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A YOUNG PERSON’S GUIDE TO MIXED HODGE MODULES

MORIHIKO SAITO

Abstract. We give a rather informal introduction to the theory of mixed Hodge modules
for young mathematicians.

Introduction

The theory of mixed Hodge modules ([Sa3], [Sa7]) was originally constructed as a Hodge-
theoretic analogue of the theory of ℓ-adic mixed perverse sheaves ([De2], [De7], [BBD]) and
also as an extension of Deligne’s mixed Hodge theory ([De3], [De6]) including the theory of
degenerations of variations of pure or mixed Hodge structures (see [Sch], [St], [CK], [CKS1],
[StZ], [Ka5], etc.) The main point is the “stability” by the direct images and the pull-backs
under morphisms of complex algebraic varieties and also by the dual and the nearby and
vanishing cycle functors. Here “stability” means more precisely the “stability theorems”
saying that there are canonically defined functors between the derived categories. These
stability theorems become quite useful by combining them with the fundamental theorem
of mixed Hodge modules asserting that any admissible variations of mixed Hodge structure
on smooth complex algebraic varieties in the sense of [StZ], [Ka5] are mixed Hodge modules
[Sa7]; in particular, mixed Hodge modules on a point are naturally identified with graded-
polarizable mixed Q-Hodge structures in the sense of Deligne [De3].

Technically the strictness of the Hodge filtration F on the underlying complexes of D-
modules is very important in the theory of mixed Hodge modules. Here D-modules are
indispensable for the generalization of Deligne’s theory in the absolute case ([De3], [De6]) to
the relative case. For instance, this includes the assertion that any morphism of mixed Hodge
modules is bistrict for the Hodge and weight filtrations F,W , generalizing the case of mixed
Hodge structures by Deligne [De3]. D-modules are also essential for the construction of a
relative version of DecW in the proof of the stability theorem of mixed Hodge modules by
the direct images under projective morphisms extending Deligne’s argument in the absolute
case, where we have bistrict complexes of D-modules with filtrations (F,DecW ) under the
direct images by projective morphisms, see [Sa7, Proposition 2.15].

In order to understand the theory of mixed Hodge modules, the general theory of D-
modules does not seem to be absolutely indispensable. In fact, D-modules appearing in the
theory of mixed Hodge modules are rather special ones, and we have to deal with them always
as F -filtered D-modules, where a slightly different kind of argument is usually required. For
instance, although the regularity of D-modules is quite useful for the construction of the
direct images by affine open immersions, this can be reduced essentially to the normal
crossing case by using Beilinson’s functor together with the stability theorem under the
direct images by projective morphisms (see [Sa29]), and in the latter case, a generalization
of the Deligne canonical extensions [De1] to the case of D-modules with normal crossing
singular supports is sufficient. Also the pull-backs of mixed Hodge modules under closed
immersions are constructed by using nearby and vanishing cycle functors, which is entirely
different from the usual construction of pull-backs of D-modules, see [Sa7, Section 4.4].
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2 M. SAITO

Note finally that we need only Zucker’s Hodge theory in the curve case [Zu] for the proof of
the stability theorem of mixed Hodge modules under the direct images by proper morphisms,
and classical Hodge theory is not used, see (2.5) below.

I thank the referee for useful comments. The author is partially supported by Kakenhi
15K04816.

In Section 1 we explain the main properties of pure Hodge modules. In Section 2 we
give an inductive definition of pure Hodge modules, and explain an outline of proofs of
Theorems (1.3) and (1.4). In Section 3 we explain a simplified definition of mixed Hodge
modules following [Sa29]. In Appendices we explain some basics of hypersheaves, D-modules,
and compatible filtrations.

Conventions 1. We assume that algebraic varieties in this paper are always defined over
C and are reduced (but not necessarily irreducible). More precisely, a variety means a
separated reduced scheme of finite type over C, but we consider only its closed points, that
is, its C-valued points. So it is close to a variety in the sense of Serre (except that reducible
varieties are allowed here). We also assume that a variety is always quasi-projective, or
more generally, globally embeddable into a smooth variety (where morphisms of varieties
are assumed quasi-projective) in order to simplify some arguments. The reader may assume
that all the varieties in this paper are reduced quasi-projective complex algebraic varieties.

2. We use analytic sheaves on complex algebraic varieties; in particular, any D-modules are
analytic D-modules. (These are suitable for calculations using local coordinates.) For the
underlying filtered D-module (M,F ) of a mixed Hodge module on X , one can pass to the
corresponding algebraic filtered D-module by applying GAGA to each FpM after taking an
extension of the mixed Hodge module over a compactification of X .

3. In this paper, perverse sheaves (which do not seem appropriate at least for book titles,
see [Di], [KS]) are mainly called hypersheaves by an analogy with hypercohomology versus
cohomology (although the word “sheaf” may not be of Greek origin). The abelian category
of hypersheaves on X are denoted by HS(X,A) where A is a subfield of C. Hypersheaves
are not sheaves in the usual sense, but they behave like sheaves in some sense; for instance,
they can be defined locally provided that gluing data satisfying some compatibility condition
are also given.

1. Main properties of pure Hodge modules

In this section we explain the main properties of pure Hodge modules.

1.1. Filtered D-modules with Q-structure. A pure Hodge module M on a smooth
complex algebraic variety X of dimension dX is basically a coherent left DX -module M
endowed with the Hodge filtration F such that (M,F ) is a filtered left DX -module with
FpM coherent over OX . The filtration F on DX is by the order of differential operators, and
we have the filtered D-module condition

(1.1.1) (FpDX)FqM ⊂ Fp+qM (p ∈ N, q ∈ Z),

(which is equivalent to Griffiths transversality in the case of variations of Hodge structure),
and the equality holds in (1.1.1) for q ≫ 0. Moreover M has a Q-structure given by an
isomorphism

(1.1.2) αM : DRX(M) ∼= C⊗Q K in HS(X,C),
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with K ∈ HS(X,Q) (see (A.1) below). Here DRX(M) is the de Rham complex of the
DX -module M viewed as a quasi-coherent OX -module with an integrable connection:

(1.1.3) DRX(M) :=
[
M → Ω1

X ⊗OX
M → · · · → ΩdX

X ⊗OX
M

]
,

with last term put at degree 0. In (1.1.2) we assume

(1.1.4) DRX(M) ∈ HS(X,C),

and moreover (1.1.4) holds with M replaced by any subquotients of M as coherent D-
modules. (More precisely, these properties follow from the condition that M is regular

holonomic, see (B.5.2) below. We effectively assume the last condition in the definition of
Hodge modules, see Remark (ii) after Theorem (1.3).) In this paper we also assume

(1.1.5) M,K are quasi-unipotent (see (B.6) below).

We will denote by MF(X,Q) the category of

M =
(
(M,F ), K, αM

)

satisfying the above conditions. (Sometimes αM will be omitted to simplify the notation.)
We also use the notation

(1.1.6) rat(M) := K.

The category MH(X,w) of pure Hodge modules of weight w on X will be defined as a full
subcategory of MF(X,Q).

1.2. Strict support decomposition. The first condition for pure Hodge modules is the
decomposition by strict support

(1.2.1) M =
⊕

Z⊂X MZ in MF(X,Q),

where Z runs over irreducible closed subvarieties of X , and

MZ =
(
(MZ , F ), KZ , αMZ

)

has strict support Z (that is, its support is Z, and it has no nontrivial sub nor quotient object
supported on a proper subvariety of Z). More precisely, we assume that the last condition
is satisfied for both MZ and KZ . Note that the condition for KZ is equivalent to that KZ is
an intersection complex with local system coefficients, see [BBD]. We then get

(1.2.2) Hom(MZ ,MZ′) = 0 if Z 6= Z ′.

In fact, this holds with MZ ,MZ′ replaced by MZ ,MZ′ or by KZ , KZ′.

In (2.2) below, we will define the full subcategory

MHZ(X,w) ⊂ MF(X,Q)

consisting of pure Hodge modules of weight w with strict support Z by increasing induction
on dimZ, and put

(1.2.3) MH(X,w) :=
⊕

Z⊂X MHZ(X,w) ⊂ MF(X,Q),

where the direct sum over closed irreducible subvarieties Z of X is justified by (1.2.1–2).

This full subcategory MHZ(X,w) ⊂ MF(X,Q) can be defined effectively by the following
fundamental theorem of pure Hodge modules, which may be viewed as a working definition

of MHZ(X,w).

Theorem 1.3 ([Sa7, Theorem 3.21]). For any closed irreducible subvariety Z ⊂ X, the

restriction to sufficiently small open subvarieties of Z induces an equivalence of categories

(1.3.1) MHZ(X,w)
∼−→ VHSgen(Z,w − dimZ)p,
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where the right-hand side is the category of polarizable variations of pure Hodge structure of

weight w − dimZ defined on smooth dense open subvarieties U of Z. (More precisely, we

take the inductive limit over U ⊂ Z.) Moreover, (1.3.1) induces a one-to-one correspondence

between polarizations of M ∈ MHZ(X,w) (see (2.2.2) below) and those of the corresponding

generic variation of Hodge structure.

Remarks. (i) The equivalence of categories (1.3.1) means that any pure Hodge module with
strict support Z is generically a polarizable variation of pure Hodge structure, and conversely
any polarizable variation of pure Hodge structure defined on a smooth dense Zariski-open
subset U ⊂ Z can be extended uniquely to a pure Hodge module with strict support Z.

(ii) By using the stability theorem of pure Hodge modules under the direct images by
projective morphisms (see Theorem (1.4) below), the proof of Theorem (1.3) can be reduced
to the case where Z = X and a variation of Hodge structure is defined on the complement U
of a divisor with normal crossings. In this case we use the original definition of pure Hodge
modules in [Sa3] given by induction on the dimension of the support of M and using the
nearby and vanishing cycle functors.

In the case D := X \ U is a divisor with normal crossings, the above extension of a
variation of Hodge structure on U to a Hodge module on X is rather easy to describe by
using Deligne’s canonical extension [De1]. In fact, we have the following explicit formula
(see [Sa7, (3.10.12)]:

(1.3.2) FpM =
∑

i>0 FiDX

(
j∗Fp−iL ∩ L̂>−1

)
⊂ L̂>−1(∗D),

with j : U →֒ X is the inclusion. Here L is the locally free OU -module underlying the
variation of Hodge structure with F the Hodge filtration, L̂>−1 is the Deligne extension of L
over X such that the eigenvalues of the residues of the connection are contained in (−1, 0],
and the last term of (1.3.2) is the Deligne meromorphic extension, see [De1]. (Note that
a decreasing filtration F is identified with an increasing filtration by setting Fp := F−p.)
Taking the union over p ∈ Z, we have

(1.3.3) M = DX L̂>−1 ⊂ L̂>−1(∗D).

The underlying Q-local system L of a polarizable variation of Hodge structure on U is
canonically extended over X as an intersection complex (see [BBD]) where L must be shifted
by dimZ. This can be done without assuming that D = X \ U is a divisor with normal
crossings on a smooth variety.

The second main theorem in the theory of pure Hodge modules is the stability theorem
of pure Hodge modules under the direct images by projective morphisms.

Theorem 1.4 ([Sa3, Theorem 5.3.1]). Let f : X → Y be a projective morphism of smooth

complex algebraic varieties, and M = ((M,F ), K, αM) ∈ MHZ(X,w). Let ℓ be the first

Chern class of an f -ample line bundle. Then the direct image fD
∗ (M,F ) as a filtered D-

module (see (B.3) below) is strict, and we have

(1.4.1) Hif∗M := (HifD
∗ (M,F ), mHif∗K,

mHif∗αM) ∈ MH(Y, w + i) (i ∈ Z),

together with the isomorphisms

(1.4.2) ℓi : H−if∗M ∼−→ Hif∗M(i) (i > 0),

where (i) denotes the Tate twist shifting the filtration F by i, see a remark after (2.1.10)
below.
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Moreover, if S : K ⊗ K → DX(−w) is a polarization of M (see (2.2.2) below), then a

polarization of the ℓ-primitive part

PH−if∗M := Ker ℓ i+1 ⊂ H−if∗M (i > 0)

is given by the restriction to the ℓ-primitive part of the induced pairing

(1.4.3) (−1)i(i−1)/2 mHf∗S ◦ (id⊗ ℓ i) : mH−if∗K ⊗ mH−if∗K → DY (i− w).

Remarks. (i) The action of ℓ can be defined by using C∞ forms and the Dolbeault resolution
to get a filtered complex which is filtered quasi-isomorphic to the relative de Rham complex

DRX×Y/Y

(
(if)

D
∗ (M,F )

)
,

which is used in the definition of the direct image in (B.3) below. Note that the first Chern
class is represented by a closed 2-form of type (1, 1) on X , see also [Sa3, Lemma 5.3.2].
(It is also possible to define the action of ℓ by using the restriction to a sufficiently general
hyperplane section of (M,F ).)

(ii) We use Deligne’s sign convention of a polarization S of a Hodge structure (HC, F ), HQ),
see [De3, Definition 2.1.15]; that is,

(1.4.4) S(v, Cv) > 0 (v ∈ HC \ {0}),
where C is the Weil operator defined by ip−q on Hp,q

C , and the Tate twist (2πi)w is omitted to
simplify the notation. (This sign convention seems to be theoretically natural if one considers
the action of the Weil restriction of Gm, see [De2, Section 2.1].)

Recall that the usual sign convention is

(1.4.5) S(Cv, v) > 0 (v ∈ HC \ {0}),
and the difference is given by the multiplication by

(1.4.6) (−1)w,

where w is the weight of the Hodge structure.

If we use the usual sign convention (1.4.5) instead of (1.4.4), then the difference (1.4.6)
implies a considerable change of the formula (1.4.3) of Theorem (1.4). In fact, we have to
change the sign for each direct factor with strict support Z depending on dZ := dimZ, since
the difference of sign (1.4.6) depends on the pointwise weight

(1.4.7) w − i− dZ

of the generic variations of Hodge structure of each direct factor with strict support Z:

(H−if∗M)Z ⊂ H−if∗M.

(iii) For a polarization S of a generic variation of Hodge structure of a pure Hodge module
with strict support Z, the associated polarization of the Hodge modules is defined by

(1.4.8) (−1)dZ (dZ−1)/2 S : K|U ⊗K|U → DU(−w),
on an open subvariety U ⊂ Z where the variation of Hodge structure is defined, see [Sa3,
Proposition 5.2.16] for the constant coefficient case. This can be extended to a pairing of K
by using the theory of intersection complexes [BBD].

For a smooth projective variety X , it is well-known that

(1.4.9)

∫

X

(−1)j(j−1)/2 ip−q v ∧ v ∧ ωdX−j > 0,

for a nonzero element v in the primitive cohomology PHj(X,C) of type (p, q), where ω is
a Kähler form. One may think that (1.4.9) contradicts (1.4.8) combined with (1.4.3) in
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Theorem (1.4) for f : X → pt. In fact, by setting ξ(k) = k(k−1)/2 for k ∈ N, the difference
between the sign (−1)ξ(j) in (1.4.9) and the product of (−1)ξ(dX ) in (1.4.8) with Z = X and
(−1)ξ(dX−j) in (1.4.3) with i = dX − j does not coincide with the difference between the two
sign conventions (1.4.4–5) which is equal to (−1)j by (1.4.6) for w = j, since

ξ(dX)− ξ(dX − j)− ξ(j)− j = jdX mod 2.

However, the remaining sign (−1)jdX just comes from the isomorphism

(1.4.10) RΓ(X,CX)[dX ]⊗C RΓ(X,CX)[dX ] ∼=
(
RΓ(X,CX)⊗C RΓ(X,CX)

)
[2dX ].

In fact, if we set K• := RΓ(X,CX), then K•[dX ] is identified with CX [dX ] ⊗C K•, and the
above isomorphism is given by

C[dX ]⊗C K• ⊗C C[dX ]⊗C K• ∼= C[dX ]⊗C C[dX ]⊗C K• ⊗C K•,

where the middle two components are exchanged, but the remaining ones are unchanged
(see [De4] for the sign about single complexes associated with n-ple complexes). A similar
argument is used in the proof of the anti-commutativity of the last diagram in [Sa3, Section
5.3.10] where dX = 1.

2. Outline of proofs of Theorems (1.3) and (1.4)

In this section we give an inductive definition of pure Hodge modules (see [Sa2], [Sa3]), and
explain an outline of proofs of Theorems (1.3) and (1.4).

2.1. Admissibility condition along g = 0. Let X be a smooth algebraic variety, and Z
be an irreducible closed subvariety of X . Let

M = ((M,F ), K, αM) ∈ MF(X,Q),

with strict support Z, see (1.2). Let g be a function on X , that is, g ∈ Γ(X,OX). Let
ig : X →֒ X ×C be the graph embedding by g. Set

(M̃, F ) := (ig)
D
∗ (M,F ),

see (B.3) below for (ig)
D
∗ . (Note that the filtration F is shifted by 1, which is the codimension

of the embedding.) We have the filtration V on M̃ (see (B.6) below).

Definition. We say that (M,F ) is admissible along g = 0 (or g-admissible for short) in this
paper if the following two conditions are satisfied:

(2.1.1) t(FpV
αM̃) = FpV

α+1M̃ (∀α > 0),

(2.1.2) ∂t(FpGrαV M̃) = Fp+1Grα−1
V M̃ (∀α < 1, p ∈ Z),

see [Sa3, 3.2.1]. (These properties were first found in the one-dimensional case, see [Sa1].)

In the case Z ⊂ g−1(0), (M,F ) is g-admissible if and only if the following condition is
satisfied:

(2.1.3) g FpM ⊂ Fp−1M (∀ p ∈ Z),

see [Sa3, Lemma 3.2.6].

In the case Z 6⊂ g−1(0), let j : X ×C∗ →֒ X ×C be the natural inclusion. We have the
isomorphisms

(2.1.4) FpM̃ =
∑

i>0 ∂
i
t(j∗Fp−iM̃ ∩ V >0M) (p ∈ Z),

if (M,F ) is g-admissible and moreover the following condition holds:

(2.1.5) ∂t : Gr1V (M̃, F ) → Gr0V (M̃, F [−1]) is strictly surjective,
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see [Sa3, Remark 3.2.3]. This is closely related to (1.3.2). (Forgetting F , condition (2.1.5) is
equivalent to that M has no nontrivial quotient supported in g−1(0), see (B.6.6) below. The
strictness of F follows from the properties of Hodge modules as is seen in (2.3.5) below.)

Assume (M,F ) is g-admissible. We have the nearby and vanishing cycle functors ψg, ϕg

defined by

(2.1.6) ψg(M,F ) :=
⊕

λ∈C∗

1
ψg,λ(M,F ), ϕg(M,F ) :=

⊕
λ∈C∗

1
ϕg,λ(M,F ),

(2.1.7)
ψg,e(−α)(M,F ) := GrαV (M̃, F ) (α ∈ (0, 1]),

ϕg,1(M,F ) := Gr0V (M̃, F [−1]),

where C∗
1 := {λ ∈ C∗ | |λ| = 1}, e(−α) := exp(−2πiα), and ψg,λ = ϕg,λ (λ 6= 1) as in

(A.2.8) below. We have ϕg,1(M,F ) = (M,F ) by [Sa3, Lemma 3.2.6] if suppM ⊂ g−1(0) and
gFpM ⊂ Fp−1M (p ∈ Z). Note that F is shifted by 1 when the direct image (ig)

D
∗ is taken.

This is the reason for which F is shifted for ϕ in (2.1.7), and not for ψ (for left D-modules).

Combining these with (B.6.7) below, we get

(2.1.8)
ψgM := (ψg(M,F ), mψgK,

mψgαM),

ϕgM := (ϕg(M,F ), mϕgK,
mϕgαM) in MF(X,Q).

We have similarly ψg,1M, ϕg,1M together with the morphisms

(2.1.9)
can : ψg,1M → ϕg,1M, Var : ϕg,1M → ψg,1M(−1),

N : ψgM → ψgM(−1), N : ϕg,1M → ϕg,1M(−1),

such that the restrictions of can, Var, N to the D-module part Gr1VM, Gr0VM, GrαVM
(α ∈ [0, 1]) are respectively given by −∂t, t, −(∂tt− α), and we have

(2.1.10) Var ◦ can = N on ϕg,1M, can ◦Var = N on ϕg,1M.

Here the Tate twist (k) for k ∈ Z in general is essentially the shift of the filtration F by [k].
For the Q-coefficient part, it is defined by the tensor product of Q(k) := (2πi)kQ ⊂ C over
Q, see [De3, Definition 2.1.13]. (Similarly with Q replaced by any subfield A ⊂ C)

By [Sa3, Lemma 5.1.4] we see that the strict support decomposition (1.2.1) holds if for
any g ∈ Γ(U,OU) with U an open subvariety of X , (M,F )|U is g-admissible and moreover

(2.1.11) ϕg,1M|U = Im can⊕KerVar in MF(U,Q),

2.2. Inductive definition of pure Hodge modules. For a smooth complex algebraic
variety X and an irreducible closed subvariety Z ⊂ X , we define the full subcategory
MHZ(X,w) ⊂ MF(X,Q) by increasing induction on dZ := dimZ as follows (see [Sa2],
[Sa3]):

Case 1. If Z is a point x ∈ X , then we have an equivalent of categories

(2.2.1)
(ix)∗ : HS(w)

p ∼−→ MH{x}(X,w)

with (ix)∗
(
(HC, F ), HQ

)
=

(
(ix)

D
∗ (HC, F ), (ix)∗HQ

)
,

where ix : {x} →֒ X denotes the canonical inclusion, and HS(w)p denotes the category of
polarizable Q-Hodge structures of weight w (see [De3]). The latter is naturally identified
with a full subcategory of MF({x},Q) (by setting Fp = F−p as usual).

Case 2. If dZ > 0, then M = ((M,F ), K) ∈ MF(X,Q) with strict support Z belongs to
MHZ(X,w) if there is a perfect pairing (see (A.3) below)

(2.2.2) S : K ⊗Q K → DX(−w) = QX(dX − w)[2dX],

which is called a polarization of M, and the following two conditions are satisfied:
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(i) The pairing S is compatible with the Hodge filtration F in the following sense:

There is an isomorphism of filtered D-modules

D(M,F ) = (M,F )(w),

which corresponds (by using (B.4.6) below) to an isomorphism defined over Q:

D(K) = K(w),

and the latter is identified with the perfect pairing S via (A.3.1) below.

(ii) For any Zariski-open subset U ⊂ X and g ∈ Γ(U,OU), the restriction of (M,F ) to U is
g-admissible, and moreover, in the case Z ∩ U 6⊂ g−1(0), we have

(2.2.3) GrWk ψgM|U , GrWk ϕg,1M|U ∈ MH<dZ (U,w),

(2.2.4) mψgS ◦ (id⊗N i) gives a polarization of PGrWw−1+iψgM|U (i > 0).

The last term of (2.2.3) is the direct sum of MHZ′(U,w) with Z ′ running over closed
irreducible subvarieties of U with dZ′ < dZ . The weight filtrations W on ψgM|U , ϕg,1M|U
are the monodromy filtration associated with the action of N := (2πi)−1 log Tu (see [De7])
which are shifted by w− 1 and w respectively. This means that W on ψgM|U with filtration

F forgotten is uniquely determined by the following conditions:

(2.2.5)
N(WiψgM|U) ⊂ (Wi−2ψgM|U)(−1) (i ∈ Z),

N i : GrWw−1+iψgM|U ∼−→ (GrWw−1−iψgM|U)(−i) (i ∈ N).

Here the Tate twists may be neglected since F is forgotten in (2.2.5). (However, the last
isomorphism of (2.2.5) is strictly compatible with F by (2.3.3) below if ψgM|U belongs to
MHW(U) in (2.3) below.) A similar assertion holds for ϕg,1M|U with w − 1 replaced by w.

In (2.2.4), the primitive part PGrWw−1+iψgM|U is defined by

(2.2.6) PGrWw−1+iψgM|U := KerN i+1 ⊂ GrWw−1+iψgM|U ,
by using the induced filtration F on the kernel. For ψgS, see (A.3.2) below. Note that
the condition for a polarization S is also by induction on dZ . For each direct factor of
PGrWw−1+iψgM|U with 0-dimensional strict support, we assume that ψgS ◦ (id⊗N i) induces
a polarization ofQ-Hodge structure in the sense of [De3] where the place of the Weil operator
is different from the usual one as is noted in Remark (ii) after Theorem (1.4).

2.3. Some properties of pure Hodge modules. Let MH(X,w) be as in (1.2.3). Let

MHW(X)

be the category of weakly mixed Hodge modules consisting of (M,W ) with M ∈ MF(X,Q)
and W a finite increasing filtration of M, which satisfy

(2.3.1) GrWw M ∈ MH(X,w) (∀w ∈ Z).

We have by definition the stability of pure Hodge modules by the nearby and vanishing cycle
functors:

(2.3.2) ψgM|U , ϕg,1M|U ∈ MHW(U).

It is easy to show the following (see [Sa3, Proposition 5.1.14]):

(2.3.3) MHW(X) and MH(X,w) (w ∈ Z) are abelian categories such that

any morphisms are strictly compatible with (F,W ) and F respectively.

This assertion is proved by using

(2.3.4) Hom(M,M′) = 0 if M ∈ MH(X,w), M′ ∈ MH(X,w′) with w > w′.
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This is reduced to [De3] by using the assertion that any M ∈ MHZ(X,w) is generically a
variation of Hodge structure of weight w−dZ . (The latter is an easy part of Theorem (1.3).)

These assertions hold without assuming polarizability (see [Sa3, Section 5.1]), and imply

(2.3.5) can : ψg,1M → ϕg,1M is strictly surjective for (F,W ),

This assures the strict surjectivity in (2.1.5). It also gives a reason for which condition (2.2.4)
is imposed only for ψ.

We prove Theorems (1.3) and (1.4) by induction on dimZ using the following rather
technical key theorem:

Theorem 2.4. Let f : X → Y be as in Theorem (1.4). Let g ∈ Γ(Y,OY ). Put h := fg. Let
M = ((M,F ), K) ∈ MF(X,Q) with strict support Z 6⊂ h−1(0). Let S : K ⊗K → DX(−w)
be a perfect pairing compatible with the filtration F as in condition (ii) in Case 2 of (2.2).
Assume that (M,F ) is h-admissible, we have

(2.4.1) GrWi ψhM, GrWi ϕh,1M ∈ MH(X, i) (∀ i ∈ Z),

with W as in (2.2.5), and the conclusions of Theorem (1.4) are satisfied for the N-primitive

part

(2.4.2) PNGrWw−1+iψhM with polarization ψhS ◦ (id⊗N i) (i > 0).

Then

(i) The filtered direct image fD
∗ (M,F ) is strict on a sufficiently small neighborhood of g−1(0)

(in the classical topology), and the HifD
∗ (M,F ) are g-admissible.

(ii) The shifted direct image filtration fD
∗ W [j] induces the monodromy filtration shifted by

w + j − 1 on

(2.4.3) ψgHjfD
∗ M = HjfD

∗ ψhM (∀ j ∈ Z),

which is denoted by W so that

(2.4.4) GrWi ψgHjfD
∗ M ∈ MH(Y, i) (∀ i ∈ Z).

(iii) We have isomorphisms on a sufficiently small neighborhood of g−1(0):

(2.4.5) ℓj : H−jfD
∗ M ∼−→ (HjfD

∗ M)(j) (∀ j > 0).

(iv) On the bi-primitive part PℓPNGrWw−1−j+iψgH−jfD
∗ M defined by

(2.4.6) Ker ℓj+1 ∩KerN i+1 ⊂ GrWw−1−j+iψgH−jfD
∗ M,

we have a polarization of Hodge module given by the induced pairing

(2.4.7) (−1)j(j−1)/2GrWψgHf∗S ◦ (id⊗N iℓj) (∀ i, j > 0).

We first explain how the above theorem is used in the proofs of Theorems (1.3) and (1.4).

2.5. Outline of proofs of Theorems (1.3) and (1.4). We show the assertions by
increasing induction on the dimension of the strict support Z. The order of the induction is
rather complicated as is explained below:

Assume Theorems (1.3) and (1.4) are proved for dimZ < d. Then Theorem (1.4) for
dimZ = d with f(Z) 6= pt follows from Theorem (2.4) where the decomposition by strict
support follows from (2.1.11) (which is satisfied by using [Sa3, Corollary 4.2.4]). Using this,
we can reduce the proof of Theorem (1.3) to the normal crossing case where the singular locus
of M is a divisor with normal crossings. Here the filtration F can be defined by (1.3.2), and
we have to show that the conditions for Hodge modules are satisfied for any locally defined
functions g. This can be further reduced by using Theorem (2.4) (but not Theorem (1.4))
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to the case where the union of g−1(0) and the singular locus of M is a divisor with normal
crossings. Here we can calculate explicitly the nearby and vanishing cycle functors together
with the induced pairing (although these are rather complicated), see [Sa7] for details.

Now we have to prove Theorem (1.4) in the case dimZ = d and f(Z) = pt. Here we may

assume that X = Pn, Y = pt. Let π : X̃ → X be the blow-up along the intersection Z of
two sufficiently general hyperplanes of Pn. By Theorem (1.3) for dimZ = d, there is

M̃ = ((M̃, F ), K̃) ∈ MH(X̃, w) with M̃|X̃\π−1(Z) = M|X\Z .

We have a polarization S̃ of M̃ extending the restriction of a polarization S of M to the
complement of Z ⊂ X .

By Theorem (1.4) for f(Z) 6= 0, we see that M is a direct factor of H0π∗M. Moreover
its complement is isomorphic to MZ(−1) since Z is sufficiently general, where MZ is the
noncharacteristic restriction of M to Z; more precisely,

MZ = ((MZ , F ), KZ [−2]),

with (MZ , F ) and KZ respectively the noncharacteristic restrictions of (M,F ) and K to Z.

So we have the direct sum decomposition

(2.5.1) H0π∗M̃ = M⊕MZ(−1),

with Hjπ∗M̃ = 0 for j 6= 0. Here π∗S̃ is compatible with this decomposition, and its
restriction to M coincides with S (by using (A.3.1) below together with the remark after
(1.2.2)). We then get the direct sum decompositions

(2.5.2) Hj(X̃,M̃) = Hj(X,M)⊕Hj−2(Z,MZ)(−1) (j ∈ Z).

where Hj(X,M) := Hj(aX)∗M for the structure morphism aX : X → pt, and similarly

for Hj(X̃,M̃), etc. The above argument implies that these direct sum decompositions are

compatible with the induced pairing by S̃, and moreover its restriction to the first factors
coincides with the induced pairing by S.

We have the Lefschetz pencil

p : X̃ → P1,

and Theorem (1.4) for f(Z) 6= pt can be applied to this. So the proof of Theorem (1.4) for
dimZ = d and f(Z) = pt is reduced to the case X = P1, where we can apply Zucker’s result
[Zu]. (Note that Zucker gave an “algebraic description” of the Hodge filtration F using
holomorphic differential forms, see [Zu, Corollary 6.15 and Proposition 9.1].) However, we
have to make some more calculations about polarizations on primitive classes related to the
Leray spectral sequence, etc. (which are not quite trivial, see [Sa3, Sections 5.3.8 -11] for
details).

The Lefschetz pencil is also used in an essential way for the proof of the Weil conjecture
and the hard Lefschetz theorem in [De7]. The reduction to the curve case is by analogy with
the ℓ-adic case in some sense.

Remarks. (i) For the calculation of the nearby and vanishing cycle functors in the normal
crossing case, we use the so-called “combinatorial description” of mixed Hodge modules
with normal crossing singular loci. Here the compatibility of the dX + 1 filtrations F, V(i)
(i ∈ [1, dX ]) is quite essential, where V(i) is the V -filtration along xi = 0, and the xi are local
coordinates compatible with the singular locus of a mixed Hodge module. Note, however,
that this description never gives an equivalence of categories (consider, for instance, the
case of variations of mixed Hodge structure having no singular loci; in fact, this “Hodge-
theoretic combinatorial description” gives only the information of the fiber at the fixed
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point). Nevertheless it is quite useful when it is combined with the Verdier-type extension
theorem [Ve2] inductively, see also [Sa7, Proposition 3.13], etc.

It seems rather easy to predict Hodge-theoretic combinatorial formulas for the nearby and
vanishing cycle functors together with the induced pairing in the normal crossing case. These
are implicitly related with Beilinson’s construction of nearby cycles [Bei2], see [Sa8] for the
mixed Hodge module case. It seems more difficult to prove that these formulas actually hold,
see for instance [Sa4]. (Note that the argument in the Appendix of [Sa7] was simplified by
the writer. The original argument used the reduction to the 2-dimensional case, and was
much more complicated.)

(ii) The results of Cattani, Kaplan, Schmid ([CK], [CKS1], [CKS2], [CKS3]) are used in
an essential way for the above “Hodge-theoretic combinatorial description”. For instance,
the descent lemma in [CKS1], [CKS3] is crucial to the “combinatorial description” of the
pure Hodge module corresponding to the intersection complex. (This lemma is called “the
vanishing cycle theorem” in [KK4], which does not seem to be contained in [KK2].)

(iii) It is still an open problem whether the Hodge structure obtained by the L2 method
in [CKS3], [KK4] has an “algebraic description” using holomorphic differential forms, and
in the algebraic case, whether it coincides with the Hodge structure obtained by the theory
of mixed Hodge modules. (It has been expected that the detailed versions of [KK3], [KK5]
would give a positive answer to these problems, and some people thought that [KK2], [KK4]
were written for this purpose. As for [BrSY], it seems rather difficult to apply it to filtered
L2-sheaf complexes.) We have to assume that polarizable variations of Hodge structure are
geometric ones in [Sa9], and also in [PS] for the analytic case.

(iv) In the curve case, the answer to the above first problem was already given in [Zu,
Corollary 6.15 and Proposition 9.1], and the second problem is then easy to solve, see [Sa3,
Section 5.3.10].

(v) It does not seem easy to generalize the results in [CKS3], [KK4] to the case of a “tubular
neighborhood” of a subvariety in a smooth complex algebraic variety, since we would have
to take a complete metric to get a Hodge structure by applying a standard method.

2.6. Outline of proof of Theorem (2.4). We have to study the weight spectral sequence

(2.6.1) E−k,j+k
1 = Hjf∗GrWk ψhM =⇒ Hjf∗ψhM,

and similarly with ψh replaced by ϕh,1. This spectral sequence is defined in MF(Y,Q) if
the differentials dr (r > 1) are strictly compatible with the filtration F inductively, see [Sa3,
1.3.6]. The last assertion for r = 1 follows from (2.3.3), since d1 preserves the Hodge filtration
F and also the weight filtration W (the latter is shifted depending on the degree j of the
cohomology sheaf Hjf∗ψhM). For r > 2, we can show dr = 0 inductively by using (2.3.4).
In particular, the E2-degeneration of the spectral sequence follows. The above argument also
implies the strictness of the filtration F on the direct image fD

∗ ψhM by using the theory
of compatible filtrations (loc. cit.). A similar assertion holds for ϕg,1M. These assertions
imply the assertion (i) of Theorem (2.4) by using the completion by the V -filtration, see
[Sa3, Section 3.3] for details.

To show the remaining assertions, we have to show that the “bi-symmetry” for the actions
of ℓ, N on the E1-term is preserved on the E2-terms, and moreover the “bi-primitive part” of
the E2-term is represented by the bi-primitive part of the E1-term. Using the strict support
decomposition together with the easy part of Theorem (1.3), we can reduce the assertions
to the case where the spectral sequence is defined in the category of Hodge structures.
Theorem (2.4) then follows from the theory of bi-graded Hodge structures of Lefschetz type
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as in the proof of [Sa3, Proposition 4.2.2] (see also [Sa18] where a slightly better explanation
is given).

Remarks. (i) Signs were not determined in [Sa3, Proposition 4.2.2], since this was a very
subtle issue at that time (see for instance [De3, Section 2.2.5] where a problem of sign for
Chern classes was raised.) In the case of the nearby cycles of the constant sheaf QX in the
normal crossing case (that is, in the case of Steenbrink [St]), the primitive part

PGrWdX−1+iψh,1(QX [dX − 1])

is the direct sum of the constant sheaves supported on intersections of i + 1 irreducible
components of h−1(0). In particular, its support is pure dimensional, and the signs should
depend only on this dimension. Then there would be no problem for using [Sa3, Proposition
4.2.2] in this case. In the general case, however, the situation is much more complicated. In
fact, there may be direct factors (PGrWk ψhM)Z of the primitive part PGrWk ψhM which have
strict supports Z of various dimensions, and surject to the same closed subvariety of Y (for
instance, if g−1(0) = {0}). In this case, we have to determine exactly the sign for each direct
factor so that the positivity becomes compatible among the direct images of direct factors
with various strict support dimensions.

(ii) Precise signs are written in [Sa3, Lemma 5.3.6] following Deligne’s sign system [De8]
(see also [GN]). Note that the conclusion of Lemma 5.3.6 follows from the proof of [Sa3,
Proposition 4.2.2], since the hypothesis of the lemma is stronger than that of the proposition
and the conclusion is essentially the same (that is, the E2-term is bi-symmetric for ℓ, N and
its bi-primitive part is represented by the bi-primitive part of the E1-term). A pairing on
the E1-term of the Steenbrink weight spectral sequence [St] satisfying Deligne’s sign system
[De8] is constructed in [GN] although its relation with the pairing induced by the nearby
cycle functor does not seem to be clear (for instance, an isomorphism like (1.4.10) does not
seem to be used there).

(iii) An argument showing the decomposition (2.1.11) is noted in [Sa3, Lemma 5.2.5] which
can replace [Sa3, Corollary 4.2.4] if one is quite sure that the signs in the lemma really hold
in the case one is considering. In fact, the assertion is very sensitive to the signs: if the signs
are modified, then the role of H and H ′ can be reversed, and we may get a decomposition
of H instead of H ′. (There is a misprint in the last line of the lemma: S ′ should be H ′.)
If one is not completely sure whether the signs of the lemma really hold in the case under
consideration, then it is still possible to use [Sa3, Corollary 4.2.4] at least in the constant
sheaf case with normal crossing singularities as is explained in Remark (i) above.

3. Mixed Hodge modules

In this section we explain a simplified definition of mixed Hodge modules following [Sa29].

3.1. Admissibility condition for weakly mixed Hodge modules. Let X be a smooth
complex algebraic variety, and g ∈ Γ(X,OX). For a weakly mixed Hodge module

(M,W ) = ((M ;F,W ), (K,W )) ∈ MHW(X),

(see (2.3.1)), set

(M̃ ;F,W ) = (ig)
D
∗ (M ;F,W ),

where W is not shifted under the direct image. We have the filtration V on M̃ as in (B.6)
below. We define the filtration L on the nearby and vanishing cycle functors by

(3.1.1) LkψgM := ψgWk+1M, Lkϕg,1M = ϕg,1WkM (∀ k ∈ Z).

Here the filtration F can be neglected when the filtration L is defined.
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We say that M is admissible along g = 0 (or g-admissible for short) if the following two
conditions are satisfied:

(3.1.2) Three filtrations F,W, V on M̃ are compatible filtrations (see (C.2) below).

(3.1.3) There is the relative monodromy filtration W on (ψgM, L), (ϕg,1M, L).

The last condition means that there is a unique filtrationW on ψgM satisfying the following
two conditions:

(3.1.4)
N(WiψgM) ⊂Wi−2ψgM(−1) (∀ i ∈ Z),

N i : GrWk+iGrLkψgM ∼−→ GrWk−iGrLkψgM(−i) (∀ i ∈ N, k ∈ Z),

and similarly for ϕg,1M, see [De7], [StZ]. (Here the filtration F can be forgotten. However,
the last isomorphism is compatible with F by (2.3.3) if (ψfM,W ), (ϕf,1M,W ) ∈ MHW(X).)

Remark. Let X be a smooth complex variety, and X be a smooth compactification such
that D := X \X is a divisor with simple normal crossings. Let

(M,W ) =
(
(M ; , F,W ), (H,W )

)

be a variation of mixed Hodge structure on X such that GrWk M are polarizable pure Hodge
structures of weight k for any k ∈ Z, where (M ;F,W ) is the underlying bi-filtered OX -
module, and (H,W ) is the underlying filtered Q-local system.

Assume the local monodromies of H are all unipotent. Let M be the canonical Deligne
extension of M over X (that is, the residues of the logarithmic connections are all nilpotent,
see [De1]). The filtrations F,W are naturally extended on M by taking the intersection
with M of the open direct images of F,W under the inclusion j : X →֒ X . Let Di be
the irreducible components of D (i ∈ [1, r]). Let Ti be the local monodromy around a
general point of Di, which is defined on the fiber Hx0 at a base point x0 ∈ X , and is
unipotent by hypothesis. (This is well-defined up to a conjugate compatible with W .) Set
Ni := (2πi)−1 log Ti. We denote by L the filtration W on Hx0.

Under the above notation and assumption, (M,W ) is an admissible variation of mixed

Hodge structure in the sense of [StZ], [Ka5] if and only if the following two conditions are
satisfied:

(3.1.5) GrpFGrWk M are locally free OX -modules for any p, k ∈ Z.

(3.1.6) There is the relative monodromy filtration on (Hx0, L) for each Ni.

(The last condition means that (3.1.4) holds with ψgM replaced by Hx0 .) In fact, this
equivalence follows from [Ka5, Theorem 4.5.2].

In the non-unipotent local monodromy case, let ρ : X ′ → X be a generically finite
morphism of complex algebraic varieties such that ρ∗M has unipotent local monodromies
around the divisor at infinity of a compactification of X ′ (by replacing X with a non-empty
open subvariety if necessary). Then M is an admissible variation if and only if ρ∗M is. (In
fact, may assume that ρ is finite étale by shrinking X . Then we can take the direct image.)

3.2. Well-definedness of open direct images. Let D be a locally principal divisor on a
smooth complex algebraic variety X . Set X ′ := X \D with j : X ′ →֒ X the inclusion. We
say that the open direct images j!, j∗ are well-defined for M′ ∈ MHW(X ′), if there are

(3.2.1)
M′

!, M′
∗ ∈ MHW(X), satisfying

rat(M′
!) = j!K

′, rat(M′
∗) = Rj∗K

′ with K ′ := rat(M′),

(see (1.1.6) for rat), and moreover the following condition is satisfied:

(A3) M′
!, M′

∗ are g-admissible for any g ∈ Γ(U,OU) with g
−1(0)red = Dred ∩ U .
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Here U is any open subvariety of X . If the above condition is satisfied, we then define

(3.2.2) j!M′ := M′
!, j∗M′ := M′

∗.

If M′ = j−1M with M ∈ MHW(X) and M is g-admissible, then we have the canonical
morphisms (see [Sa7, Proposition 2.11])

(3.2.3) j!j
−1M → M, M → j∗j

−1M.

3.3. Definition of mixed Hodge modules. LetX be a smooth complex algebraic variety.
The category of mixed Hodge modules MHM(X) is the abelian full subcategory of MHW(X)
in (2.3) defined by increasing induction on the dimension d of the support as follows:

For M ∈ MHW(X) with suppM = Z, we have M ∈ MHM(X) if and only if, for any
x ∈ X , there is a Zariski-open neighborhood Ux of x in X together with gx ∈ Γ(Ux,OUx

)
such that

dimZ ∩ Ux ∩ g−1
x (0) < dimZ,

Z ′
x := Z ∩ Ux \ g−1

x (0) is smooth, and moreover the following two conditions are satisfied:

(3.3.1) M|Z′

x
is an admissible variation of mixed Hodge structure.

(3.3.2) M|Ux
is gx-admissible, and ϕgx,1M|Ux

∈ MHM(Ux).

More precisely, (3.3.1) means that M|U ′

x
is isomorphic to the direct image of an admissible

variation of mixed Hodge structure on Z ′
x by the closed embedding

iZ′

x
: Z ′

z →֒ U ′
x := Ux \ g−1

x (0).

If Z = {x} for x ∈ X , then we set

(3.3.3) MHM{x}(X) := MHW{x}(X) = MHS(Q),

where the first and second categories are respectively full subcategories of MHM(X) and
MHW(X) consisting of objects supported on x, and the last one is the category of graded-
polarizable mixed Q-Hodge structures [De3]. (Here the direct image by {x} →֒ X is used.)

This definition is justified by the following (see [Sa29, Theorem 1]).

Theorem 3.4. Conditions (3.3.1–2) are independent of the choice of Ux, gx. More precisely,

if they are satisfied for some Ux, gx for each x ∈ Z, then (3.3.2) is satisfied for any Ux, gx,
and (3.3.1) is satisfied in case rat(M′) is a local system up to a shift of complex, see (1.1.6)
for rat.

We have moreover the following (see [Sa29, Theorem 2]).

Theorem 3.5. The categories MHM(X) for smooth complex algebraic varieties X are stable

by the canonically defined cohomological functors Hjf∗, Hjf!, Hjf ∗, Hjf !, ψg, ϕg,1, ⊠, D,

where f is a morphism of smooth complex algebraic varieties and g ∈ Γ(X,OX). Moreover

these functors are compatible with the corresponding functors of the underlying Q-complexes

via the forgetful functor rat in (1.1.6).

The proofs of these theorems use Beilinson’s maximal extension together with the stability
by subquotients systematically. The well-definedness of open direct images in (3.3) is reduced
to the normal crossing case, see [Sa29]. Combining Theorem (3.5) with the construction in
[Sa7], we can get the following (see [Sa29, Corollary 1]).

Theorem 3.6. There are canonically defined functors f∗, f!, f
∗, f !, ψg, ϕg,1, ⊠, D, ⊗, Hom

between the bounded derived categories DbMHM(X) for smooth complex algebraic varieties

X so that we have the canonical isomorphisms Hjf∗ = Hjf∗, etc., where f is a morphism

of smooth complex algebraic varieties, g ∈ Γ(X,OX), H
j is the usual cohomology functor of
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the derived categories, and Hjf∗, etc. are as in Theorem (3.5). Moreover the above functors

between the DbMHM(X) are compatible with the corresponding functors of the underlying

Q-complexes via the forgetful functor rat.

3.7. Some notes on references about applications. Since there is no more space to
explain about applications of mixed Hodge modules, we indicate some references here. These
are not intended to be complete.

For applications to algebraic cycles, see [BRS], [BFNP], [MüS], [NS], [RS1], [RS2], [Sa6],
[Sa12], [Sa13], [Sa15], [Sa20], [Sa21], [Sa22], [Sa25], [Sa26], [Sa27], [SS2], etc. Some of them
are related to normal functions. For the latter, see also [Sa8], [Sa17], [Sa30], [SS1], [Schn],
etc.

Related to mixed Hodge structures on cohomologies of algebraic varieties, see [BDS], [DS1],
[DS2], [DS3], [DS5], [DS6], [DSW], [DuS], [OS], [PS], [Sa19], [Sa28], [SZ], etc.

About Bernstein-Sato polynomials, Steenbrink spectra, and multiplier ideals, see [Bu],
[BMS], [BS1], [BS2], [BSY], [DMS], [DMST], [DS4], [DS7], [MP], [Sa10], [Sa14], [Sa16],
[Sa23], [Sa24], [Sa31], etc.

For direct images of dualizing sheaves and vanishing theorems, see [FFT], [Sa11], [Su], etc.
Concerning Hirzebruch characteristic classes, see [BrScY], [MS], [MSS1], [MSS2], [MSS3],
[MSS4], etc.

Appendix A. Hypersheaves

In this appendix we review some basics of hypersheaves, see Convention 3.

A.1. Let X be a complex algebraic variety or a complex analytic space, and A be a subfield
of C. We denote by Db

c(X,A) the derived category of bounded complexes of A-modules with
constructible cohomology sheaves, see [Ve1], etc. In the algebraic case, we use the classical
topology for the sheaf complexes although we assume that stratifications are algebraic.

The category of hypersheaves HS(X,A) is the full subcategory of Db
c(X,A) consisting of

objects K satisfying the condition:

(A.1.1) dim suppHiK 6 −i, dim suppHiD(K) 6 −i (∀ i ∈ Z).

Here HiK is the i th cohomology sheaf of K in the usual sense, and D(K) is the dual of K.
The latter can be defined by

(A.1.2) D(K) := RHomA(K,DX),

with DX the dualizing sheaf in Db
c(X,A). In the smooth case (by taking an embedding into

smooth varieties), it can be defined by

(A.1.3) DX := AX(dX)[2dX ],

with dX := dimX .

By [BBD], HS(X,A) is an abelian category, and there are canonical cohomological functors

(A.1.4) mHi : Db
c(X,A) → HS(X,A) (i ∈ Z),

where the superscript m means the “middle perversity”.

A.2. Nearby and vanishing cycles. Let g be a holomorphic function on an analytic

space X . Let ∆ ⊂ C be a sufficiently small open disk with center 0, and π : ∆̃∗ → ∆∗ be a

universal covering of the punctured disk ∆∗. Let π′ : ∆̃∗ → C be its composition with the
inclusion ∆∗ →֒ C. Let X∞ be the base change of X by π′. We denote by j̃ : X∞ → X the
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base change of π′ by g. Set X0 := f−1(0) with i0 : X0 →֒ X the canonical inclusion. The
nearby and vanishing cycle functors

ψg, ϕg : D
b
c(X,A) → Db

c(X0, A)

are defined as in [De5] by

(A.2.1) ψgK := i∗0Rj̃∗j̃
∗K, ϕgK := C(i∗0K → ψgK) for K ∈ Db

c(X,A),

where we take a flasque resolution of K to define Rj̃∗j̃
∗K and also the mapping cone. By

definition we have a distinguished triangle

(A.2.2) i∗K → ψgK → ϕgK
+1→ .

The action of the monodromy T is defined by γ∗ with γ the automorphism of ∆̃∗ over

∆∗ defined by z 7→ z + 1. Here ∆̃∗ is identified with {z ∈ C | Im z > r} for some r > 0
and π is given by z 7→ t := exp(2πiz). (This is compatible with the usual definition of the

monodromy of a local system L on ∆∗. In fact, (γ∗σ)(z0) = σ(z0 + 1) for σ ∈ Γ(∆̃∗, π∗L)

with z0 a base point of ∆̃∗, and the monodromy is given by the composition of canonical

isomorphisms: Lπ(z0) = (π∗L)z0 = Γ(∆̃∗, π∗L) = (π∗L)z0+1 = Lπ(z0).) There is a nonzero
minimal polynomial for T locally on X , and this implies the Jordan decomposition T = TsTu
(with Ts, Tu polynomials in T locally on X).

Assume K ∈ HS(X,A). Set

(A.2.3) mψgK := ψgK[−1], mϕgK := ϕgK[−1].

Then

(A.2.4) mψgK,
mϕgK ∈ HS(X0, A).

This follows for instance from [Ka3], [Ma3] by using the Riemann-Hilbert correspondence.

In the case A = C, this implies the decompositions in the abelian category HS(X0, A):

(A.2.5) mψgK =
⊕

λ∈C∗

mψg,λK,
mϕgK =

⊕
λ∈C∗

mϕg,λK,

(which are locally finite direct sum decompositions), where

(A.2.6) mψg,λK := Ker(Ts − λ) ⊂ mψgK,
mϕg,λK := Ker(Ts − λ) ⊂ mϕgK.

In the case A ⊂ C, we have only the decompositions

(A.2.7) mψgK = mψg,1K ⊕ mψg, 6=1K,
mϕgK = mϕg,1K ⊕ mϕg, 6=1K,

which are compatible with the above decompositions after taking the scalar extension by
A →֒ C.

By (A.2.2) we have the canonical isomorphisms

(A.2.8) mψg, 6=1K
∼−→ mϕg, 6=1K,

mψg,λK
∼−→ mϕg,λK (λ 6= 1, A = C),

since the action of T on i∗K is trivial.

If K = AX and X is a smooth algebraic variety (or a complex manifold with X0 compact),
then the nearby cycle functor ψgAX is also defined by

(A.2.9) ψgAX = Rρ∗AXc
,

where Xc := f−1(c) ⊂ X with c ∈ C∗ sufficiently near 0, and ρ : Xc → X0 is an appropriate
contraction morphism. The latter is constructed by using an embedded resolution ofX0 ⊂ X .

A.3. Compatibility with the dual functor D. We say that a pairing

K ⊗A K
′ → DX(k)
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is a perfect pairing (with k ∈ Z) if its corresponding morphism

K → D(K ′)(k) = RHomA(K
′,DX)(k)

is an isomorphism in Db
c(X,A). Here DX is as in (A.1.2), and the above correspondence

comes from the isomorphism

(A.3.1) Hom(K ⊗K ′,DX(k)) = Hom(K,RHomA(K
′,DX(k))).

The Tate twist (k) is defined as in [De2, Definition 2.1.13], see also a remark after (2.1.10).
This can be neglected if i =

√
−1 is chosen. However, this twist is quite useful in order

to keep track of “weight”. In fact, if K = K ′ and it has pure weight w, then DK should
have weight −w, and the above k must be equal to −w, since the Tate twist (k) changes the
weight by −2k (loc. cit.).

Assume there is a perfect pairing

S : K ⊗A K
′ → DX(−w) for K,K ′ ∈ HS(X,A).

It induces a canonical pairing

(A.3.2) ψgS : ψgK ⊗A ψgK
′ → ψgDX(−w).

Assume X is smooth (by taking an embedding into a smooth variety), and X0 is also
smooth (by replacing K with its direct image under the graph embedding by g). Then we
have

(A.3.3) ψgDX = AX0(dX − w)[2dX] = DX0(1− w)[2],

and (A.3.2) indues a canonical perfect pairing

(A.3.4) mψgS : mψgK ⊗A
mψgK

′ → DX0(1− w).

Here some sign appears, and this is closely related to the sign in (1.4.8).

The above construction is compatible with the monodromy T , that is,
mψgS = mψgS ◦ (T ⊗ T ).

Since T e is unipotent for some e ∈ Z>0, this implies

(A.3.5) mψgS ◦ (N ⊗ id) = −mψgS ◦ (id⊗N), mψgS = mψgS ◦ (Ts ⊗ Ts),

where T = TsTu is the Jordan decomposition, and N := (2πi)−1 log Tu.

We then get the induced perfect pairings

(A.3.6)

mψg,1S : mψg,1K ⊗A
mψg,1K

′ → DX0(1− w),
mψg, 6=1S : mψg, 6=1K ⊗A

mψg, 6=1K
′ → DX0(1− w),

mψg,λS : mψg,λK ⊗A
mψg,λ−1K ′ → DX0(1− w) (A = C).

For the vanishing cycle functor ϕg, we have the induced perfect pairing

(A.3.7) mϕg,1S : mϕg,1K ⊗A
mϕg,1K

′ → DX0(−w),
satisfying

(A.3.8) mϕg,1S ◦ (can⊗ id) = mψg,1S ◦ (id⊗Var),

where the morphisms

(A.3.9) can : mψg,1K → mϕt,1K, Var : mϕg,1K
′ → mψt,1K

′(−1),

are constructed in [Sa3, Section 5.2.1]. (These correspond respectively to the morphisms
−GrV ∂t, GrV t in (B.6.9) below if K = DRX(M), K ′ = DRX(M

′) with A = C.) We have

(A.3.10) Var ◦ can = N, can ◦Var = N.
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Note that the target of (A.3.7) is different from that of (A.3.6) by the Tate twist, and
mϕg, 6=1S is given by mψg, 6=1S together with the isomorphism (A.2.8). The construction of
(A.3.7) is not quite trivial, see [Sa3, Sections 5.2.1 and 5.2.3 and Lemma 5.2.4]. For instance,
we used there the isomorphism

(A.3.11) i!K ′ = [i∗K ′ → ψg,1K
′ −N−→ ψg,1K

′(−1)],

where i : X0 →֒ X is the inclusion. If we replace this with

(A.3.12) i!K ′ = [i∗K ′ → ψg,1K
′ id−T−→ ψg,1K

′],

then (A.3.8) would hold with Var, N respectively replaced by var, T − id, where the Tate
twist should be omitted (since T − id is not compatible with the weight structure).

Appendix B. D-modules

In this appendix we review some basics of D-modules.

B.1. Holonomic D-modules. Let X be a complex manifold of dimension dX , and M be
a coherent left DX -module. This means that M has locally a finite presentation

⊕pDU → ⊕q DU →M |U → 0,

over sufficiently small open subsets U ⊂ X . (This is equivalent to the condition that M is
quasi-coherent over OX and is locally finitely generated over DX .)

A filtration F on M is called a good filtration if (M,F ) satisfies

(B.1.1) (FpDX)(FqM) ⊂ Fp+qM (p ∈ N, q ∈ Z),

and GrF
•
M is a coherent GrF

•
DX-module. (The last condition is equivalent to the conditions

that each FpM is coherent over OX and the equality holds for q ≫ 0 in (B.1.1).) Here
F on DX is by the order of differential operators, that is, we have for local coordinates
(x1, . . . , xdX )

FpDX =
∑

|ν|6pOX∂
νi
xi
.

The characteristic variety Ch(M) ⊂ T ∗X of a coherent left DX-module M is defined to
be the support of the GrF

•
DX -module GrF

•
M in the cotangent bundle T ∗X . (The latter can

be defined to be the union of the analytic subspaces of T ∗X defined by the ideal of GrF
•
DX

annihilating gi with gi local generators of GrF
•
M . Here GrF

•
DX is identified with the sheaf

of holomorphic functions on T ∗X which are polynomials on fibers of T ∗X → X .) This is
independent of a choice of a good filtration F .

By the involutivity of the characteristic varieties (see [SKK], [Ma2], [Ga]), it is known that

(B.1.2) dimCh(M) > dimX.

(See also [Bo] for the algebraic D-module case.)

A coherent left DX -module M is called holonomic if

(B.1.3) dimCh(M) = dimX.

We will denote by Mhol(DX) the abelian category of holonomic DX-modules.

B.2. Left and right D-modules. We have the transformation between filtered left and
right DX-modules on a complex manifold X of dimension dx which associates the following
to a filtered left DX -module (M,F ):

(B.2.1) (ΩdX
X , F )⊗OX

(M,F ),
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where the filtration F on ΩdX
X is defined by the condition

(B.2.2) GrFp Ω
dX
X = 0 (p 6= −dX).

So the filtration is shifted by −dX . Here it is better to distinguish ΩdX
X and the dualizing

sheaf ωX , since the Hodge filtration F on ωX is usually defined by

(B.2.3) GrFp ωX = 0 (p 6= 0).

By choosing local coordinates x1, . . . , xdX , the sheaf ΩdX
X is trivialized by dx1 ∧ · · · ∧ dxdX

locally on X , and forgetting F , the transformation is given by the anti-involution ∗ of DX

defined by the conditions (see for instance [Ma1]):

(B.2.4) ∂∗xi
= −∂xi

, g∗ = g (g ∈ OX), (PQ)∗ = Q∗P ∗ (P,Q ∈ DX).

For a right DX-module N , the left DX-module corresponding to it is denoted often by

(B.2.5) N ⊗OX
(ΩdX

X )∨.

Here L∨ denotes the dual of a locally free sheaf L in general, that is, L∨ := HomOX
(L,OX).

B.3. Direct images. For a closed embedding i : X → Y of smooth complex algebraic
varieties, the direct image of a filtered right D-module (M,F ) is defined by

(B.3.1) iD∗ (M,F ) = (M,F )⊗DX
(DX →֒Y , F ),

where the sheaf-theoretic direct image is omitted to simplify the notation, and

(B.3.2) (DX →֒Y , F ) := OX ⊗OY
(DY , F ).

For a filtered left D-module (M,F ), the D-module is twisted by ωX/Y and the filtration
F is shifted by r : = codimXY because of the transformation between filtered left and right
D-modules in (B.2). If X is locally defined by y1 = · · · = yr with y1, . . . , ym local coordinates
of Y , then, setting ∂yi := ∂/∂yi, the direct image is locally defined by

(B.3.3) iD∗ (M,F ) = (M,F [r])⊗C (C[∂y1 , . . . , ∂yr ], F ).

For a smooth projection p : Z := X × Y → Y with X, Y smooth, the direct image of a
filtered left DZ-module (M,F ) is defined by the sheaf-theoretic direct image of the relative
de Rham complex DRZ/Y (M,F ), that is,

(B.3.4) pD∗ (M,F ) := Rp∗DRZ/Y (M,F ),

where DRZ/Y (M,F ) is the filtered complex defined by

(B.3.5) (M,F ) → Ω1
Z/Y ⊗OZ

(M,F [−1]) → · · · → ΩdX
Z/Y ⊗OZ

(M,F [−dX ]),
with the last term put at degree 0. The differential of this complex is defined as in the
absolute case (see (1.2.3)), and is locally given as the Koszul complex associated with the
action of ∂/∂xi on M if x1, . . . , xdX are local coordinates of X . (Note, however, that this
does not work for smooth morphisms which are not necessarily smooth projections, since
there is no canonical lift of vector fields on Y to Z.)

In general, the direct image of a filtered right DX-module (M,F ) by a morphism of smooth
varieties f : X → Y is defined by

(B.3.6) iD∗ (M,F ) = pD∗ ◦ (if)
D
∗ (M,F ),

where if : X → X×Y is the graph embedding, and p : X×Y → Y is the second projection
so that f = p ◦ if .

Remarks. (i) We can verify that the direct image in (B.3.6) is naturally isomorphic to the
complex of the induced DY -module associated with the (sheaf-theoretic) direct image of the
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filtered differential complex DRX(M,F ). This means the compatibility between the direct
images of filtered differential complexes and filtered D-modules.

(ii) It seems simpler to use the above construction of direct images instead of the induced
D-module construction as in [Sa3, 3.3.6] for the definition of direct images of V -filtrations.

(iii) The direct image for a morphism of singular varieties is rather complicated. For the
direct image of mixed Hodge modules, we may assume that the morphism is projective by
using a Beilinson-type resolution (see [Bei1, Section 3] and the proof of [Sa7, Theorem 4.3]),
and the cohomological direct image is actually enough. So it is reduced to the case of a
morphism of smooth varieties.

B.4. Dual functor. For a holonomic DX-moduleM on a complex manifold X of dimension
n, its dual D(M) is defined so that

(B.4.1) (ΩdX
X )∨ ⊗OX

D(M) = ExtdXDX
(M,DX).

and D is called the dual functor. This is a contravariant functor. It is well-known that

(B.4.2) ExtpDX
(M,DX) = 0 (p 6= dimX),

and

(B.4.3) D2 = id.

We say that a filtered holonomic DX-module (M,F ) is Cohen-Macaulay if GrF
•
M is a

Cohen-Macaulay GrF
•
-module. In this case, we have

(B.4.4) ExtiGrF• DX

(
GrF

•
M,GrF

•
DX

)
= 0 (i 6= dX),

and the dual filtered DX-module D(M,F ) can be defined so that

(B.4.5) (ΩdX
X , F )⊗OX

D(M,F ) = RHomDX

(
(M,F ), (DX , F [dX])

)
[dX ].

This means that the last filtered complex is filtered quasi-isomorphic to a filtered D-module.

It is known that the dual functor D commutes with the de Rham functor DRX , that is,
for a regular holonomic DX-module M , there is a canonical isomorphism (see for instance
[Sa3, Proposition 2.4.12]):

(B.4.6) D(DRX(M)) = DRX(D(M)).

B.5. Regular holonomic D-modules. Let Z be a closed analytic subset Z of a complex
manifold X . Let IZ ⊂ OX be the ideal of Z. For a bounded complex of DX-modules M •,
set

Hi
[Z]M

• :=
k→
lim ExtiOX

(OX/Ik
Z ,M

•)
(
=

k→
lim ExtiDX

(DX/DXIk
Z ,M

•)
)
,

Hi
[X|Z]M

• :=
k→
lim ExtiOX

(Ik
Z ,M

•)
(
=

k→
lim ExtiDX

(DXIk
Z ,M

•)
)
,

so that we have a long exact sequence of DX-modules

(B.5.1) → Hi
[Z]M

• → HiM • → Hi
[X|Z]M

• → Hi+1
[Z] M

• →
see [Ka1] (and also [Gr] for the algebraic case). Note that H0

[Z]M for a holonomic DX-module
M is the largest holonomic DX-submodule supported in Z.

It is known that a holonomic DX -module M with support Z is regular holonomic if and
only if there is a closed analytic subset Z ′ ⊂ Z together with a proper morphism π : Z̃ → Z

such that dimZ ′ < dimZ, Z \Z ′ is smooth and equi-dimensional, Z̃ is smooth, π induces an

isomorphism over Z \Z ′, π−1(Z ′) is a divisor with normal crossings on Z̃, and moreover, by
setting πX := jZ ◦ π with jZ : Z →֒ X the canonical inclusion, the following two conditions
are satisfied:
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(i) H0
[Z′]M is a regular holonomic DX -module.

(ii) H0
[X|Z′]M = H0(πX)

D
∗ M̃ with M̃ the Deligne meromorphic extension of M |Z\Z′ on Z̃.

We may assume that Z ′ is the union of SingZ and the lower dimensional irreducible
components of Z, and π is given by the desingularization of the union of the maximal
dimensional irreducible components of Z. Note that in the case of algebraic D-modules, we
have H0

[X|Z′]M = j∗j
∗M with j : X \ Z ′ →֒ X the canonical inclusion.

The above criterion is by induction on the dimension of the support by using [De1],
[Ka1]. In fact, it is known that regular holonomic D-modules are stable by subquotients
and extensions in the category of holonomic D-modules and also by the direct images under
proper morphisms, and contain Deligne meromorphic extensions in the normal crossing case.

Let Mrh(DX) ⊂ Mhol(DX) be the full category of regular holonomic DX-modules on a
complex manifold X . Let Db

rh(DX) ⊂ Db(DX) be the full subcategory of bounded complexes
with regular holonomic cohomologies. We have the equivalence of categories, that is, the
Riemann-Hilbert correspondence:

(B.5.2) DRX : Db
rh(DX)

∼−→ Db
c(X,C)

(
inducing DRX :Mrh(DX)

∼−→ HS(X,C)
)
,

see [Ka2], [Ka4], [KK1], [Me1], [Me2], [Me4] (and also [Bo], [HT], etc. for the algebraic case).

Remarks. (i) There are many ways to define the full subcategory Mrh(DX) ⊂ Mhol(DX).
Their equivalences may follow by using the above argument in certain cases.

(ii) There is a nontrivial point about the commutativity of some diagram used in certain
proofs of (B.5.2), and this is studied in [Sa5, Section 4].

(iii) Some people say that (B.5.2) is essentially proved in [KK1] where the full faithfulness
of the de Rham functor is essentially shown (compare the assertion (ii) of Theorem 5.4.1
written in [KK1, p. 825] with [Me3, Proposition 3.3]). The essential surjectivity is not
difficult to show by using the full faithfulness. In [Ka2], [Ka4], a quasi-inverse is explicitly
constructed.

(iv) In the algebraic case, the argument is more complicated, since we have the regularity
at infinity, see [Bo], [De1], [HT], etc. (This is essential to get a canonical algebraic structure

on the vector bundle associated with a local system on a smooth complex variety by using the
Deligne extension, see [De1].) The Riemann-Hilbert correspondence is used in an essential
way in representation theory, see [BB], [BK]. (This point does not seem to be sufficiently
clarified in the last one.)

B.6. V -filtration. For a complex manifold X , set Y := X ×C with t the coordinate of C.
We have the filtration V on DY indexed by Z and such that

(i) V 0DY ⊂ DY is the subring generated by OY , ∂yi , and t∂t,

(ii) V jDY = tj V 0DY , V
−jDY =

∑
06k6j ∂

k
t V

0DY (j ∈ Z>0),

where the yi are local coordinates of Y , and ∂yi := ∂/∂yi.

Let M be a regular holonomic DY -module. We say that M is quasi-unipotent if so is
K := DRY (M), that is, if there is a stratification {S} of Y such that the restrictions of
the cohomology sheaves HiK to each stratum S are C-local systems having quasi-unipotent
local monodromies around S \ S.

For a quasi-unipotent regular holonomic left DY -module M , there is a unique exhaustive
filtration V of Kashiwara [Ka3] and Malgrange [Ma3] indexed discretely by Q and satisfying
the following three conditions:

(iii) V αM (∀α ∈ Q) are locally finitely generated V 0DY -submodules,
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(iv) t V αM ⊂ V α+1M (with equality if α > 0), ∂t V
αM ⊂ V α−1M for any α ∈ Q,

(v) ∂tt− α is locally nilpotent on GrαVM (∀α ∈ Q).

Here we say that V is indexed discretely by Q if there is a positive integer m satisfying

(B.6.1) V αM = V j/mM if (j − 1)/m < α 6 j/m with j ∈ Z.

The existence of V follows from that of b-functions in [Ka1] where the holonomicity is actually
sufficient (see [Sa14, Proposition 1.9]).

From condition (v) we can easily deduce the isomorphisms

(B.6.2) t : GrαVM
∼−→ Grα+1

V M, ∂t : Grα+1
V M

∼−→ GrαVM (∀α 6= 1),

It is also easy to show the following:

(B.6.3) V αM = 0 (∀α > 0) if suppM ⊂ X × {0} ⊂ Y,

(B.6.4) t : V αM
∼−→ V α+1M (∀α > 0),

(B.6.5) M 7→ V αM (or GrαVM) are exact functors (∀α ∈ Q),

see [Sa3, Lemma 3.1.3, Lemma 3.1.4, Corollary 3.1.5], where right D-modules are used so
that the action of t∂t there corresponds to that of −∂tt in this paper by (B.2.4), and an
increasing filtration V• is used there so that Vα = V −α.

Set Z := g−1(0) ⊂ X . Let M ′
Z be the largest holonomic DX-submodule of M supported

in Z, and similarly for M ′′
Z with submodule replaced with quotient module. Then we have

the following canonical isomorphisms of DX-modules (see [Sa3, Proposition 3.1.8]):

(B.6.6)
M ′

Z = Ker
(
t : Gr0V M̃ → Gr1V M̃

)
,

M ′′
Z = Coker

(
∂t : Gr1V M̃ → Gr0V M̃

)
.

Set K := DRY (M) ∈ HS(Y,C). In the notation of (A.2), there are canonical isomorphisms

(B.6.7)
DRX(GrαVM)

∼−→ mψt,e(−α)K (α ∈ (0, 1]),

DRX(Gr0VM)
∼−→ mϕt,1K,

such that exp(−2πi(∂tt − α)) on the left-hand side corresponds to the monodromy T on
the right-hand side, where e(−α) := exp(−2πiα). In particular, −(∂tt − α) corresponds to
N := (2πi)−1 log Tu with T = TsTu the Jordan decomposition. Moreover the morphisms

(B.6.8) −GrV ∂t : Gr1VM → Gr0VM, GrV t : Gr0VM → Gr1VM

respectively correspond to the morphisms can and Var in (A.3.9) with K ′ = K and f = t.
(The sign before GrV ∂t in (B.6.8) comes from the transformation between left and right
D-modules as in (B.2.4).)

In the case M = (ig)
D
∗ OX with ig : X →֒ X ×C the graph embedding by a holomorphic

function g on X , the proof of (B.6.7) is given in [Ma3], and this can be extended to the
general regular holonomic case (see also the proof of [Sa3, Proposition 3.4.12]). There are
canonical morphisms inducing the isomorphisms of (B.6.7) by using logarithmic functions,
and these canonical morphisms are quite important for the proof of the stability theorem of
Hodge modules by direct images.

Appendix C. Compatible filtrations

In this appendix we review some basics of compatible filtrations.
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C.1. Compatible subobjects. Let A be an abelian category, and n ∈ Z>0. We say that
subobjects Bi (i ∈ [1, n]) of A ∈ A are compatible subobjects if there is a short exact n-ple
complex K in A such that

(i) Kp = 0 if |pi| > 1 for some i ∈ [1, n], where p = (p1, . . . , pn) ∈ Zn.

(ii) Kp−1i → Kp → Kp+1i is exact for any p ∈ Zn, i ∈ [1, n].

(iii) K0 = A, K−1i = Bi for any i ∈ [1, n].

Here 1i = ((1i)1, . . . , (1i)n) with (1i)j = δi,j Note that conditions (i) and (ii) respectively
correspond to “short” and “exact”. In the case n = 2, K is the diagram of the nine lemma.

C.2. Compatible filtrations. We say that n filtrations F(i) (i ∈ [1, n]) of A ∈ A form
compatible filtrations if

F ν1
(1)A, . . . , F

νn
(n)A

are compatible subobjects of A for any ν = (ν1, . . . , νn) ∈ Zn.

If n = 2, then any 2 filtrations F(1), F(2) are compatible filtrations. However, this does not
necessarily hold for n > 2.

We can show that if the F(i) (i ∈ [1, n]) form compatible filtrations of A, then their
restrictions to F νA := F ν1

(1) · · ·F
νn
(n)A also form compatible filtrations (see the proof of [Sa3,

Corollary 1.2.13]). Using the short exact complex K with

K0 = F νA, K−1i = F ν+1iA (i ∈ [1, n]),

we can show that

(C.2.1) Grν1F(1)
· · · GrνnF(n)

A does not depend on the order of {1, . . . , n}.

In fact, GrνiF(i)
corresponds to restricting K to the subcomplex defined by pi = 1, and

(C.2.2) Grν1F(1)
· · · GrνnF(n)

A = K1,...,1.

Note that (C.2.1) is not completely trivial even in the case n = 2, where Zassenhaus lemma
is usually used, and we can replace it by the diagram of the nine lemma as is explained
above.

C.3. Strict complexes. Let A• be a complex in A with n filtrations F(i) (i ∈ [1, n]). We

say that
(
A•, F(i) (i ∈ [1, n])

)
is strict if for any j ∈ Z, ν = (ν1, . . . , νn) ∈ Zn, there is a short

exact n-ple complex K as in (C.1.1) such that

(C.3.1) Hj
(⋂

i∈I F
νi
(i)A

•
)
= K−1I

(
∀ I ⊂ {1, . . . , n}

)
,

where 1I = ((1i)I , . . . , (1I)n) with (1I)j = 1 if j ∈ I, and 0 otherwise (and I can be empty
in (C.3.1)).

We can show (see [Sa3, Corollary 1.2.13]) that if
(
A•, F(i) (i ∈ [1, n])

)
is strict, then

(C.3.2) Hj, Grν1F(1)
, . . . , GrνnF(n)

on A• commute with each other (∀ j ∈ Z, ν ∈ Zn).

(C.3.3) The induced filtrations F(i) (i ∈ [1, n]) on HjA• form compatible filtrations.

Note that
(
A•, F(i) (i ∈ [1, 2])

)
is strict if (A•, F(2)), (GrpF(2)

A•, F(1)) (∀ p ∈ Z) are strict,

and F p
(2)A

• = 0 for p≫ 0, where we assume that the filtered inductive limit in A is an exact

functor, see [Sa3, Theorem 1.2.9].
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[De3] Deligne, P., Théorie de Hodge II, Publ. Math. IHES 40 (1971), 5–57.
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[De6] Deligne, P., Théorie de Hodge III, Publ. Math. IHES 44 (1974), 5–77.
[De7] Deligne, P., La conjecture de Weil, Publ. Math. IHES 52 (1980), 137–252.
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243–267.
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