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Abstract. We prove a version of the Lefschetz hyperplane theorem for fppf cohomology with
coefficients in any finite flat commutative group scheme over the ground field. As consequences, we
establish new Lefschetz results for the Picard scheme. We then use Godeaux-Serre varieties to give
a number of examples of pathological behavior of families in positive characteristic.
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1. Introduction

1.1. Overview. This paper is divided into two essentially disjoint parts. In the first part, we prove
a version of the Lefschetz hyperplane theorem for finite flat commutative group scheme coefficients.
Specifically, we have the following theorem.

Theorem 1.1.1. (Theorem 2.4.5) Let k be a field, Y a projective syntomic k-scheme, X ⊂ Y a
closed subscheme of dimension d, and G a finite flat commutative k-group scheme. Then the cone

cone (RΓfppf (Y,G)→ RΓfppf (X,G))

lies in D≥d(Z) if
1
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(1) Y ∼= PN
k for some N and X is a global complete intersection, or

(2) X ⊂ Y is a sufficiently ample Cartier divisor (see Definition 2.1.8 and Remark 2.1.9).

Remark 1.1.2. Example 2.4.6 shows that Theorem 1.1.1 may fail for ample (but not sufficiently
ample) divisors X ⊂ Y . Example 2.4.7 shows that Theorem 1.1.1 may also fail for finite flat
commutative Y -group schemes that are not defined over k. The assumption of syntomicity is
similar to the assumptions on the Lefschetz theorems proved in [SGA2].

We expect that there is a version of Theorem 1.1.1 for non-commutative finite k-group schemes,
but we cannot prove it.

Question 1.1.3. Let X ⊂ PN
k be a complete intersection of dimension at least 2, and G a finite

(not necessarily commutative) k-group scheme. Is the natural morphism H1(PN
k , G) → H1(X,G)

a bijection? The same question may be asked for X ⊂ Y a sufficiently ample Cartier divisor (with
an appropriate definition of “sufficiently ample”).

Remark 1.1.4. If both X and Y are smooth and the ground field k is algebraically closed, Ques-
tion 1.1.3 has a positive answer. This follows from the Lefschetz type result for Nori’s fundamental
group (see [BH07, Theorem 1.1]).

By devissage, Theorem 1.1.1 is reduced to the cases G = µ`, αp, and Z/p, where ` is a prime
number and p is the characteristic of k. The cases of αp and Z/p are reduced to questions of
coherent cohomology using standard exact sequences. For ` 6= p, the case of µ` is settled using
results in the theory of perverse sheaves.

The case of µp will give us the most difficulty. Here we will find it convenient to pivot to proving
a Lefschetz hyperplane theorem for the cohomology of the Tate twists Zp(i). Using the Nygaard
filtration, this will ultimately be reduced to proving a Lefschetz hyperplane theorem for each filtered
piece in the conjugate filtration on de Rham cohomology, which has been established in [ABM21].
In particular, we get a Lefschetz hyperplane theorem for the syntomic cohomology of the Tate
twists Zp(i) defined in [BMS19] (see also Section 1.2):

Theorem 1.1.5. (Corollary 2.2.2) Let k be a field of characteristic p > 0, Y a projective syntomic
k-scheme, X ⊂ Y a closed subscheme of dimension d, and G a finite flat commutative k-group
scheme. Then the cone

C := cone (RΓsyn (Y,Zp (i))→ RΓsyn (X,Zp (i)))

lies in D≥d(Zp) with Hd(C) torsion-free for i ≥ 0 if

(1) Y ∼= PN
k for some N and X is a global complete intersection, or

(2) X ⊂ Y is a sufficiently ample Cartier divisor.

As a consequence of Theorem 1.1.1, we prove a Lefschetz hyperplane theorem for Picτ of pro-
jective syntomic k-schemes.

Theorem 1.1.6. (Theorem 2.5.2, Corollary 2.5.7) Let k be a field, and Y a projective syntomic
k-scheme of pure dimension d, and X ⊂ Y a sufficiently ample Cartier divisor. Then

(1) PicτY/k → PicτX/k is an isomorphism if d ≥ 3;

(2) PicY/k → PicX/k is an isomorphism if d ≥ 4.

Remark 1.1.7. In fact, our proof shows that the divisor X ⊂ Y need only be a Hodge 2-equivalence
(see Definition 2.1.1) with the property that Y −X is affine. In particular, Theorem 2.1.4 implies
that Theorem 1.1.6 holds for all ample Cartier divisors in either of the following two situations:
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(1) Y is a smooth projective variety over a field of characteristic 0;

(2) Y is a smooth projective variety over a field of characteristic p > 2 such that Y admits a
lift to W2(k).

However, Remark 2.5.8 gives some evidence that Theorem 1.1.6 is quite likely false for an ample
(but not sufficiently ample) divisor on a more general Y .

Remark 1.1.8. A. Langer has informed us that an effective version of Theorem 1.1.6 for Picτred

follows from his Lefschetz type theorem for the S-fundamental group when X and Y are smooth
(see [Lan11, Theorem 10.2 and 10.4]).

Theorem 1.1.6 appears to be new in every dimension, even for smooth X and Y . The main
difficulty in deducing it from Theorem 1.1.1 is that the Picard schemes can be highly non-reduced
in positive characteristic, so one cannot argue on the level of Picard groups, i.e., on the level of k-
points. To overcome this issue, we need to use the structure theory of commutative group schemes
over a field to obtain an isomorphism criterion (see Lemma 2.5.6), and to verify the hypotheses
of this criterion we need to generalize Theorem 1.1.1 to more general base schemes, at least for
G = µp (see Corollary 2.4.4).

In the case of complete intersections in projective space, we can show that the hypothesis of
sufficient ampleness is not necessary, and we can make a more refined statement, recovering [CS21,
Corollary 7.2.3].

Theorem 1.1.9. ([CS21, Corollary 7.2.3], Theorem 2.5.1) Let k be a field, and X ⊂ PN
k be a

complete intersection of dimension at least 2. Then

(1) Pic(X)tors = 0;

(2) the group scheme PicτX/k is trivial;

(3) the class of OX(1) = i∗OPN (1) is a non-divisible element of Pic(X).

If dimX ≥ 3, then Theorem 1.1.9 was essentially settled by Grothendieck in [SGA2]. If
dimX ≥ 2 and X is smooth, then this was settled by Deligne in [SGA7II, Exp. XI]. A version for
weighted complete intersection surfaces with certain limited singularities can be found in [Lan84,
§1]. The general case was established in [CS21, Corollary 7.2.3]. However, Theorem 1.1.6 does not
seem to follow from their methods. When we started writing this paper, we were not aware that
Theorem 1.1.9 was proven in [CS21].

Both proofs of Theorem 1.1.9 share a similar idea of using perfectoid techniques to reduce the
study of flat cohomology of µp to studying the cohomology of certain coherent sheaves. However,
the details of the proofs seem to be fairly different. Our proof is global and is based on the
Lefschetz hyperplane theorem from [ABM21], while the proof in [CS21] is local; in their argument
they relate the Picard group of X to the local Picard group of the vertex x of the affine cone over
X, and then use local techniques to study that Picard group. Namely, if R is the local ring of x,
Pic(X)/Z[OX(1)] injects into Pic(SpecR \ {x}), and this is good enough to prove Theorem 1.1.9.
However, the failure of the map Pic(X)/Z[OX(1)]→ Pic(SpecR \ {x}) to be surjective is the main
reason why their methods do not seem to be sufficient to obtain a proof of Theorem 1.1.6. Both
proofs are uniform in dimX and do not make any assumptions on singularities of X.

In the second part of this paper, we give a number of examples of the pathological behavior of
various cohomology theories over fields of positive characteristic. Specifically, we give examples of
the following types:
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Theorem 1.1.10. Let R be a discrete valuation ring of equicharacteristic p > 0, and d ≥ 2. Then
there is a smooth, projective morphism f : X → S = SpecR with geometrically connected fibers of
pure dimension d such that

(1) (Theorem 3.2.1 and Theorem 3.4.1) rkk(s) H1
dR(Xs/k(s)) > rkk(η) H1

dR(Xη/k(η));

(2) (Theorem 3.5.4) R1fcrys,∗OX/S is not a crystal on (S/S)crys.

(3) (Corollary 3.4.3) H2
dR(X/S) does not admit any stratification structure (in the sense of

[BO78, Definition 2.10]). In particular, the Gauss-Manin connection on H2
dR(X/S) does

not prolong to a stratification;

These examples seem not to have been previously established in the literature. Though it is well-
known that de Rham numbers can jump in smooth families in characteristic p, it does not seem
to be addressed anywhere besides a brief remark in [Ray79, 4.2.6(iii)]. The question of whether
Rifcrys,∗OX/S are crystals in the equicharacteristic case (i.e., pOS = 0) is raised in [BO78, Remark
7.10]. Our second example negatively answers this question. As for the third example, Grothendieck
constructed an example of a smooth projective family (see [Gro68a, §3.5] and [BO78, Example 2.18])
where the Gauss-Manin connection on H1

dR(X/S) does not admits any functorial stratification.
Using p-curvature considerations and the relation between p-curvature and the Kodaira-Spencer
map (see [Kat72, Theorem 3.2] for a precise statement), it is not hard to construct examples
where the Gauss-Manin connection does not extend to a stratification in positive characteristic
(see Remark 3.4.4). The novelty of our example is that H2

dR(X/S) has no stratification structure
whatsoever.

All of the above examples are built using a general construction due to Godeaux and Serre, which
we recall briefly in Theorem 3.1.1. We give an example which seems close to what Raynaud had
in mind in Section 3.2, followed by another example in Section 3.4. The vague idea behind both
examples is to find a sufficiently weird finite flat group scheme G over S such that the Godeaux-Serre
construction applied to G gives the desired family X → S.

Our first example in Section 3.2 is fairly elementary. It studies the Hodge numbers h0,1 and h1,0

of the fibers of X → S in an explicit way by relating them to the the tangent space of PicτX/S
and the global sections of differential forms respectively. To pass from Hodge numbers to de Rham
numbers, we use the (partial) degeneration of the Hodge-to-de Rham spectral sequence for varieties
which admit a lift to W2(k) (see [DI87]).

Our second example is based on the idea that the smooth, proper family of Artin stacks BG→ S
already has jumps in the first de Rham numbers of its fibers for some explicit G. To see this, we
use a result of Mondal [Mon21] which relates the second crystalline cohomology group of BG to
its Dieudonné module. This gives the desired family in the world of stacks. The second step is to
use the Godeaux-Serre construction to approximate BG by a family of smooth, projective scheme
without changing the first de Rham numbers of fibers. To do this, we use the notion of a Hodge
d-equivalence from [ABM21].

1.2. Terminology. Throughout this paper, we extensively use the formalism of “derived” coho-
mology theories, so we briefly recall our conventions.

For a ringA, we denote byD(A) its triangulated derived category, and by D(A) its∞-enhancement.
We denote by DF (A) = Fun∞(N,D(A)) a filtered derived category of A.

For a fixed prime p and an object M ∈ D(A), the derived quotient [M/p] := cone(M
p−→M) is the

cone of the multiplication by p map. We denote by D̂(A) the full subcategory of D(A) consisting
of p-adically derived complete objects (in the sense of [Sta21, Tag 091S]).

https://stacks.math.columbia.edu/tag/091S
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For an Fp-algebra k, and a k-stack X. We denote the Frobenius twist of X relative to k by X(1).

For a ring k and a k-algebra R, we denote by ∧iLR/k ∈ D(k) derived i-th wedge power of the
cotangent complex. For a syntomic k-stack (in particular, syntomic k-scheme) X, we define (derived)
Hodge cohomology

RΓ(X,∧iLX/k) ∈ D(k)

by syntomic (hyper-)descent from the affine case (see [ABM21, Construction 2.7] for details).

Likewise, for an Fp-algebra k and a k-algebra R, we denote by dRR/k ∈ D(k) its derived de

Rham complex. This complex comes with an exhaustive conjugate filtration Filconj
• dRR/k ∈ DF (k).

For a syntomic k-stack X, we define its derived de Rham cohomology and its conjugate filtration

RΓdR(X/k) ∈ D(k), Filconj
• RΓdR(X/k) ∈ DF (k)

by syntomic (hyper-)descent from the affine case. As explained in [ABM21, Definition 3.1(b’)]
(whose proof does not use perfectness of k), this filtration is exhaustive with associated graded
pieces

grconj
i RΓdR(X/k) ' RΓ(X,∧iLX(1)/k)[−i].

Using [Bha12, Corollary 3.10] and Zariski (hyper-)descent, one sees that derived de Rham coho-
mology is canonically isomorphic to the classical de Rham cohomology for a k-smooth X, i.e.,

RΓdR(X/k) ' RΓ(X,Ω•X).

For a perfect field k of characteristic p > 0 and a syntomic k-algebraR, we denote by RΓcrys(R/W (k)) ∈
D̂(W (k)) crystalline cohomology. For a syntomic k-stack X, we define its crystalline cohomology

RΓcrys(X/W (k)) ∈ D̂(W (k))

by syntomic descent from the affine case. One can similarly check that it coincides with the usual
crystalline cohomology for syntomic k-schemes. Using [Bha12, Theorem 3.27], [BdJ11, Corollary
3.10], and syntomic descent, we get a canonical isomorphism

RΓcrys(X/W (k))⊗LW (k) k ' RΓdR(X/k).

To define the Nygaard filtration on RΓcrys(X/W (k)) the crystalline cohomology of a syntomic
k-scheme, we note that [BL22, Theorem 4.6.1 and Warning 4.6.2] give an isomorphism

F ∗RΓ�(X/W (k)) ' RΓcrys(X/W (k))

of the Frobenius twist of prismatic cohomology relative to the perfect prism (W (k), (p)) and crys-
talline cohomology relative to the standard pd-structure on W (k). Thus, the relative Nygaard
filtration defined on F ∗RΓ�(X/W (k)) in [BL22, §5.1] can be transported to the crystalline coho-
mology. Alternatively, one can define the Nygaard filtration as in [BMS19, §8], but this is less
convenient for our purposes.

For a perfect field k of characteristic p > 0 and a syntomic k-scheme X, we define syntomic
complexes

RΓsyn(X,Zp(i)) ∈ D̂(Zp)

as in [BL22, Variant 7.4.12].

Finally, if S = SpecR is a spectrum of a discrete valuation ring, we denote by k(η) := Frac(R)
the quotient field, and k(s) := R/m the residue field. Likewise, η = Spec k(η) denotes the generic
point of S and s = Spec k(s) the closed point of S. The geometric generic point η is defined as

Spec k(η) for some choice of an algebraic closure k(η) ⊂ k(η), and the geometric special point s is

defined as Spec k(s) for some choice of an algebraic closure k(s) ⊂ k(s).
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2. Lefschetz hyperplane theorem for flat cohomology

2.1. Hodge d-equivalences. This section recalls the main results from [ABM21, §5].

For the rest of the section, we fix a field k.

Definition 2.1.1. [ABM21, Definition 5.1] A k-morphism of syntomic k-stacks X→ Y is a Hodge
d-equivalence if, for every s ≥ 0, we have

cone
(
RΓ
(
Y,∧sLY/k

)
→ RΓ

(
X,∧sLX/k

))
lies in D≥d−s(k).

Remark 2.1.2. Definition 2.1.1 may look a bit abstract, but really it just a formal way to say that
f satisfies the conclusion of the “Lefschetz hyperplane theorem” for Hodge cohomology groups.

Using the conjugate filtration on derived de Rham cohomology, one can show that a Hodge
d-equivalence f automatically induces an isomorphism on low degree de Rham (resp. crystalline)
cohomology groups. This, together with the Nygaard filtration, will eventually allow us to get a
Lefschetz hyperplane theorem for µp cohomology groups.

Lemma 2.1.3. [ABM21, Remark 5.2] Let k be a perfect field of characteristic p > 0, and X → Y

be a Hodge d-equivalence of syntomic k-stacks. Then

(1) cone
(

Filconj
i RΓdR (Y/k)→ Filconj

i RΓdR (X/k)
)
∈ D≥d(k) for every i ≥ 0,

(2) cone (RΓdR (Y/k)→ RΓdR (X/k)) ∈ D≥d(k),

(3) C := cone (RΓcrys (Y/W (k))→ RΓcrys (X/W (k))) ∈ D≥d(W (k)) and Hd(C) is torsionfree.

Theorem 2.1.4. [ABM21] Let i : X ↪→ Y be a closed immersion of syntomic projective k-schemes.

(1) If Y = PN
k and X ⊂ Y is a d-dimensional (global) complete intersection over k, then i is a

Hodge d-equivalence;

(2) If Y is a smooth variety of pure dimension d + 1, X ⊂ Y is an ample Cartier divisor, and
k is a field of characteristic 0, then i is a Hodge d-equivalence;

(3) If Y is a smooth variety of pure dimension d+ 1 which lifts to W2(k), X ⊂ Y is an ample
Cartier divisor, and k is a field of characteristic p > 0 then i is a Hodge (inf(p, d+ 1)− 1)-
equivalence.

Proof. The first claim is [ABM21, Proposition 5.3]. The second claim follows from [ABM21, Ex-
ample 5.6] and [ABM21, Proposition 5.7]. To prove the third claim, we can assume that k = k
is algebraically closed. The proof of [ABM21, Proposition 5.7] shows that X → Y is a Hodge
(n− 1)-equivalence if

RΓ(Y,∧sLY ⊗ OY (−rX)) ' RΓ(Y,Ωs
Y (−rX)) ∈ D≥n−s(k)

https://thuses.com/
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for any s ≥ 0 and all r > 0. So we need to show that

Hi (Y,Ωs
Y (−rX)) = 0

for i + s < inf(p, d + 1) and all r > 0. This follows from [DI87, Corollary 2.8] since Y is smooth
and admits a lift to W2(k) by assumption. �

Definition 2.1.5. [ABM21, Defintion 5.4] A Kodaira pair is an n-dimensional projective syntomic
k-scheme Y and an ample line bundle L such that RΓ(Y,∧sLY/k ⊗ L) ∈ D≥n−s(k) for all s > 0
and all r > 0.

Remark 2.1.6. If L is an ample line bundle on a projective syntomic k-scheme Y , then (Y,L⊗d)
is a Kodaira pair for a sufficiently large d. This follows from Serre vanishing and the fact that
∧sLY/k ∈ D[−s,0](Y ); see [Sta21, Tag 08SL] and [Lur18, Proposition 25.2.4.1, 25.2.4.2].

Theorem 2.1.7. [ABM21] Let Y be a syntomic k-scheme of pure dimension d + 1, and let L be
an ample line bundle on Y . Then there exists some integer n0 such that for all n ≥ n0 and any
effective Cartier divisor X ⊂ Y defined by a section1 of Ln, the morphism X → Y is a Hodge
d-equivalence.

Proof. This follows from [ABM21, Proposition 5.7] and Remark 2.1.6. �

Definition 2.1.8. An effective Cartier divisor X ⊂ Y in a projective k-scheme of pure dimension
d+ 1 is sufficiently ample if X → Y is a Hodge d-equivalence and Y −X is an affine open in Y .

Remark 2.1.9. Theorem 2.1.7 implies that, for every ample line bundle L on Y , there is an integer
n0 such that for all n ≥ n0 and any effective Cartier divisor X ⊂ Y defined by a section of Ln, the
morphism X → Y is sufficiently ample. This explains why we chose such a name.

By Theorem 2.1.4, any ample Cartier divisor in a smooth projective variety Y is sufficiently
ample in either of the following situations:

(1) the ground field k is of characteristic 0;

(2) the ground field k is of characteristic p > 0, dimY ≤ p, and Y admits a lift over W2

(
k
)
.

Theorem 2.1.10. [ABM21, Proposition 5.10] Let f : X → Y be a Hodge d-equivalence of syntomic
k-schemes.

(1) For any syntomic k-scheme Z, X ×k Z → Y ×k Z is a Hodge d-equivalence.

(2) If an affine finite type k-group scheme G acts on X and Y making f into a G-equivariant
morphism, then the natural morphism of syntomic k-stacks [X/G] → [Y/G] is a Hodge
d-equivalence.

2.2. Zp(i) and µp coefficients. In this section, we prove the Lefschetz hyperplane theorem for
µp-cohomology groups for Hodge d-equivalences over a perfect field. More generally, we show it for
Zp(i)-cohomology groups for all i ≥ 0.

For the rest of the section, we fix a perfect field k of characteristic p > 0.

Theorem 2.2.1. Let X → Y be a Hodge d-equivalence of syntomic k-schemes. Then for every
i ≥ 0, the cone

C := cone (RΓsyn (Y,Zp (i))→ RΓsyn (X,Zp (i)))

lies in D≥d(Zp) and Hd(C) is torsion-free.

1i.e., an effective Cartier divisor such that O(X) ' Ln

https://stacks.math.columbia.edu/tag/08SL
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We will give a proof shortly, but before doing so we discuss its main application for our purposes.

Corollary 2.2.2. Let Y a projective syntomic k-scheme, X ⊂ Y a closed subscheme of dimension
d, and G a finite flat commutative k-group scheme. Then the cone

C := cone (RΓsyn (Y,Zp (i))→ RΓsyn (X,Zp (i)))

lies in D≥d(Zp) with Hd(C) torsion-free for i ≥ 0 if

(1) Y ∼= PN
k for some N and X is a global complete intersection, or

(2) X ⊂ Y is a sufficiently ample Cartier divisor (see Definition 2.1.8).

Proof. In the first case, the map X → Y is a Hodge d-equivalence by Theorem 2.1.4, and in the
second case this map is a Hodge d-equivalence by definition.

Thus the claim for the cohomologies of Zp(i) follows from Theorem 2.2.1. The same result
guarantees that

cone ([RΓsyn (Y,Zp (1)) /p]→ [RΓsyn (X,Zp (1)) /p]) ∈ D≥d(Fp).

Now [BL22, Proposition 8.4.13] and [Gro68b] imply that

[RΓsyn (Y,Zp (1)) /p] ' [RΓét(Y,Gm)/p] [−1]

' [RΓfppf(Y,Gm)/p] [−1]

' RΓfppf(Y, µp)

and similarly for X. Combining these observations, we conclude that

cone (RΓfppf(Y, µp)→ RΓfppf(X,µp)) ∈ D≥d(Fp),

as desired. �

Now we go to the proof of Theorem 2.2.1. The main idea of the proof is to deduce it through a
series of reduction from Theorem 2.1.4.

Lemma 2.2.3. Let X ⊂ Y be a Hodge d-equivalence of syntomic k-schemes. Then, for any i ≥ 0,
the cone

cone
(
FiliNRΓcrys (Y/W (k))→ FiliNRΓcrys (X/W (k))

)
lies in D≥d(Zp) and Hd(C) is torsion-free.

Proof. We argue by induction on i ≥ 0. The case of i = 0 is clear from Lemma 2.1.3 since
Fil0NRΓcrys(−/W (k)) ' RΓcrys(−/W (k)).

Now fix i ≥ 0 and suppose we know the claim for i. Now we use [BL22, Theorem 4.6.1 and
Warning 4.6.2] to get an isomorphism

F ∗RΓ�(X/W (k)) ' RΓcrys(X/W (k))

of the frobenius twist of prismatic cohomology relative to the perfect prism (W (k), (p)) and crys-
talline cohomology relative to the standard pd-structure on W (k). Using a canonical isomorphism

RΓcrys(X/W (k))⊗LW (k) k ' RΓdR(X/k),

[BL22, Proposition 5.1.1, Remark 5.1.2]2, and a Zp-linear (but not W (k)-linear) identification

(F ∗)−1Filconj
i RΓdR(X/k) ' Filconj

i RΓdR(X/k)

2We note that the Breuil-Kisin twists can be canonically trivialized for the prism (W (k), (p))
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we get commutative diagram of exact triangles in D(Zp):

Fili+1
N RΓcrys (Y/W (k)) FiliNRΓcrys (Y/W (k)) Filconj

i RΓdR(Y/k)

Fili+1
N RΓcrys (X/W (k)) FiliNRΓcrys (X/W (k)) Filconj

i RΓdR(X/k).

φi mod p

φi mod p

Denote by C, C ′, and C ′′ cones of the left, middle, and right vertical maps respectively. Lemma 2.1.3
gives that C ′′ ∈ D≥d(k) and the induction hypothesis gives that C ′ ∈ D≥d(W (k)) with Hd(C ′)
torsion-free. This formally implies that C ∈ D≥d(W (k)) and that Hd(C) is torsion-free. �

Now we are ready to prove Theorem 2.2.1.

Proof of Theorem 2.2.1. Firstly, we note that [BL22, Theorem 5.6.2, Variant 7.4.12], and the con-
siderations as in the proof of Lemma 2.2.3 imply that we have the following commutative diagram
of exact triangles:

RΓsyn (Y,Zp(i)) FiliNRΓcrys (Y/W (k)) RΓcrys(Y/W (k))

RΓsyn (X,Zp(i)) FiliNRΓcrys (X/W (k)) RΓcrys(X/W (k)).

φi−1

φi−1

Now, as in the proof of Lemma 2.2.3, we see that it suffices to prove the claim for RΓcrys(−/W (k))

and FiliNRΓcrys(−/W (k)) separately. The first case is done in Lemma 2.1.3 and the second one in
Lemma 2.2.3. �

2.3. µ` coefficients. In this section, we give a proof of the Lefschetz hyperplane theorem for µ`-
coefficients in the generality we will need later. The proof is probably well-known to the experts,
but it seems hard to extract from the literature. The main difficulty is that we do not require the
ambient space Y to be smooth, but only syntomic.

For the rest of the section, we fix a separably closed field k (possibly of characteristic 0) and a
prime number ` not equal to the characteristic of k.

We recall that there is a well-behaved theory of perverse F`-sheaves on finite type k-schemes;
see [BBD82, Intro to Ch. 4] or [BH21, §4]3 for a more detailed discussion. We only mention two
main results that we will need in this section.

Lemma 2.3.1. Let X a finite type k-scheme of pure dimension d. Then

(1) the sheaf µ`[d] is a perverse sheaf on X if X is k-syntomic;

(2) for a perverse F`-sheaf L, the complex RΓc(Xét,L) lies in D≥0(F`) if X is affine.

Proof. The first claim is [Ill03, Corollaire 1.4]. The second statement is [Ill03, Théorème 2.4] or
[BBD82, Théorème 4.1.1]. �

Theorem 2.3.2. Let Y be a syntomic projective k-scheme of pure dimension d+1, and let X ⊂ Y
be an ample Cartier divisor. Then the cone

cone (RΓét(Y, µ`)→ RΓét(X,µ`))

lies in D≥d(F`).

3This is written for rigid-analytic spaces, but similar (and, in fact, easier) proofs work in the algebraic situation.
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Proof. Denote the complement of X in Y by U . Then we have an exact triangle

RΓc(Uét, µ`)→ RΓét(Y, µ`)→ RΓét(X,µ`).

By Lemma 2.3.1, µ`[d + 1] is a perverse sheaf on U . Therefore the same lemma implies that
RΓc(Uét, µ`) ∈ D≥d+1(F`) finishing the proof. �

2.4. Finite flat commutative group scheme coefficients. In this section, we prove the general
version of the Lefschetz hyperplane theorem. The strategy is to reduce the general case to the cases
of finite flat group schemes G = µ`, µp, αp, and Z/p, and deal with each case separately.

Lemma 2.4.1. Let k be a perfect field of characteristic p > 0, X → Y a Hodge d-equivalence of
syntomic k-schemes, and G a commutative finite flat k-group scheme with a finite filtration Fil•G
such that all griG are isomorphic to µp, αp, or Z/p. Then

C := cone (RΓfppf (Y,G)→ RΓfppf (X,G)) ∈ D≥d(Z).

Proof of Lemma 2.4.1. One easily reduces to the case G = µp, G = αp, or G = Z/p. The first case
is just Theorem 2.2.1. In the second case, one uses the short exact sequence

0→ αp → Ga
f 7→fp−−−−→ Ga → 0

to reduce the claim to Theorem 2.1.4. In the last case, one uses the sequence

0→ Z/p→ Ga
f 7→fp−f−−−−−→ Ga → 0

to reduce to Theorem 2.1.4 again. �

Corollary 2.4.2. Let k be a perfect field of characteristic p > 0, f : X → Y be a morphism of
quasi-compact, quasi-separated k-schemes, and G a commutative finite flat k-group scheme such
that

(1) Y = limI Yi is a cofiltered limit of syntomic quasi-compact quasi-separated k-schemes with
affine transition maps Yi → Yj for i > j;

(2) there is i0 ∈ I, a syntomic quasi-compact quasi-separated k-scheme Xi0 , and a morphism
fi0 : Xi0 → Yi0 such that fi0 ×Yi0 Y : Xi0 ×Yi0 Y → Y is isomorphic to f : X → Y (in

particular, Xi0 ×Yi,0 Y ' X);

(3) for each i ≥ i0, the fiber product fi : fi0 ×Yi0 Yi : Xi0 ×Yi,0 Yi → Yi is a Hodge d-equivalence
of syntomic k-schemes;

(4) there is a finite filtration Fil•G such that all griG are isomorphic to µp, αp, or Z/p.

Then

C := cone (RΓfppf (Y,G)→ RΓfppf (X,G)) ∈ D≥d(Z).

Proof. For brevity, we denote the fiber product Xi0 ×Yi0 Yi by Xi. Then X = limXi, so a standard

approximation result (similar to [Fu11, Proposition 5.9.2])) implies that the natural morphism

hocolimi≥i0 RΓfppf(Xi, G)→ RΓfppf(X,G)

is an equivalence (and the same for Yi and Y ). Since D(Z) is closed under (homotopy) colimits, it
suffices to show that

RΓfppf(Yi, G)→ RΓfppf(Xi, G)

has cone in D≥d(Z). This follows from Lemma 2.4.1. �
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Corollary 2.4.3. Let k be any field of characteristic p > 0, X → Y a Hodge d-equivalence of
syntomic k-schemes, and G a commutative finite flat k-group scheme of order pm for some m.
Then

C := cone (RΓfppf (Y,G)→ RΓfppf (X,G)) ∈ D≥d(Z).

Proof of Corollary 2.4.3. Theorem 2.1.10 guarantees that all morphisms

Xn := X
k
⊗kn → Yn := Y

k
⊗kn

fit into the assumption of Corollary 2.4.2. Therefore, we see that we have a commutative diagram

RΓfppf(Y,G) R limn∈∆ (RΓfppf(Yn, G))

RΓfppf(X,G) R limn∈∆ (RΓfppf(Xn, G))

whose horizontal arrows are isomorphisms by Lemma B.1.

Note that Gk has a filtration with associated graded pieces being equal to µp, αp, or Z/p, by
the classification of commutative finite group schemes of p-power order over an algebraically closed
field. Therefore, we conclude that each map

RΓfppf(Yn, G)→ RΓfppf(Xn, G)

has cone Cn ∈ D≥d(Z) by Corollary 2.4.2. Therefore, the cone of the map

RΓfppf(Y,G)→ RΓfppf(X,G)

is equal to R limn∈∆(Cn) ∈ D≥d(Z). �

Corollary 2.4.4. Let k be a field of characteristic p > 0, Y a k-syntomic scheme of dimension
d + 1, X ⊂ Y be a sufficiently ample Cartier divisor, and G a commutative finite flat k-group
scheme of order pm for some m. Then

C := cone (RΓfppf (YS , G)→ RΓfppf (XS , G)) ∈ D≥d(Z)

for any syntomic k-scheme S.

Proof. The closed embedding X → Y is a Hodge d-equivalence by definition. Then XS → YS is
a Hodge d-equivalence by Theorem 2.1.10. Moreover, both XS and YS are syntomic over k be-
cause syntomic morphisms are closed under pullbacks and compositions. Therefore, Corollary 2.4.3
implies the claim. �

Theorem 2.4.5. Let k be a field, Y a projective syntomic k-scheme, X ⊂ Y a closed subscheme
of dimension d, and G a finite flat commutative k-group scheme. Then the cone

cone (RΓfppf (Y,G)→ RΓfppf (X,G))

lies in D≥d(Z) if

(1) Y ∼= PN
k for some N and X is a global complete intersection, or

(2) X ⊂ Y is a sufficiently ample Cartier divisor.

Proof. Suppose that k is a field of characteristic p ≥ 0 and consider the short exact sequence

0→ G[p∞]→ G→ G/G[p∞]→ 0.

The group G′ := G/G[p∞] is a p-torsion-free finite étale commutative k-group scheme. Therefore,
it suffices to prove the claim separately for a p-power torsion G[p∞] and for a p-torsion-free étale
G′.
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In the case of a p-torsion-free étale group scheme, the claim follows from Theorem 2.3.2. Firstly,
we reduce to the case of a separably closed field k by writing

RΓfppf

(
−, G′

)
' RΓét

(
−, G′

)
' RΓcont(Gk,RΓét((−)ksep , G

′)).

In this case, we can find a filtration of G′ by finite étale group subschemes with associated graded
pieces equal to µ`. Therefore, it suffices to prove the claim for G = G′ = µ` and k a separably closed
field. Now if X ⊂ Y is a sufficiently ample Cartier divisor, the claim follows from Theorem 2.3.2. If
X ⊂ Y = PN

k is a global complete intersection, then write X → Y as a composition of immersions
of ample Cartier divisors and apply Theorem 2.3.2 to each of those immersions.

Now we assume that G = G[p∞] is a p-power torsion flat commutative k-group scheme, and we
may assume p > 0. Then X → Y is a Hodge d-equivalence if it is a sufficiently ample Cartier
divisor (by definition), and it is a Hodge d-equivalence in case of a global complete intersection due
to Theorem 2.1.4. Therefore, the claim follows from Corollary 2.4.3. �

Example 2.4.6. ([BH07, §2], [Lan11, Ex. 10.1]) Let k be a perfect field of characteristic p > 0,
and X ⊂ Y an ample Cartier divisor such that

(1) X and Y are smooth and connected;

(2) Y is of pure dimension d ≥ 2;

(3) H1(Y,OY (−X)) 6= 0. (For examples of such pairs with d = 2, see [Eke88, Proposition
2.14]4.)

Then H1
fppf(Y, αp)→ H1

fppf(X,αp) is not injective. In particular,

cone(RΓfppf(Y, αp)→ RΓfppf(Y, αp))

does not lie in D≥d(Z).

Proof. Our assumptions on X and Y imply that

H0(X,OX) ' H0(Y,OY ) ' k.
Therefore, the map H1(Y,OY (−X))→ H1(Y,OY ) is injective. So any non-trivial class in H1(Y,OY (−X))
defines a non-trivial class x ∈ H1(Y,OY ) such that x|X = 0 ∈ H1(X,OX). We claim that
(FnY )∗(x) = 0 for some n ≥ 0. Indeed, by functoriality, (FnY )∗(x) lies in

H1(Y,OY (−((FnY )∗X))) = H1(Y,OY (−pnX)) = 0

for large n� 0.

We replace x with (Fn−1
Y )∗(x) to assume that F ∗Y (x) = 0. Since F ∗Y and F ∗X are bijective on

H0(Y,OY ) and H0(X,OX) respectively, we may use the short exact sequence

0→ αp → Ga
F ∗−−→ Ga → 0,

to conclude that
H1

fppf(Y, αp) ' ker(F ∗Y : H1(Y,OY )→ H1(Y,OY ))

and the same for X. In particular, H1
fppf(Y, αp) → H1(Y,OX) is injective (and the same for X).

Therefore, x (uniquely) defines a non-trivial class in H1
fppf(Y, αp) that lies in the kernel of the

restriction map
H1

fppf(Y, αp)→ H1
fppf(X,αp).

In particular, cone(RΓfppf(Y, αp)→ RΓfppf(Y, αp)) does not lie in D≥d(Z). �

4We do not know if there are such examples of higher dimension.
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Recall that if G is a locally constant constructible sheaf of F`-modules on Yét with ` 6= char k,
then the Lefschetz hyperplane theorem holds for G if Y is smooth. One may wonder if there is
an analogous result for flat coefficients. We do not know whether there is any result like this,
and in general we do not know the correct coefficient theory for flat cohomology. In any event,
Theorem 2.4.5 is false if one does not assume that G comes from a base field, as the following
example shows.

Example 2.4.7. Let k be any field of characteristic p > 0. Then, for any N > 1, there is a
commutative finite flat rank p group scheme G on PN

k such that

(1) Zariski-locally on PN
k , G is defined over k,

(2) for any hyperplane H ⊂ PN
k , the cone

cone
(
RΓfppf

(
PN
k , G

)
→ RΓfppf (H,G)

)
does not lie in D≥N−1(Z).

Proof. Let Ga(n) be the PN -group scheme associated with the line bundle O(n). Then we define
G = ker(Fr : Ga(1) → Ga(p)). It is clear that, Zariski locally on PN , G is isomorphic to αp. In
particular, it is defined over the ground field k.

Now using that Hi
fppf(P

N
k ,Ga(n)) = Hi(PN

k ,O(n)), Serre’s calculation of cohomology groups of

O(n), and the short exact sequence

0→ G→ Ga(1)→ Ga(p)→ 0,

we conclude that

dimk H1
fppf(P

N
k , G) =

(
N + p

N

)
−N − 1

dimk H1
fppf(H,G) = H1

fppf(P
N−1
k , G) =

(
N + p− 1

N − 1

)
−N.

In particular, the map H1
fppf(P

N
k , G) → H1

fppf(H,G) can not be injective by dimension reasons.

Therefore, the cone C cannot lie in D≥N−1 for any N > 1. �

Question 2.4.8. Let X ⊂ PN
k be a complete intersection of dimension at least 2, and G a finite

(not necessarily commutative) k-group scheme. Is the natural morphism H1(PN
k , G)→ H1(X,G) a

bijection? The same question may be asked for X ⊂ Y a sufficiently ample Cartier divisor (possibly
with a different definition of “sufficiently ample”).

Remark 2.4.9. If both X, Y are smooth and the ground field k is algebraically closed, Ques-
tion 2.4.8 has a positive answer. This follows from the Lefschetz type result for Nori’s fundamental
group (see [BH07, Theorem 1.1])

2.5. The torsion part of the Picard scheme. In this section, we use the results of Section 2.2
and Section 2.3 to get a Lefschetz hyperplane theorem for the torsion part of Picard group. We
show that, for a complete intersection X ⊂ PN

k scheme of dimension at least 2, the torsion part of
the Picard group Pic(X)tors and the torsion component PicτX/k vanish. We also give a version of

this result for a general sufficiently ample divisor.

IfX is of dimension at least 3, Grothendieck proved the stronger result that Pic(X) ' Z in [SGA2,
Exp. XII, Corollaire 3.2] which can be also used to deduce that PicX/k ' Z as k-group schemes.
These results are sharp in the sense that the whole Picard group Pic(X) may not be isomorphic to
Z if dimX = 2. For instance, the Segre embedding realizes P1

k ×P1
k as a hypersurface in P3

k, but
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Pic(P1
k ×P1

k) ' Z⊕ Z. However, it turns out that one can still control the torsion part of Picard
group in dimension 2. If X is a smooth surface and k is algebraically closed, then these results
were established in [SGA7II, Exp. XI, Th. 1.8]. The general case was proven in [CS21, Corollary
7.2.3] by different methods.

For the rest of the section, we fix a field k of arbitrary characteristic.

Theorem 2.5.1. Let X ⊂ PN
k be a complete intersection of dimension at least 2. Then

(1) Pic(X)tors = 0;

(2) the group scheme PicτX/k is trivial;

(3) the class of OX(1) = i∗OPN (1) is a non-divisible element of Pic(X).

Proof. For the first point, it suffices to show that Pic(X)[p] = 0 for all prime numbers p. Using the
Kummer exact sequence (in the fppf topology)

0→ µp → Gm → Gm → 0,

we see that it suffices to show that H1
fppf(X,µp) = 0. If p is equal to the characteristic of k, the

claim follows from Corollary 2.4.3 and Theorem 2.1.4. If p is different from the characteristic of k,
it follows from Theorem 2.3.2.

Now we show the second point. Recall that the Picard functor PicX/k is (representable by) a
locally finite type k-group scheme by [SGA6, Exp. XII, 1.5] and the functorial criterion for local
finite presentation. By [SGA6, Exp. XIII, 4.7], PicτX/k is an open subfunctor of PicX/k, so we have

an isomorphism of tangent spaces

Te(PicτX/k) = Te(PicX/k) ' H1(X,OX).

Since X is a complete intersection in PN
k of dimension ≥ 2, we have H1(X,OX) = 0 by Theo-

rem 2.1.4, and hence PicτX/k is etale. Thus we need only show that PicτX/k(k) = 0.

Since the Picard functor commutes with base change, we can assume that k is algebraically
closed. In particular, X has a rational point. Therefore, PicX/k(k) = Pic(X) is the group of
isomorphism classes of line bundles on X. Thus in fact we need to show that Pic(X)tors = 0, which
was already shown above.

Now we show that [OX(1)] ∈ Pic(X) is non-divisible. It suffices to show that this class has
non-zero image in Pic(X)/p. Consider the first Chern class

cX1 : Pic(X)/p→ H2
fppf(X,µp)

which comes from the Kummer exact sequence

0→ µp → Gm → Gm → 0.

By definition, cX1 is injective, so it is enough to show that cX1 ([OX(1)]) 6= 0 in H2
fppf(X,µp). The

commutative square

Pic(PN
k )/p H2

fppf(P
N
k , µp)

Pic(X)/p H2
fppf(X,µp).

resPic

cP
N

1

resfppf

cX1

shows that we have

cX1 ([OX(1)]) = cX1 (resPic([OPN (1)])) = resfppf(cP
n

1 ([OPN (1)])). (2.1)
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We know that cP
N

1 ([OPN (1)]) is non-zero because OPN (1) is a generator of Pic(PN
k ) ' Z, and

resfppf is injective by Corollary 2.2.2 or Theorem 2.3.2 depending on whether p is equal to the
characteristic of k. �

Our next aim is to prove an analogue of Theorem 2.5.1 for sufficiently ample divisors. Specifically,
we have the following statement.

Theorem 2.5.2. Let Y be a projective syntomic k-scheme of dimension d ≥ 3, and let X ⊂ Y be
a sufficiently ample Cartier divisor. The natural map PicτY/k → PicτX/k is an isomorphism.

The derivation of this is slightly more involved than in the previous case, and we must begin with
a series of general results about algebraic groups. We begin with the following folkloric lemma,
which is implicit in some of the arguments of this section.

Lemma 2.5.3. Let S be a scheme, and let f : G → H be a homomorphism of finitely presented
S-group schemes. The following are equivalent.

(1) f is faithfully flat,

(2) f is an epimorphism of fppf sheaves and ker f is flat.

Proof. Note that in any case we have G ×H G ∼= G ×S ker f as G-schemes via the map (g, g′) 7→
(g, g−1g′), which has inverse (g, k) 7→ (g, gk). In particular, f becomes a trivial ker f -torsor after
base change along f . Now if f is fppf, we see that it admits a section fppf-locally. To check that f
is an epimorphism of fppf sheaves, it is enough to check after fppf base change, and this property
is clear when f admits a section. Moreover, ker f is clearly flat by base change.

Conversely, suppose that f is an epimorphism of fppf sheaves and ker f is flat. The epimorphism
property implies that there is some fppf cover X → H such that G ×H X → X admits a section.
Since f becomes a trivial ker f -torsor after base change along f , it is also a trivial torsor after base
change along G ×H X → H, and hence also along X → H. Thus f is an fppf ker f -torsor, and
since ker f is flat it follows that f is faithfully flat. �

Lemma 2.5.4. Let G be a commutative group scheme locally of finite type over a field k, and let
H be a finite type closed k-subgroup scheme of G. Let n be a positive integer. For each M ≥ 1,
there exists a closed subgroup scheme GM of G killed by some power of n such that the natural
map

GM → G/H

factors through (G/H)[nM ] and such that the factored map is faithfully flat. (Note that G/H
exists as a group scheme by [SGA3, VIA, 3.2].)

Proof. Fixing the positive integer M , we may replace G by the schematic preimage of (G/H)[nM ] in
G to assume that G/H is nM -torsion. Consider for any N the commutative diagram of commutative
locally finite type k-group schemes

0 H G G/H 0

0 H G G/H 0

nN nN nN

with exact rows. By the snake lemma, this gives an exact sequence of group schemes

G[nN ]→ (G/H)[nN ]→ H/nNH → G/nNG.
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So it suffices to show that there is some N ≥M such that H/nNH → G/nNG is a monomorphism.
Equivalently, one must show that there is some N ≥M such that

H ∩ nNG = nNH.

To prove the existence of some such N , note that the sequence {nNH} of closed k-subgroup
schemes of H is decreasing, so the fact that H is noetherian (being finite type over k) implies that
there exists some N0 such that nN0H = nN0+1H. Since G/H is nM -torsion, we have

H ∩ nN0+MG ⊂ nN0H = nN0+MH

by choice of N0. Thus taking N = N0 +M completes the proof. �

Lemma 2.5.5. Let G be a commutative group scheme locally of finite type over an algebraically
closed field k of characteristic p ≥ 0.

(1) The natural map G(k)tors → (G(k)/G0(k))tors is surjective.

(2) There exists some integer N ≥ 1 such that the natural map G[pN ] → G/Gred is faithfully
flat.

(3) If G is smooth, p > 0, and G/G0 is torsion (e.g., G is of finite type over k), then the set
G(k)tors is schematically dense in G.

Proof. For the first point, we may evidently replace G by the preimage of (G/G0)tors in G to assume
that G/G0 is torsion. Note that it suffices to show that for every integer n ≥ 1, the natural map
G(k)[n∞] → (G(k)/G0(k))[n∞] is surjective, and this follows from Lemma 2.5.4. (Recall that G0

is of finite type over k since it is a connected group scheme locally of finite type.)

For the second point, there is nothing to prove if p = 0. If instead p > 0, then G/Gred is a finite
k-group scheme whose order is a power of p. By a theorem of Deligne [TO70, Sec. 1], G/Gred is
killed by its order, so the result follows again from Lemma 2.5.4.

Finally we consider the third point. By the first point of this lemma, we may and do reduce to
the case that G is connected, in which case we will show that if ` 6= p is any prime number then
G(k)[(`p)∞] is schematically dense in G. By a theorem of Chevalley [Con02], since k is perfect
there is a short exact sequence

0→ H → G→ A→ 0,

where H is a linear algebraic group over k and A is an abelian variety over k. Moreover, since H is a
commutative linear algebraic group over a perfect field, we have H = T ×U for some k-torus T and
a smooth commutative unipotent k-group scheme U . It is standard that T (k)[`∞] and A(k)[`∞]
are schematically dense in T and A, respectively, and U = U [pM ] for some M ≥ 1. (This is where
we use that p > 0; in characteristic 0, Ga has no torsion.)

Let G0 denote the schematic closure of G(k)[(`p)∞] in G, so that G0 is a smooth closed k-
subgroup scheme of G. We aim to show that G0 = G. Every connected commutative finite type
k-group scheme is `-divisible, so by Lemma 2.5.4 we see that the natural map G(k)[`∞]→ A(k)[`∞]
is surjective. By schematic density of A(k)[`∞] in A, it follows that the induced map G0 → A is
dominant, hence surjective by [SGA3, VIB, 1.2]. It suffices therefore to show that H is contained in
G0. But H(k)[(`p)∞] is schematically dense in H, so indeed H ⊂ G0 and so G0 = G, establishing
the result. �

Lemma 2.5.6. Let f : G→ H be a homomorphism of commutative group schemes locally of finite
type over an algebraically closed field k of characteristic p ≥ 0. Suppose that G/G0 and H/H0 are
torsion, and suppose
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• f [`n](k) : G[`n](k) → H[`n](k) is an isomorphism of groups for every prime number ` and
every positive integer n,
• Lie f : LieG→ LieH is an isomorphism,
• if p > 0, then f [pn] : G[pn]→ H[pn] is faithfully flat for every positive integer n.

Then f is an isomorphism.

Proof. The second bullet shows that ker f is finite etale, and so the first point implies that ker f = 0.
Thus f is a closed embedding by [SGA3, VIB, 1.4.2]. Moreover, the first point of Lemma 2.5.5
shows that the image of f intersects each connected component of H nontrivially. If p = 0 then G
and H are smooth, so f is an isomorphism. Thus we may and do assume from now on that p > 0.

Let G = G/Gred (which exists as a scheme by [SGA3, VIA, 3.2]) and consider the commutative
diagram

0 Gred G G 0

0 Hred H H 0

fred f f

with exact rows. Since p > 0 and f is surjective on torsion, the third point of Lemma 2.5.5 shows
that f is dominant, and thus it is surjective by [SGA3, VIB, 1.2]. Now Gred and Hred are both
smooth over k, so because f is a surjective closed embedding it follows that fred is an isomorphism.
Thus to show that f is an isomorphism, it suffices to show that f is an isomorphism.

Now by the second point of Lemma 2.5.5, there is some integer N ≥ 1 such that the natural
maps G[pN ]→ G and H[pN ]→ H are faithfully flat. Thus we find a commutative diagram

0 Gred[pN ] G[pN ] G 0

0 Hred[pN ] H[pN ] H 0

fred[pN ] f [pN ] f

with exact rows. By assumption, f [pN ] is faithfully flat, so it is an isomorphism since ker f = 0.
The previous paragraph shows that fred[pN ] is an isomorphism, so also f is an isomorphism. Since
both fred and f are isomorphisms, we see that f is an isomorphism, as desired. �

Proof of Theorem 2.5.2. We may and do assume that k is algebraically closed of characteristic p ≥
0. We need only verify the hypotheses of Lemma 2.5.6 applied to G = PicτY/k and H = PicτX/k. The

second bullet follows from the fact that the natural map H1(Y,O) → H1(X,O) is an isomorphism
by definition of sufficient ampleness. For the first bullet, we note that if ` is a prime number then
PicτY/k[`

n](k)→ PicτX/k[`
n](k) is an isomorphism. Indeed, the map

H1(Y, µ`n)→ H1(X,µ`n)

is an isomorphism by Theorem 2.3.2. Moreover, the `n-power map H0(Y,Gm) → H0(Y,Gm) is
surjective because ` is invertible in the algebraically closed field k and H0(Y,Gm) is the group of
units in the finite k-algebra H0(Y,O). Thus from the exact sequence

H0(Y,Gm)→ H0(Y,Gm)→ H1(Y, µ`n)→ Pic(Y )[`n]→ 0

we see that H1(Y, µ`n) ∼= Pic(Y )[`n]. The same reasoning applies to X in place of Y , so we see that
the map Pic(Y )[`n]→ Pic(X)[`n] is an isomorphism.
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Finally, we must check that if p > 0 then f : PY,n := PicτY/k[p
n] → PX,n := PicτX/k[p

n] is

faithfully flat for all n. For any syntomic k-scheme S, consider the commutative diagram

H0(YS ,Gm) H1(YS , µpn) Pic(YS)[pn] 0

H0(XS ,Gm) H1(XS , µpn) Pic(XS)[pn] 0

with exact rows. The leftmost vertical arrow is an isomorphism by definition of sufficient ampleness
and the fact that H0(YS ,Gm) = H0(YS ,O)∗ (and similarly for XS). The second vertical arrow is
an isomorphism by Corollary 2.4.4, so the map Pic(YS)[pn]→ Pic(XS)[pn] is an isomorphism.

Now set S = PX,n, so that S is a syntomic k-scheme by Lemma A.2. Since X has a rational
point (k being algebraically closed) and Pic(PX,n) = 0 (PX,n being an extension of a finite k-
group scheme by a unipotent group scheme), we have PicX/k(PX,n) = Pic(XPX,n). Thus also
PX,n(PX,n) = PicτX/k[p

n](PX,n). Completely similar reasoning applies to PY,n(PX,n).

By the above, the natural map Pic(YPX,n)[pn]→ Pic(XPX,n)[pn] is an isomorphism. Thus by the
previous paragraph, PY,n(PX,n) → PX,n(PX,n) is an isomorphism, and thus there is a morphism
g : PX,n → PY,n such that f ◦ g = idPX,n . Therefore f is an epimorphism of fppf sheaves. The
hypotheses of Lemma 2.5.6 are now seen to hold, so PicτY/k → PicτX/k is an isomorphism. �

Corollary 2.5.7. Let Y be a projective syntomic k-scheme of dimension d ≥ 4, and let X ⊂ Y be
a sufficiently ample Cartier divisor. The natural map PicY/k → PicX/k is an isomorphism.

Proof. In view of Theorem 2.5.2, we see that PicτY/k → PicτX/k is an isomorphism. Considering

the commutative diagram

0 PicτY/k PicY/k NS(Y ) 0

0 PicτX/k PicX/k NS(X) 0

we see that it suffices to show that the natural map NS(Y ) → NS(X) is an isomorphism, and for
this it suffices to show that Pic(Y )→ Pic(X) is an isomorphism, a consequence of [SGA2, Exp. XII,
3.6] (whose hypotheses are satisfied because Y is syntomic and X is sufficently ample in Y ). �

Remark 2.5.8. It is not difficult to see that an example of a pair X ⊂ Y as in Example 2.4.6 with
d ≥ 3 (resp. d ≥ 4) would give an example of an ample divisor such that the map PicτY/k → PicτX/k
(resp. PicY/k → PicX/k) is not an isomorphism. If one additionally assumes that the natural map

H0(Y,Ω1
Y ) → H0(X,Ω1

X) is an isomorphism, then Pic(Y )[p] → Pic(X)[p] is not an isomorphism.
However, we are not aware of any such examples in the literature.

3. Examples

3.1. Weird deformations of commutative group schemes. The main goal of this section is
to construct an example of a finite flat commutative group scheme G over any discrete valuation
ring of equicharacteristic p > 0 with connected p-torsion special fiber Gs and etale non-p-torsion
generic fiber Gη. We will use such G to construct interesting smooth projective varieties X as in
the following theorem, usually called Godeaux-Serre varieties.
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Theorem 3.1.1. ([Ray79, Theorem 4.2.3] or [CZ] for a detailed exposition) Let S be a local scheme
and let G be a finite locally free S-group scheme. For any d ≥ 1, there is an S-flat relative complete
intersection Y of dimension d (inside of some relative projective space PN

S ) with a free S-action of
G such that the quotient X = Y/G is smooth and projective over S with geometrically connected
fibers. If d ≥ 2 then for such X we have PicτX/S

∼= G∨, where G∨ is the Cartier dual of G.

Proof. We only give some remarks on the hypotheses. In [CZ] it is assumed that G is commutative,
but this does not play a role in the proof of the above theorem. Regarding the final point, in
[CZ] it is shown that if π : Y → X is a G-torsor over S, then the kernel of the pullback map
π∗ : PicX/S → PicY/S is G∨. If Y is a complete intersection of dimension d ≥ 2, then PicτY/S = 0:

it suffices to check that the identity section e : S → PicτY/S is an isomorphism, and this may be

checked on fibers by the fibral isomorphism criterion. Thus this claim follows from Theorem 2.5.1,
and we see that PicτX/S

∼= G∨, as desired. �

For the rest of the section, we fix a discrete valuation ring R characteristic p > 0. In what
follows, we denote SpecR by S.

Before we start the construction of the desired group scheme G, we need to recall some basic
facts about supersingular elliptic curves.

Lemma 3.1.2. There is always a smooth family of elliptic curves f : E → S with supersingular
special fiber and ordinary generic fiber.

Proof. We note that there is always a supersingular elliptic curve Es over the residue field k(s).

If k(s) contains Fp2 , this is clear as any supersingular curve over k(s) is defined over Fp2 . In
general, this follows from [Brö09, Theorem 1.1] or [Wat69, Theorem 4.1]. We will show that this
always admits an ordinary deformation. At this point it is not difficult to conclude by considering
Weierstrass equations, but we offer the following different proof.

Now fix a supersingular elliptic curve Es and an integer N ≥ 3 not divisible by p, and let
Γ = Es[N ] denote the N -torsion subgroup of Es. We consider the moduli stack Y(Γ) whose fiber
over a k(s)-scheme T consists of those pairs (E, γ) with E an elliptic curve over S and γ : ΓT → E[N ]
an isomorphism of T -group schemes. If k′/k(s) is a finite separable extension splitting Γ, then we
note that Y(Γ) ⊗k(s) k

′ ∼= Y (N) is a smooth affine k′-scheme of dimension 1 with smooth regular
compactification X(N) [DR73, IV, Corollaire 2.9, Théorème 3.4]. In particular, Galois descent
shows that Y(Γ) is representable by a smooth affine k(s)-scheme Y (Γ). We recall that there are
well-known formulas for the genus of X(N) [DR73, VI, Section 4.2], and in particular X(N) is of
genus 0 if N ∈ {3, 4}.

Let X(Γ) be the regular compactification of Y (Γ), so that X(Γ)⊗k(s) k
′ ∼= X(N). It is clear that

X(Γ) is a smooth projective curve over k(s), and it has genus 0 if N ∈ {3, 4}. It follows that in
fact the k(s)-point corresponding to Es lies in a connected component of X(Γ) isomorphic to P1.
Thus Es lies in a connected component Y (Γ)0 of Y (Γ) which is an open subscheme of A1, and it
follows immediately that there is an R-point of Y (Γ)0 mapping the special point of R to Es and
mapping the generic point of R to the generic point of Y (Γ)0. Since there are only finitely many

isomorphism classes of supersingular elliptic curves over k(s), the generic point of Y (Γ) corresponds
to an ordinary elliptic curve. �

Lemma 3.1.3. Let E be a supersingular elliptic curve over a field k, and let H ⊂ E be a finite
subgroup scheme of order p2. Then H = E[p].

Proof. It suffices to check equality after base change to the algebraic closure of k, so we may and
do assume that k is algebraically closed.
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Since H is a commutative group scheme of order p2, we conclude that H = H[p2] ⊂ E[p2] is

connected. Therefore, the relative Frobenius morphism F : H → H(p) is nilpotent. We use that H
is of order p2 again to conclude that F 2 = 0. Therefore,

H ⊂ E[F 2] = ker(F 2 : E → E(p2)).

Both H and E[F 2] are finite group schemes of order p2. Therefore, the inclusion H ⊂ E[F 2] must
be an isomorphism. It is a classical result that E[F 2] = E[p] for any supersingular E. �

Now let f : E → S be a family of elliptic curves provided by Lemma 3.1.2. In particular, its
special fiber is supersingular, and its generic fiber is ordinary. We consider the subgroup

Hη :=
(
Eη[p

2]
)0 ⊂ Eη.

Since Eη is ordinary, we conclude that Hη ' µp2 . In particular, Hη is a commutative group scheme

of order p2 such that Hη 6= Gη[p].

We define H to be the schematic closure of Hη inside E, which is clearly a finite flat commutative
group scheme over S. We define G to be the Cartier dual of H.

Lemma 3.1.4. Let G be the S-group scheme defined above. Then G is a finite flat commutative
S-group scheme of order p2 with connected p-torsion special fiber Gs and etale non-p-torsion generic
fiber Gη.

Proof. With notation as above, Hs is a finite group scheme of order p2 inside the supersingular
elliptic curve Es. Therefore Lemma 3.1.3 guarantees that Hs = Es[p]. Since Es[p] is self-dual, we
see that Gs ∼= E[p] as well, so in particular Gs is connected and p-torsion. Moreover, since Hη

∼= µp2

we see that Gη ∼= Z/p2Z, so Gη is etale and not p-torsion. �

3.2. First example. Jump of de Rham numbers. In this section we aim to give a relatively
elementary (if somewhat ad hoc) example of de Rham cohomology jumping, inspired by [Ray79,
Section 4.2].

For the rest of the section, we fix an R-group scheme G from Lemma 3.1.4. By construction
Gη ' Z/p2Z, so there is a generically finite extension of discrete valuation rings R ⊂ R′ such that
GFrac(R′) ' Z/p2Z. For the rest of the section, we replace R with R′ and assume that Gη ' Z/p2Z.

Let U be the subgroup of SL3(Z/p2Z) consisting of strictly upper-triangular matrices, so that U
is a non-split extension of Z/p2Z by (Z/p2Z)2. A section of G(R) = Gη(k(η)) of order p2 defines
a morphism Z/p2Z → G which is an isomorphism on the generic fiber and the zero map on the
special fiber. Form the pushout H of the diagram

0 Z/p2Z U (Z/p2Z)2 0

0 G H (Z/p2Z)2 0

where the rightmost vertical map is the identity. The generic fiber of H satisfies Hη
∼= Uη, whereas

the special fiber satisfies Hs
∼= Gs × (Z/p2Z)2.

By Theorem 3.1.1, there exists a smooth projective R-scheme X with fibers of pure dimension 2
such that PicτX/k is isomorphic to the Cartier dual H∨. In fact, we may find X as the quotient of a

complete intersection Y by a free action of H. Beware that in the non-commutative case (as above),
H∨ is not generally flat over R. In fact, in our setting we note that (H∨)s = (Hs)

∨ = Gs × µ2
p2

(since G is self-dual), whereas (H∨)η = µ2
p2 , so indeed H∨ is not flat. We have the following result.
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Theorem 3.2.1. Let k be a field of characteristic p > 0, and let X → S be as above. We have
dimk(s) H1

dR(Xs/k(s)) > dimk(η) H1
dR(Xη/k(η)).

Proof. First, we note that both geometric fibers of H lift to the length-2 Witt vectors. Indeed,
the special fiber of H is Es[p]× (Z/p2Z)2 (which lifts since elliptic curves have no obstructions to
lifting), and the generic fiber of H is equal to U , a finite constant group scheme. Consequently
both geometric fibers of X lift to the length-2 Witt vectors: see the construction in [CZ, Section
3]. By [DI87, Corollaire 2.5], the Hodge-de Rham spectral sequences degenerate on both fibers in
degree 1, so that

H1
dR(Xt/k(t)) =

⊕
i+j=1

Hi(Xt,Ω
j
Xt/k(t))

where t ∈ {s, η} and k(t) is the residue field of t.

We now compute

H1(Xt,OXt) = TePicXt/k(t),

so that h0,1(Xs) = 3 and h0,1(Xη) = 2 via the above description of PicτXt/k(t). Moreover, since

Hη is etale, we see from the smoothness of X that Yη is also smooth. This shows that the map
H0(Xη,ΩXη/k(η)) → H0(Yη,ΩYη/k(η)) is injective, and the latter is 0 because Yη is a complete
intersection. Thus we find

dimk(η) H1
dR(Xη/k(η)) = 2,

whereas H1
dR(Xs/k(s)) contains H1(Xs,OXs), which is 3-dimensional over k(s). Thus the dimension

of H1
dR jumps from the generic fiber to the special fiber. �

3.3. Second example I. Jump of de Rham numbers. Stacks. The main goal of this section
is to construct a smooth and proper morphism f : X→ S of algebraic stacks such that the rank of
the first de Rham cohomology group of the fiber is not (locally) constant on the base.

The construction is quite easy. We take the base to be S = SpecR for some discrete valuation
ring R of equicharacteristic p > 0, and define our family to be f : BG→ S for G as in Lemma 3.1.4.

Our main tool to get control over H1
dR(BGt/k(t)) for t ∈ {η, s} is [Mon21, Theorem 1.2, Propo-

sition 3.14] that say that H1
crys(BG/W (k)) = 0 and H2

crys(BG/W (k)) ' M(G) where M(G) is the
Dieudonné module of G. Together with an isomorphism (see Section 1.2)

RΓcrys(BG/W (k))⊗LW (k) k ' RΓdR(BG/k),

we get that H1
dR(BG/k) 'M(G)[p], so the question boils down to computing Dieudonné modules

of geometric fibers.

Theorem 3.3.1. Let f : BG → S be classifying stack over S = SpecR for G coming from
Lemma 3.1.4. Then dimk(s) H1

dR(BGs/k(s)) = 2 and dimk(η) H1
dR(BGη/k(η)) = 1. In particu-

lar H1
dR is not (locally) constant on S.

Proof. Flat base change guarantees that

dimk(s) H1
dR(BGs/k(s)) = dimk(s) H1

dR(BGs/k(s)) and

dimk(η) H1
dR(BGη/k(η)) = dimk(η) H1

dR(BGη/k(η)),

where s and η are geometric points over s and η, respectively. Therefore, the discussion before the
theorem ensures that it suffices to show that dimk(η)M(Gη)[p] > dimk(s)M(Gs)[p].
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Now recall that Gt is of order p2 for t ∈ {η, s}. Therefore, both M(Gt) are W (k(t))-modules of
length 2. We want to compute these Dieudonne modules as W (k)-modules.

Now observe that M(Gs) must be p-torsion since Gs is so. The only p-torsion W (k(s))-module
is k(s)⊕ k(s). Therefore, M(Gs) ∼= k(s)⊕ k(s). In particular,

dimk(s) H1
dR(BGs/k(s)) = dimk(s)M(Gs)[p] = 2.

Now we recall that [Fon77, Chapitre III, Théorème 1] ensures that the Dieudonne functor M(−)

is an anti-equivalence between finite commutative group k((η))-schemes of order p2 and finite
Dieudonne modules of length p2. In particular, it implies that M(Gη) 6= M(Gη)[p]. Then the
classification of finite W (k(η))-modules implies that M(Gη) ∼= W2(k(η)). In particular,

dimk(η) H1
dR(BGη/k(η)) = dimk(η)M(Gη)[p] = 1.

�

3.4. Second example II. Jump of de Rham numbers. Schemes. In this section, we use
the approximation results from [ABM21] and [CZ] to approximate BG → S from Section 3.3 by
a smooth, projective family f : X → S with the same first de Rham cohomology of fibers. In
particular, it will give a smooth projective family over a connected S with nonconstant de Rham
numbers of fibers.

For the rest of the section, we fix S = SpecR for some discrete valuation ring R of equicharac-
teristic p > 0, and G a finite flat S-group scheme from Lemma 3.1.4.

Theorem 3.4.1. Let f : X → S be a smooth, projective morphism coming from Theorem 3.1.1
for G from Lemma 3.1.4 and d ≥ 2. Then H1

dR(Xs/k(s)) = 2 and H1
dR(Xη/k(η)) = 1.

Proof. Theorem 2.1.4 guarantees that the inclusion5 Yt → PN
k(t) is a Hodge d-equivalence for any

t ∈ {η, s}. Clearly the morphism PN
k(t) → Spec k(t) is a Hodge 2-equivalence. Therefore, the com-

position morphism Yt → Spec k(t) is a Hodge 2-equivalence as well. Finally, we use Theorem 2.1.10
to conclude that

Xt ' Yt/Gt ' [Yt/Gt]
6→ [Spec k(t)/Gt] = BGt

is a Hodge 2-equivalence. In particular, H1
dR(Xt/k(t)) = H1

dR(BGt/k(t))7 for any t ∈ {η, s}. �

Corollary 3.4.2. Let d be any integer bigger than 1, and R any discrete valuation ring of equichar-
acteristic p > 0. Then there is a smooth projective family f : X → SpecR with geometrically
connected fibers of pure dimension d such that

dimk(s) H1
dR(Xs/k(s)) > dimk(η) H1

dR(Xη/k(η)).

In particular, H2
dR(X/R) has non-trivial torsion.

Proof. The first part is simply Theorem 3.4.1. To see that H2
dR(X/R) has non-trivial torsion classes,

we first note that
RΓdR(X/R)⊗LR k(t) ' RΓdR(Xt/k(t))

for t ∈ {η, s}. Therefore, we see that

dimk(s) Hi
dR(Xs/k(s)) > dimk(η) Hi

dR(Xη/k(η))

5Use the notation from Theorem 3.1.1 for Y .
6Both isomorphisms follow from [SGA3, Exposé V, Théorème 4.1]. It is crucial that G acts freely on Y .
7Note that abstractly defined de Rham cohomology of k-syntomic stacks coincide with usual de Rham cohomology

for k-smooth schemes (see Section 1.2).
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if and only if Hi
dR(X/R) or Hi+1

dR (X/R) have non-trivial torsion classes.

Now note the Hodge-de Rham spectral sequence and [Sta21, Tag 0FW5] imply that

H0
dR(Xt/k(t)) ' H0(Xt,OXt) (3.1)

for t ∈ {η, s}. Since the fibers of f are geometrically integral, we conclude that

dimk(s) H0
dR(Xs/k(s)) = 1 = dimk(η) H0

dR(Xη/k(η)).

using Equation (3.1) and [Sta21, Tag 0FD2]. Therefore, none of H0
dR(X/R) and H1

dR(X/R) has
non-trivial torsion elements. However, there is a jump in H1

dR, so there must be non-trivial torsion
classes in H2

dR(X/R). �

Corollary 3.4.3. Let d be any integer bigger than 1, and k any field of characteristic p > 0.
Then there exist a k-smooth scheme S and a smooth projective family f : X → S with connected
geometric fibers of pure dimension d such that H2

dR(X/S) does not admit any stratification (see
[BO78, Definition 2.10] for a definition). In particular, the Gauss-Manin connection on H2

dR(X/S)
(see [KO68, Theorem 1]) cannot be promoted to a stratification.

Proof. Apply Corollary 3.4.2 to R = k[T ](T ) = OA1
k,0

, and standard spreading out techniques to

find an open subscheme S ⊂ A1
k and a smooth projective morphism f : X → S with geometrically

connected fibers of pure dimension d such that H2
dR(X/S) is not locally free. However, [BO78,

Note 2.17] guarantees that any coherent OS-module with a structure of a stratification must be
locally free. Therefore, H2

dR(X/S) can not admit any stratification. �

Remark 3.4.4. There are easier examples of smooth, projective families f : X → S such that the
Gauss-Manin connection H1

dR(X/S) does not prolong to a stratification. Namely, this phenomenon
already occurs for the Legendre family of elliptic curves f : E → S := A1

k \ {0, 1}. Indeed, using
[BO78, Proposition 2.11], it is not hard to see that if

∇GM : H1
dR(E/S)→ H1

dR(E/S)⊗OS Ω1
S/k

admits a structure of a stratification, its p-curvature vanishes. Now [Kat72, Theorem 3.2] implies
that p-curvature of ∇GM is non-zero if the Kodaira-Spencer class of f does not vanish. It is a
classical computation that the Kodaira-Spencer class does not vanish for the Legendre family of
elliptic curves. However, note that H1

dR(E/S) is a trivial vector bundle, so it admits a “trivial”
stratification.

3.5. Example. Higher pushforwards of crystals in characteristic p. In this section, we give
an example of a smooth projective morphism f : X → S of Fp-schemes such that R1f∗,crys

(
OX/S

)
is not a crystal on S. This negatively answers the question raised in [BO78, Remark 7.10]. Before
we discuss the construction, we recall some important definitions.

We fix an Fp-scheme S, and an S-scheme X. Objects of a (small) crystalline site (X/S)crys of
an S-scheme X are given by triples (U, T, γ) where U ⊂ T is a Zariski open, U → T is a nilpotent
thickening, and γ is a PD-structure on the ideal of the thickening. Morphisms are defined as
morphisms of triples, and coverings are defined to be Zariski coverings in T . See [Sta21, Tag 07GI]
and [BO78, §6] for more details.

A crystalline site comes with the crystalline structure sheaf OX/S defined by the rules

OX/S(U, T, γ) = OT (T ).

For any OX/S-module F and a PD-thickening T := (U, T, γ), we can define a Zariski OT -module
F(U,T,γ) (or just FT if there cannot be any confusion) by restricting F on T with its Zariski topology.

https://stacks.math.columbia.edu/tag/0FW5
https://stacks.math.columbia.edu/tag/0FD2
https://stacks.math.columbia.edu/tag/07GI
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Definition 3.5.1. An OX/S-module F is a crystal in (quasi-)coherent modules if

(1) for every PD-thickening (U, T, γ), an OT -module FT is (quasi-)coherent;

(2) for every morphism u : (U ′, T ′, γ′) → (U, T, γ), the natural morphism u∗(FT ) → FT ′ is an
isomorphism.

An object F ∈ D(ModOX/S ) is a derived crystal in (quasi-)coherent modules if

(1) for every PD-thickening (U, T, γ), FT ∈ Dqc(ModOT ) (resp. FT ∈ Dcoh(ModOT ));

(2) for every morphism u : (U ′, T ′, γ′)→ (U, T, γ), the natural morphism Lu∗(FT )→ FT ′ is an
isomorphism.

Theorem 3.5.2. [BO78, Theorem 7.16] Let S be a noetherian Fp-scheme, f : X → S a smooth,
proper morphism. Then Rf∗,crys

(
OX/S

)
is a derived crystal in coherent modules on S.

Remark 3.5.3. [BO78, Theorem 7.16] proves a stronger result. In particular, they allow E to be
any “locally free, finite rank” crystal. We will not need this result.

If S is a Q-scheme, then the correct analog of the crystalline site would be the infinitesimal site
whose objects are pairs (U, T ) of an open U ⊂ X and a nilpotent thickening. Using [BO78, Note
2.17] and methods used in [BO78, Theorem 7.16], one can show that each individual OS/S-module

Rif∗,inf

(
OX/S

)
is a crystal in coherent modules.

It is natural to ask whether the same result holds in characteristic p, or even in mixed charac-
teristic. It is relatively easy to construct a counter-example in mixed characteristic. However, it is
somewhat harder to do in the characteristic p situation and is essentially equivalent to the question
raised in [BO78, Remark 7.10]. The theorem below gives a counter-example in characteristic p
which can be adapted to mixed characteristic with little work.

Theorem 3.5.4. Let d > 1 be an integer, and R any discrete valuation ring of equicharacteristic
p > 0. Then there is a smooth projective family f : X → S = SpecR with geometrically connected
fibers of pure dimension d such that at least one of R1f∗,crys

(
OX/S

)
is not a crystal.

Proof. Take f : X → S as in Corollary 3.4.2. In what follows, we will denote by S the trivial
PD-thickening of S. Then [BO78, Corollary 7.9] implies that

M := Rf∗,crys

(
OX/S

)
(S) = RΓ(X,Ω•X/S).

Since Rf∗,crys

(
OX/S

)
(S, S, trivial) is a derived crystal by Theorem 3.5.2, we conclude that, for any

morphism of PD-thickenings (S, SpecA, γ)→ (S, S, trivial), we have a natural isomorphism

Rf∗,crys

(
OX/S

)
(S,SpecA, γ) 'M ⊗LR S. (3.2)

We wish to show that R1f∗,crys(OX/S) is not a crystal. Using equation (3.2), we see that it is
equivalent to

H1(M)⊗R A 6' H1(M ⊗LR A)

for some morphism of PD-thickenings (S, SpecA, γ)→ (S, S, triv).

In order to prove that claim, we construct an explicit PD-thickening of S. We fix a uniformizer
t ∈ R and consider a square zero nilpotent thickening

S → SpecR[e]/(e2, et) = SpecR′.

The ideal of the thickening (e) ⊂ R′ admits a PD-structure γ by [Mes71, Chapter V, Lemma
(2.3.4)] (for example, by taking π = 0). We denote by S′ the PD-thickening (S,SpecR′, γ). Note
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that R′ ' R⊕R/t as an R-module. Therefore,

H1(M ⊗LR R′) ' H1(M ⊕ [M/t]) = H1(M)⊕H1([M/t])

and
H1(M)⊗R R′ ' H1(M)⊗R H1(M)/t.

Therefore, R1f∗,crys(OX/S) is not a crystal as long as the natural morphism

H1(M)/t→ H1([M/t])

is not an isomorphism. This is equivalent to the existence of non-trivial torsion classes in H2(M) =
H2

dR(X/R) which exist by construction. �
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Appendix A. Syntomic morphisms

We recall the definition of a syntomic morphism from [Sta21] and give some examples. We also
show that this definition is equivalent to the definition of a syntomic morphism in [ABM21].

For the rest of the section, we fix a commutative ring k. Throughout the paper, we will be mostly
interested in the case of a field k of characteristic p > 0.

Definition A.1. We say that a morphism of schemes f : X → Y is syntomic if f is flat, locally
finitely presented, and all fibers are local complete intersections (in the sense of [Sta21, Tag 00S9]).

The following two lemmas are entirely standard, and we prove it only for want of a reference.

Lemma A.2. Let G be a flat, finitely presented k-group scheme. Then G is k-syntomic.

Proof. Since G is already flat and finitely presented over k, it suffices to show that its fibers are
local complete intersections. So we can assume that k is a field. Moreover, [Sta21, Tag 00SJ]
ensures that we can assume that k is algebraically closed. In this case, Gred is a normal smooth
subgroup scheme of G, and the map

G→ G/Gred

is a smooth morphism of k-group schemes. Therefore, it suffices to show that G/Gred is k-syntomic.
Now note that G/Gred is a connected finite group scheme. Then the classification of such group

schemes in [Wat79, §14.4, Theorem] ensures that there is an isomorphism of k-schemes

G/Gred ' Spec k[T1, . . . , Tn]/(T p
e1

1 , . . . , T p
en

n )

for some n, ei ∈ Z. In particular, it is a local complete intersection. �

Lemma A.3. A morphism f : A → B is syntomic if and only if it is flat, finitely presented, and
LB/A ∈ D(B) has Tor amplitude in [−1, 0].

Proof. One direction is easy. If f is syntomic, it is locally a complete intersection morphism by
[Sta21, Tag 069K]. Then LB/A has Tor amplitude in [−1, 0] by [Sta21, Tag 08SL].

Now we assume that f is flat, finitely presented, and LB/A has Tor amplitude in [−1, 0]. We
want to conclude that the fibers of f are complete intersections.

Firstly, we note that the cotangent complex is pseudo-coherent. Indeed, if A is noetherian, it
is a classical result that LB/A ∈ D−coh(B). In general, formation of the cotangent complex of a
flat morphism commutes with any base change [Sta21, Tag 08QQ], so a standard spreading out
argument reduces to the case of noetherian A.

Then loc. cit. and [Sta21, Tag 068V] ensure that LB/A has Tor amplitude in [−1, 0] if and only
if LB⊗Ak(p)/k(p) has Tor amplitude in [−1, 0] for any prime ideal p ⊂ A. Now [Avr99, (1.2) Second
Vanishing Theorem] ensures that LB⊗Ak(p)/k(p) has Tor amplitude in [−1, 0] if and only if B⊗Ak(p)
is a local complete intersection. �

Remark A.4. Lemma A.3 guarantees that Definition A.1 coincides with the definition of syntomic
morphisms given in [ABM21, Notation 2.1]. In particular, all results of their paper are applicable
with our definition of syntomic morphism.

We note that syntomic morphisms are local on source-and-target by [Sta21, Tag 06FC], so we can
extend the definition of syntomic morphisms of schemes to algebraic stacks by general nonsense.

https://stacks.math.columbia.edu/tag/00S9
https://stacks.math.columbia.edu/tag/00SJ
https://stacks.math.columbia.edu/tag/069K
https://stacks.math.columbia.edu/tag/08SL
https://stacks.math.columbia.edu/tag/08QQ
https://stacks.math.columbia.edu/tag/068V
https://stacks.math.columbia.edu/tag/06FC
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Definition A.5. A morphism f : X → Y of algebraic stacks is syntomic if it is syntomic in the
sense of [Sta21, Tag 06FM]8.

An algebraic k-stack X is k-syntomic if the structure morphism X→ Spec k is syntomic.

Remark A.6. We leave it to the reader to check that an algebraic k-stack is syntomic if and only
if there exists a syntomic cover U → X with U a syntomic k-scheme. This guarantees that our
definition of k-syntomic stacks coincides with the definition in [ABM21, Notation 2.1].

Example A.7. Let G be a flat, finitely presented k-group scheme. Then BG is a syntomic k-stack9

with a syntomic cover f : Spec k → BG.

Indeed, Spec k is clearly k-syntomic. So it suffices to show f is syntomic. Note that

Spec k ×BG Spec k ' G

is syntomic over Spec k by Lemma A.2. Therefore, Spec k → BG is syntomic since being syntomic
is fppf local on the base by [Sta21, Tag 0428].

Example A.8. More generally, ifX is k-syntomic scheme with a k-action of a flat, finitely presented
k-scheme G. Then [X/G] is a k-syntomic stack with a syntomic cover X → [X/G].

Appendix B. Descent For Flat cohomology

We show that show that flat cohomology of finitely presented group schemes satisfy descend with
respect to algebraic extension of the base field.

For the rest of the section, we fix a base field k.

Lemma B.1. Let X be a finite type k-scheme, Xn is the base change X
k
⊗kn , and G a flat finitely

presented commutative group X-scheme. Then the natural morphism

RΓfppf(X,G)→ R lim
n∈∆

(RΓfppf(Xn, G))

is an isomorphism.

Proof. For each finite extension k ⊂ k′, let us denote by Xn,k′ the fiber product Xk′⊗kn . Then the
natural morphism

RΓfppf(X,G)→ R lim
n∈∆

(
RΓfppf(Xn,k′ , G)

)
is an equivalence for any finite k ⊂ k′ because fppf cohomology satisfy fppf descent. Now a standard
approximation result (for example, argue as in [Fu11, Proposition 5.9.2])) implies that the natural
morphism

hocolimk⊂k′⊂k RΓfppf(Xn,k′ , G)→ RΓfppf(Xn, G)

is an equivalence for any n ≥ 0. Thus the claim follows from the fact that totalization of cocon-
nective cosimplicial objects commute with filtered (homotopy) colimits. �

8This definition makes sense as syntomic morphisms of algebraic spaces are smooth local on source-and-target by
[Sta21, Tag 06FC].

9We note that, if G is not k-smooth the cover Spec k → BG is not smooth, so it is not an atlas. Therefore, one
needs to use [Art74, Theorem (6.1)] to show that BG is an algebraic stack.

https://stacks.math.columbia.edu/tag/06FM
https://stacks.math.columbia.edu/tag/0428
https://stacks.math.columbia.edu/tag/06FC
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[SGA3] M. Demazure and A. Grothendieck. Schémas en groupes (SGA 3). Institut des Hautes Études Scientifiques,
Paris.
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