DAG SEMINAR, PROBLEM SET 1 (SEPT. 19-26).

1. Let S be a simplicial set. Show that S satisfies the unique lifting property for inner horns if and only if S is the nerve of a usual category C. Show that the assignment $\mathcal{C} \mapsto N(\mathcal{C})$ is a fully faithful embedding from the category of small categories (considered as a usual category, i.e., we discard natural transformations) to the category of simplicial sets.

2. Show that the assertion of Problem 1 remains valid when you replace the word "category" by "groupoid" and "inner horns" by "all horns".

3. Let $\mathcal{C}_1, \mathcal{C}_2$ be two categories, and $F, G : \mathcal{C}_1 \to \mathcal{C}_2$ be two functors. Show that the set of natural transformations $F \Rightarrow G$ can be identified with the set of maps of simplicial sets $\Delta^1 \times N(\mathcal{C}_1) \to N(\mathcal{C}_2)$ that restrict to F and G under $\Delta^0 \Rightarrow \Delta^1$.

4. Recall the simplicial category $\mathfrak{C}([n])$.

(a) Convince yourself that for a simplicial category \mathcal{C} , maps of simplicial categories $\mathfrak{C}([2]) \to \mathcal{C}$ are the same as a triple of objects $c_1, c_2, c_3 \in \mathcal{C}$, maps $f_{i,j} \in \operatorname{Hom}(c_i, c_j)_{0,i} < j$ and a homotopy $g: f_{2,3} \circ f_{1,2} \Rightarrow f_{1,3} \in \operatorname{Hom}(c_1, c_3)_1$.

(b) Convince yourself that defining a map $\mathfrak{C}([3]) \to \mathfrak{C}$ is the same as specifying objects $c_i \in \mathfrak{C}, i = 1, 2, 3, 4$, maps $f_{i,j} \in \operatorname{Hom}(c_i, c_j)_0, i < j$, and a data of "coherent homotopy" between them (or, rather, take it as a definition of coherent homotopy and unravel what it it means).

5. Recall the simplicial nerve functor $N_{\cdot}: \operatorname{Cat}_{\Delta} \to \operatorname{Set}_{\Delta}$,

$$N_n(\mathcal{C}) := \operatorname{Hom}_{\operatorname{Cat}_{\Delta}}(\mathfrak{C}([n]), \mathcal{C}).$$

(a) What's the precise connection between the simplicial and usual nerve constructions?

(b) Show that the functor N above admits a left adjoint, denoted \mathfrak{C} . What's the value of \mathfrak{C} on $\Delta^n \in Set_{\Delta}$?

(c) Put (b) in the following framework. Let C_1 be a small category, and C_2 category closed under colimits. Then colimit preserving functors $\operatorname{Funct}(\mathcal{C}_1^{op}, \operatorname{Set}) \to \mathcal{C}_2$ are in bijection with functors $\mathcal{C}_1 \to \mathcal{C}_2$.

(d) Let A be a poset, considered as an ordinary category. Consider the simplicial set N(A). Describe $\mathfrak{C}(N(A))$.

6. Let \mathcal{C} be a simplicial category such that for any $c_1, c_2 \in \mathcal{C}$, the simplicial set Hom. (c_1, c_2) is Kan. Show that $N(\mathcal{C}) \in Set_{\Delta}$ is a quasi-category.

Date: October 11, 2010.