it admits a right adjoint Rf !;

(3) for any Cartesian diagram

X ′ X

Y ′ Y,

g′

f ′ f

g

the natural morphism
g∗Rf∗ → Rf ′

∗ ◦ (g′)∗

is an isomorphism of functors D(Xét;Z/nZ)→ D(Y ′
ét;Z/nZ).

Proof. Step 1. We show (3) for bounded below complexes. We wish to show that the natural
morphism

ψF : g
∗Rf∗F → Rf ′

∗ ◦ (g′)∗F
is an isomorphism for any F ∈ D+(Xét;Z/nZ). An easy argument with spectral sequences
reduces the question to the case of a sheaf F ∈ Shv(Xét;Z/nZ). It suffices to show that
ψF is an isomorphism on stalks at geometric points of Y . Then [Hub96, Lem. 2.5.12 and
Prop. 2.6.1] reduce the question to the case of a surjective morphism

Y ′ = Spa(C ′, C ′+)→ Y = Spa(C,C+)

for some algebraically closed non-archimedean fields C and C ′ and open, bounded valuation
subrings C+ ⊂ C and C ′+ ⊂ C ′. In this case, the result follows from [Hub96, Cor. 4.3.2].

Step 2. We show (1). We wish to show that there is an integer N such that, for every
F ∈ Shv(Xét;Z/nZ), the complex Rf∗F lies in D≤N(Y ;Z/nZ). We claim that N = tr.deg(f)
does the job (N is finite by Lemma 3.7). Indeed, Step 1 allows us to reduce to the case when
Y = Spa(C,C+) for an algebraically closed field C and an open, bounded valuation subring
C+ ⊂ C. Then the result follows from [Hub96, Cor. 2.8.3].

Step 3. We show (2). Since Rf∗ is a right adjoint, it commutes with all finite limits.
Therefore, it commutes with all finite colimits by [HA, Prop. 1.1.4.1], so it suffices to show
that Rf∗ commutes with infinite direct sums. Therefore, it suffices to show that, for any
collection of objects Fi ∈ D(Xét;Z/nZ), the natural morphism⊕

i∈I

Rf∗ (Fi)→ Rf∗

(⊕
i∈I

Fi

)
is an isomorphism. If all Fi ∈ D≥0(X;Z/nZ), this follows from [Hub96, Lemma 2.3.13(ii)].
In general, the claim is local on Y , so we can assume that Y is quasi-compact. Then Rf∗ is
of finite cohomological dimension by Step 2. Therefore, the unbounded version follows from
the bounded one by a standard argument with truncations.
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Existence of a right adjoint follows directly from the fact that Rf∗ commutes with colimits
and [HTT, Cor. 5.5.2.9].

Step 4. We show (3). The question is clearly analytically local on Y and Y ′, so we
can assume that both spaces are quasi-compact. Therefore, Step 2 ensures that both Rf∗
and Rf ′

∗ have finite cohomological dimension. Furthermore, Step 1 guarantees that the base
change morphism is an isomorphism for all bounded below complexes. Therefore, a standard
argument with truncations allows to formally deduce the unbounded version. □

Now we discuss the fifth functor f!. The idea is to define it separately for an étale morphism
and a proper morphism, and then show that these two functors “glue” together.

Lemma 8.2. Let j : U → X be an étale morphism of locally noetherian analytic adic spaces.
Then the functor j∗ : D(Xét;Z/nZ)→ D(Uét;Z/nZ) admits a left adjoint

j! : D(Uét;Z/nZ)→ D(Xét;Z/nZ)

such that

(1) for any Cartesian diagram

U ′ U

X ′ X

j′

g′

j

g

of locally noetherian analytic adic spaces, the natural morphism

j′! ◦ (g′)∗ → g∗ ◦ j!

is an isomorphism of functors D(U)→ D(X ′);

(2) the natural morphism

j!(−⊗L j∗(−))→ j!(−)⊗L −

is an isomorphism of functors D(Uét;Z/nZ)×D(Xét;Z/nZ)→ D(Xét;Z/nZ).

Proof. We first show existence of j!. For this, we note the étale topos Uét is the slice topos
(Xét)/hU . Therefore, the pullback functor j∗ commutes with both limits and colimits. Since
both D(U ;Z/nZ) and D(X;Z/nZ) are presentable, the adjoint functor Theorem (see [HTT,
Cor. 5.5.2.9]) implies that j∗ admits a left adjoint j!.

Base-change. By adjunction, it suffices to show that the natural morphism

j∗Rg∗ → Rg′∗j
′∗

is an isomorphism of functors. This is essentially obvious because Uét is the slice topos of
Xét.
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Projection Formula. This follows from Yoneda’s Lemma and the following sequence of
isomorphisms

HomX

(
j!
(
A⊗L j∗B

)
, C
)
≃ HomU

(
A⊗L j∗B, j∗C

)
≃ HomU (A,RHomU (j∗B, j∗C))

≃ HomU (A, j∗RHomX (B,C))

≃ HomX (j!A,RHomX (B,C))

≃ HomX

(
j!A⊗L B,C

)
.

□

Now we discuss the hardest part of the construction: we show that j! and Rf∗ are com-
patible in some precise sense:

Proposition 8.3. Let Y be a locally noetherian analytic adic space,

X ′ X

Y ′ Y

j′

f ′ f

j

a Cartesian diagram such that f is proper and j is étale, and n an integer invertible in O+
Y .

Then

(1) there is a natural isomorphism of functors

j! ◦ Rf ′
∗ → Rf∗ ◦ j′! : D(X ′

ét;Z/nZ)→ D(Yét;Z/nZ).

(2) (Projection Formula) The natural morphism of functors

Rf∗((−)⊗L f ∗(−))→ Rf∗(−)⊗L (−) : D(X)×D(Y )→ D(Y )

is an isomorphism.

Proof. Part (1). Firstly, we define the morphism

α : j! ◦ Rf ′
∗ → Rf∗ ◦ j′!

to be adjoint to the natural morphism

f ∗ ◦ j! ◦ Rf ′
∗ ≃ j′! ◦ f ′∗ ◦ Rf ′

∗
j′! (adj)−−−→ j′! ,

where the first map comes from the base-change established in Lemma 8.2. The question
whether α is an isomorphism is étale local on Y and Y ′, so we may assume that both spaces
are affinoids. Then [Hub96, Lemma 2.2.8] ensures that, after possibly passing to an open
covering of Y , there is a decomposition of j into a composition j = g ◦ i such that i is an
open immersion and g is a finite étale morphism.

It suffices to treat these two cases separately. Suppose first that j is finite étale. We can
check that α is an isomorphism étale locally on Y , so we can reduce to the case when Y ′ is
a disjoint union of copies of Y . Then the result is evident.
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Now we deal with the case when j is an open immersion. Since Rf∗ and j! both have
finite cohomological dimesion, a standard argument reduces the question to showing that
the natural morphism

αiF : j! ◦ Rif ′
∗F → Rif∗ ◦ j′!F

is an isomorphism for any F ∈ Shv(X ′
ét;Z/nZ) and i ≥ 0. It suffices to verify this claim

on stalks. Since both Rf∗ and j! commute with arbitrary base change, we can reduce the
question to showing that the natural morphism

RΓ(X, j′!F)→ RΓ(Y, j!R
′
∗F)

is an isomorphism, where Y = Spa(C,C+) for an algebraically closed non-archimedean field
C and an open and bounded valuation subring C+ ⊂ C. If Y ′ = Y , then the claim is evident.
Otherwise, we see that

RΓ(Y, j!R
′
∗F) = 0

since the stalk of j!R
′
∗F at the unique closed point of Spa(C,C+) is zero. Therefore, it suffices

to show that
RΓ(X, j′!F) = 0

in this case. This is follows from [Hub96, Prop. 4.4.3] since the restriction of j′!F onto the
fiber4 of f over the closed point of Y is equal to 0.

Part (2). We wish to prove that the natural morphism

Rf∗(F ⊗L f ∗G)→ Rf∗(F)⊗L G

is an isomorphism for any F ∈ D(X;Z/nZ) and G ∈ D(Y ;Z/nZ). Now we choose any
complex G• representing G. Then we note that the natural morphism

hocolimNσ
≥−NG• → G

is an isomorphism. Since all functors commute with (homotopy) colimits, it suffices to prove
the result for σ≥−NG•, i.e., we can assume that G ∈ D+(Y ;Z/nZ). Then we may similarly
use that

hocolimNτ
≤NG

∼−→ G

to reduce to the case of a bounded complex G ∈ Db(Y ;Z/nZ). This, in turn, can be reduced
to the case when G ∈ Shv(Yét;Z/nZ) by an easy induction on the number of non-zero
cohomology sheaves. Then [Sta22, Tag 0GLW] implies that G is a colimit of sheaves of the
form j!Z/nZ for some étale morphism j : U → X. Again, since all functors in the question
commute with all (homotopy) colimits, it suffices to prove the claim for G = j!Z/nZ. In this
case, this follows from the following sequence of isomorphisms

Rf∗(F ⊗ f ∗j!Z/nZ) ≃ Rf∗(F ⊗L j′!Z/nZ)
≃ Rf∗ ◦ j′! ◦ (j′)∗F
≃ j!Rf

′
∗(j

′)∗F

≃ j!j
∗Rf∗F

≃ (Rf∗F)⊗L j!(Z/nZ).

4This fiber is merely a pseudo-adic space, and not an adic space.

https://stacks.math.columbia.edu/tag/0GLW
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□

Now we fix a locally noetherian adic space S, C′ the category of locally +-weakly finite
type adic S-spaces, and an integer n invertible in O+

S . The next theorem shows that there is a
6-functor formalismD(−;Z/nZ) on the category C′. We also denote by Cat⊗∞ the∞-category
of symmetric monoidal ∞-categories (see [HA, Variant 2.1.4.12]).

Before reading the proof of the next theorem, we strongly advise the reader to take a look
at [Man22, Appendix A.5] and [Zav22, §2.1, 2.3].

Theorem 8.4. Let S, C′, and n be as above. Then there is a 6-functor formalism (in the
sense5 of [Zav22, Def. 2.3.10 and Rmk. 2.3.11])

Dét(−;Z/nZ) : Corr(C′)→ Cat∞

such that

(1) there is a canonical isomorphism of symmetric monoidal∞-categoriesDét(X;Z/nZ) ≃
D(Xét;Z/nZ) for any X ∈ C′;

(2) the functor Dét(−;Z/nZ) sends a 1-edge [X
f←− Y

id−→ Y ] to the pullback functor
f ∗ : D(Y ;Z/nZ)→ D(X;Z/nZ).

Proof. We use [LZ17, Lemma 2.2.2 and Notation 2.2.3] to get a functor

D∗(−;Z/nZ) : C′op → Cat⊗∞

that sends a locally +-weakly finite type adic S-space X to D(Xét;Z/nZ). We extend it to
the desired functor

Dét(−;Z/nZ) : Corr(C′)all,all → Cat∞

in four steps:

Step 1. We define Dét on “compatifiable” morphisms. More precisely, we define E ⊂
Hom(C′) to be the class of +-weakly finite type, separated, taut morphisms (in the sense of
[Hub96, Def. 5.1.2]). We also define the subclasses

I, P ⊂ E

to be quasi-compact open immersions and proper morphisms, respectively. Now [Hub96,
Cor. 5.1.6] implies that any morphism f ∈ E admits a decomposition f = p ◦ i such that
i ∈ I and p ∈ P . One easily checks that I, P ⊂ E defines a suitable decomposition of E in the
sense of [Man22, Def. A.5.9]. Now Lemma 8.1, Lemma 8.2, and Proposition 8.3 ensure that
all the conditions of [Man22, Prop.A.5.10] are satisfied, and so it defines a weak 6-functor
formalism (see [Zav22, Def. 2.1.2])

Dét(−;Z/nZ) : Corr(C′)E,all → Cat∞.

Now recall that a 6-functor formalism Dét defines a lower-shriek functor f! for any morphism
f ∈ E (see [Man22, Def. A.5.6]). In this case, the construction tells us that the lower shriek
functor f! is equal to Rg∗ ◦ j!, where f = g ◦ j is the decomposition of f into a composition
of an open immersion j and a proper morphism g. In particular, for a proper morphism f ,

5Note that this definition slightly differs from [Man22, Def. A.5.7]
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we get an equality f! = Rf∗. In particular, any proper morphism is cohomologically proper
in the sense of [Zav21b, Def. 2.3.4].

Step 2. We extend Dét to separated, locally +-weakly finite type morphisms. We define
E1 to be the class of morphisms of the form ⊔i∈IXi → Y such that each Xi → Y lies in E.
Then [Man22, Prop.A.5.12] ensures that Dét(−;Z/nZ) uniquely extends to a weak 6-functor
formalism

Dét(−;Z/nZ) : Corr(C′)E1,all → Cat∞.

Now we define a new class of morphisms E ′
1 to be the class of locally +-weakly finite type,

separated morphism. We also define a subclass S1 ⊂ E1 to consist of morphisms ⊔i∈IUi → X
for covers X = ∪i∈IUi by quasi-compact open immersions. Then [Man22, Prop.A.5.14]
implies that Dét(−;Z/nZ) uniquely extends to a weak 6-functor formalism

Dét(−;Z/nZ) : Corr(C′)E′
1,all
→ Cat∞.

Step 3. We extend Dét to all locally +-weakly finite type morphisms. This reduction is
pretty similar to Step 2. We define E ′′ to be the collection of all locally +-weakly finite
type morphisms, and S ⊂ E ′ to be the collection of morphisms ⊔i∈IUi → X for covers
X = ∪i∈IUi by open immersions. Then [Man22, Prop.A.5.14] implies that Dét(−;Z/nZ)
uniquely extends to a weak 6-functor formalism

Dét(−;Z/nZ) : Corr(C′)all,all → Cat∞.

Step 4. We show that Dét is a 6-functor formalism in the sense of [Zav22, Def. 2.3.10
and Rmk. 2.3.11]. We already have a weak 6-functor formalism

Dét(−;Z/nZ) : Corr(C′)all,all → Cat∞.

By construction, the categories Dét(X;Z/nZ) ≃ D(Xét;Z/nZ), so they are stable and pre-
sentable. Clearly, Dét satisfies analytic descent; it even satisfies étale descent. By Step 1,
we know that any proper morphism f : X → Y is cohomologically proper (in the sense of
[Zav22, Def. 2.3.4]). Therefore, we are only left to check that any étale morphism j : X → Y
is cohomologically étale in the sense of [Zav22, Def. 2.3.4].

For this, we set up E = ét to be the class of all étale morphisms, and restrict Dét onto
Corr(C′)ét,all to get a weak 6-functor formalism

D′
ét : Corr(C′)ét,all → Cat∞.

Alternatively, we can can apply [Man22, Prop.A.5.8] to E = I being the class of all étale
morphisms and the class P consisting only of the identity morphisms to get another weak
6-functor formalism

D′′
ét : Corrét,all → Cat∞.

By construction, any étale morphism is cohomologically étale with respect to D′′
ét. Thus, the

question boils down to showing that D′
ét and D′′

ét coincide. Using the uniqueness statements
from [Man22, Prop.A.5.12, A.5.14, A.5.16], we can repeat the same arguments as in Steps 2
and 3 to reduce the question to showing that the restrictions

D′
ét|étqcsep : Corrétqcsep,all → Cat∞,

D′′
ét|étqcsep : Corrétqcsep,all → Cat∞
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coincide, where étqcsep stands for the class of étale quasi-compact, separated morphisms.
Now we note that étale quasi-compact, separated morphisms are taut by [Hub96, Lemma
5.1.3(iv)]. Therefore, after unravelling the definitions, we see that both D′

ét|étqcsep and
D′′

ét|étqcsep are obtained by applying [Man22, Prop.A.5.8] to I = étqcsep and P = id. There-
fore they coincide. □

Remark 8.5. Let S be a locally noetherian analytic adic space, C the category of locally
finite type adic S-spaces, and n is an integer invertible in O+

S . Then we can restrict the
functor Dét(−;Z/nZ) : Corr(C′)→ Cat∞ onto Corr(C) to get the étale 6-functor formalism

Dét(−;Z/nZ) : Corr(C)→ Cat∞.

Remark 8.6. Let S is a scheme, C the category of locally finitely presented S-schemes, and
n any integer. Then one can similarly construct the étale 6-functor formalism

Dét(−;Z/nZ) : Corr(C)→ Cat∞.

The proof of Theorem 8.4 applies essentially verbatim. The main non-trivial input needed
is:

(1) ([Con07, Thm. 4.1]) Nagata’s compatification;

(2) ([Fu11, Prop. 5.9.6]) the natural morphism⊕
I

Rf∗Fi → Rf∗

(⊕
I

Fi

)
for a proper morphism f and a collection of sheaves {Fi ∈ Shv(Xét;Z/nZ)}i∈I ;

(3) ([Fu11, Thm7.3.1]) proper base-change for bounded below complexes;

(4) projection formula for proper f and bounded below complexes (in this case, it follows
automatically from (2) and (3) by arguing on stalks, see [Fu11, 7.4.7]);

(5) finite cohomological dimension of f∗ for a proper f (one can either adapt the proof
of [Fu11, Thm. 7.4.5]6 or [Fu11, Corollary 7.5.6]).

9. Overconvergent sheaves

In this section, we prove two basic facts about overconvergent sheaves. Both facts can be
deduced from the results in [Hub96]. However, the proofs in [Hub96] seem to be unnecessary
difficult, so we prefer to include alternative proofs of these facts in these notes.

Definition 9.1. ([Hub96, Def. 8.2.1]) An étale sheaf F ∈ Shv(Xét;Z/nZ) on a locally noe-
therian analytic adic space is overconvergent if for every specialization of geometric points
u : η → s, the specialization morphism

Fs → Fη

is an isomorphism.

6For this, one notices that (1) and (2) already imply that Rf! is a well-defined functor
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Lemma 9.2. Let Y be a locally noetherian analytic adic space, j : X → Y a quasi-compact
dense pro-open immersion, n an integer, and F ∈ Shv(Yét;Z/nZ) an overconvergent étale
sheaf on Y . Then the natural morphism F → Rj∗j

∗F is an isomorphism. In particular, the
natural morphism

RΓ(Y,F)→ RΓ(X, j∗F)

is an isomorphism.

Proof. We can check that

F → Rj∗j
∗F (4)

is an isomorphism at the geometric points of Y . Therefore, we can assume that j is of the
form j : Spa(C,C ′+)→ Spa(C,C+) for an algebraically closed non-archimedean field C and
open and bounded valuation subrings C ′+ ⊂ C+ ⊂ C. In this case, it suffices to show that

Hi(Spa(C,C ′+), j∗F) = 0

for i ≥ 1, and

H0(Spa(C,C+),F)→ H0(Spa(C,C ′+), j∗F)

is an isomorphism. The first follows from the fact that any surjective étale morphism S →
Spa(C,C ′+) has a section7.

Now we show the second claim. Let s = Id: Spa(C,C+) → Spa(C,C+) be the “closed”
geometric point of Spa(C,C+) and s′ = j : Spa(C,C ′+) → Spa(C,C+) the geometric point
corresponding to the closed point of Spa(C,C ′+). Then the argument as above implies that
H0(Spa(C,C+),F) = Fs and H0(Spa(C,C ′+), j∗F) ≃ Fs′ . So the overconvergent assumption
implies that the natural morphism

Fs → Fs′

is an isomorphism finishing the proof. □

Lemma 9.3. Let f : X → S be a finite type, quasi-separated morphism of locally noetherian
analytic adic spaces, n an integer, and F ∈ Shv(X;Z/nZ) an overconvergent sheaf. Then
Rif∗F is overconvergent for any i ≥ 0.

Proof. By [Hub96, Prop. 2.6.1], it suffices to show that, for any algebrically closed non-
archimedean field C with an open bounded valuation ring C+ and a morphism Spa(C,C+)→
S, the natural morphism

Hi(XSpa(C,C+),F)→ Hi(XSpa(C,OC),F)

is an isomorphism. This follows from Lemma 9.2. □

7First reduce to an affinoid S, then use [Hub96, Lemma 2.2.8] and an equivalence Spa(C,C ′+)fét ≃
(SpecC)fét to construct a section.
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10. Categorical properties of lisse and constructible sheaves

In this section, we show that lisse and constructible étale sheaves on a locally noetherian
analytic adic space (resp. a scheme) X admit a nice categorical description. The results of
this section are well-known to the experts, but it seems hard to find them explicitly stated
in the existing literature.

For the rest of the section, we fix a locally noetherian adic space (resp. a scheme) X and
an integer n.

We recall that the derived category D(Xét;Z/nZ) admits a natural structure of a sym-
metric monoidal category (with the monoidal structure given by −⊗L −). In particular, it
there is a well-defined notion of dualizable objects in D(Xét;Z/nZ), see [Sta22, Tag 0FFP].

Lemma 10.1. An object F ∈ D(Xét;Z/nZ) is dualizable if and only if F lies inD
(b)
lisse(Xét;Z/nZ),

i.e, F is locally bounded and its cohomology sheaves are lisse.

Proof. First, we note that [Sta22, Tag 0FPV] ensures that F is dualizable if and only if F is
perfect. Therefore, it suffices to show that perfect complexes of Z/nZ on Xét are the same as

objects of D
(b)
lisse(Xét;Z/nZ). This follows from the fact that lisse objects form a Weak Serre

subcategory of Shv(Xét;Z/nZ), [Sta22, Tag 08G9], and the definition of perfect complexes
(see [Sta22, Tag 08G5]). □

Now we discuss the categorical description of constructible sheaves:8

Lemma 10.2. Let X be a qcqs noetherian analytic adic space or a qcqs scheme, and n,N
some integers. Then an object F ∈ D≥−N(Xét;Z/nZ) is compact if and only if F lies in
Db,≥−N

cons (Xét;Z/nZ), i.e., F is bounded and all its cohomology sheaves are constructible.

Proof. Without loss of generality, we can assume that N = 0.

Step 1. The “if” direction. An easy spectral sequence argument implies that we can
assume that F is an (abelian) constructible sheaf. Then the question boils down to showing
that Exti(F,−) and Hj(Xét,−) commute with arbitrary direct sums in Shv(Xét;Z/nZ) for
all i and j.

We show that Exti(F,−) commutes with direct sums for a constructible sheaf F. If

F = f!

(
Z/nZ

)
for a qcqs étale morphism f : U → X, then the claim follows from the

isomorphism

RHomX(f!Z/nZ,−) ≃ Rf∗RHomU(Z/nZ, f
∗−) ≃ Rf∗f

∗(−).

Now the claim follows from the fact that both Rf∗ and f
∗ commute with infinite direct sums

in Shv(Xét;Z/nZ). Indeed, f
∗ always commutes with direct sums, and Rf∗ commutes with

direct sums by [Hub96, Lemma 2.3.13(ii)].

Now, for a general constructible sheaf F, we use a resolution of the form

· · · → f1,!Z/nZ→ f0,!Z/nZ→ F → 0,

8We refer to [Hub96, §2.7] and [Sta22, Tag 05BE] for the definition of constructible sheaves in the adic
and schematic setups respectively.

https://stacks.math.columbia.edu/tag/0FFP
https://stacks.math.columbia.edu/tag/0FPV
https://stacks.math.columbia.edu/tag/08G9
https://stacks.math.columbia.edu/tag/08G5
https://stacks.math.columbia.edu/tag/05BE
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with fi : Xi → X being qcqs étale maps (this presentation follows from [Sta22, Tag 095N]
in the scheme case and from the proof of [Hub96, Lemma 2.7.8] in the adic case). Then an

easy spectral sequence argument implies that F is compact since each fn,!

(
Z/nZ

)
is so.

To finish the proof, we note that Hj(Xét,−) commutes with arbitrary direct sums by
[Hub96, Lemma 2.7.8(i)].

Step 2. We show that the natural morphism Ind
(
Db,≥0

cons(Xét;Z/nZ)
)
→ D≥0(Xét;Z/nZ)

is an equivalence. First we note, D≥0(Xét;Z/nZ) admits all (small) filtered colimits, so the
natural inclusion

Db,≥0
cons(Xét;Z/nZ)→ D≥0(Xét;Z/nZ)

extends to the functor

i : Ind(Db,≥0
cons(Xét;Z/nZ))→ D≥0(Xét;Z/nZ)

due to [HTT, Lemma 5.3.5.8]. Since each object ofDb,≥0
cons (Xét;Z/nZ) is compact inD≥0(Xét;Z/nZ),

we conclude that the functor i is fully faithful, so it suffices to show that i is essentially sur-
jective.

Now note that any object F ∈ D≥0(Xét;Z/nZ) can be written as a (homotopy) colimit

colimn τ
≤nF → F.

Since i commutes with filtered colimits, it suffices to show that any F ∈ Db,≥0(Xét;Z/nZ)
lies in the essential image. For this, we note that the essential image of i is closed under the
shift [−1] and “kernels” in D≥0(Xét;Z/nZ). Therefore, an easy inductive argument reduces
the question to showing that any abelian sheaf F ∈ Shv (Xét;Z/nZ) lies in the essential
image of F. This follows from [Hub96, Lemma 2.7.8] in the adic world and from [Sta22, Tag
09YU] in the scheme world.

Step 3. Finish the proof. Step 2 implies that any F ∈ D≥0(Xét;Z/nZ) can be written as
a filtered (homotopy) colimit

F = colimi∈I Fi

with Fi ∈ Db,≥0
cons(Xét;Z/nZ). If F is compact, we see that there is an equivalence

Hom(F,F) = Hom(F, colimi∈I Fi) = colimi∈I Hom(F,Fi).

In particular, we note that the identity morphism id: F → F factors through some Fi → F.
Thus, F is a direct summand of Fi, so it must lie in Db,≥0

cons(Xét;Z/nZ). □
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https://www.math.ias.edu/~lurie/papers/HA.pdf
https://arxiv.org/abs/1211.5948
https://arxiv.org/abs/1211.5948
https://arxiv.org/abs/2206.02022
https://arxiv.org/abs/2206.02022
https://arxiv.org/abs/1709.07343
https://stacks.math.columbia.edu
https://arxiv.org/abs/2110.10773
https://arxiv.org/abs/2110.10773
https://arxiv.org/abs/2111.01830
https://arxiv.org/abs/2111.01830
https://arxiv.org/abs/2102.02762
https://arxiv.org/abs/2102.02762
https://arxiv.org/abs/2102.02776
https://arxiv.org/abs/2102.02776

	1. Introduction
	2. Connected Components
	3. Dimension
	4. Coherent sheaves
	5. Regular closed immersions
	6. Analytic Proj construction
	7. Line bundles on the relative projective bundle
	8. Étale 6-functor formalism
	9. Overconvergent sheaves
	10. Categorical properties of lisse and constructible sheaves
	References

