ALMOST COHERENT MODULES AND ALMOST COHERENT SHEAVES

BOGDAN ZAVYALOV

ABSTRACT. We extend the theory of almost coherent modules that was introduced in “Almost
Ring Theory” [GR03] by Gabber and Ramero. Then we globalize it by developing a new theory of
almost coherent sheaves on schemes and on a class of “nice” formal schemes. We show that these
sheaves satisfy many properties similar to usual coherent sheaves, i.e. the Almost Proper Mapping
Theorem, the Formal GAGA, etc. We also construct an almost version of the Grothendieck twisted
image functor f' and verify its properties. Lastly, we study sheaves of p-adic nearby cycles on
admissible formal models of rigid-analytic varieties and show that these sheaves provide examples
of almost coherent sheaves. This gives a new proof of the finiteness result for étale cohomology of
proper rigid-analytic varieties obtained before in the work of Peter Scholze “p-adic Hodge Theory

For Rigid-Analytic Varieties” [Sch13].

CONTENTS
1. Introduction
1.1. Motivation
1.2.  Foundations of Almost Mathematics (Sections 2-5)
1.3. p-adic Nearby Cycles Sheaves (Section 6)
1.4. Acknowledgements
1.5. Notation
2. Almost Commutative Algebra
2.1.  The Category of Almost Modules
2.2.  Basic Functors on the Categories of Almost Modules
2.3. Derived Category of Almost Modules
2.4. Basic Functors on the Derived Categories of Almost Modules
2.5.  Almost Finitely Generated and Almost Finitely Presented Modules
2.6.  Almost Coherent Modules and Almost Coherent Rings
2.7.  Almost Noetherian Rings
2.8. Base Change for Almost Modules
2.9.  Almost Faithfully Flat Algebras
2.10.  Almost Faithfully Flat Descent
2.11. (Topologically) Finite Type K*-Algebras
2.12.  Almost Finitely Generated Modules over Adhesive Rings
2.13. Modules Over Topologically Finite Type K T-Algebras
3. Almost Mathematics on Ringed Sites
3.1.  The Category of O%-modules
3.2. Basic Functors on the Category Of O%-Modules
3.3. The Projection Formula
3.4. Derived Category of O%-Modules
3.5. Basic Functors on the Derived Categories of O%-modules

4. Almost Coherent Sheaves on Schemes and Formal Schemes

1



4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

BOGDAN ZAVYALOV

Schemes. The Category of Almost Coherent O%-modules

Schemes. Basic Functors on Almost Coherent O%-modules
Schemes. Approximation of Almost Finitely Presented O%-modules
Schemes. Derived Category of Almost Coherent O%-modules
Formal Schemes. The Category of Almost Coherent O%-modules
Formal Schemes. Basic Functors on Almost Coherent O%-modules
Formal Schemes. Approximation of Almost Coherent O%-modules

4.8. Formal Schemes. Derived Category of Almost Coherent O%-modules
4.9. Formal Schemes. Basic Functors on the Derived Categories of O%-modules
5. Cohomological Properties of Almost Coherent Sheaves

5.1.  Almost Proper Mapping Theorem

5.2. Characterization of Quasi-Coherent, Almost Coherent Complexes
5.3. The GAGA Theorem

5.4. The Formal Function Theorem

5.5.  Almost Version of Grothendieck Duality

6. Almost Coherence of “p-adic Nearby Cycles”

6.1. Introduction

6.2. Digression: Geometric Points

6.3. Applications

6.4. Perfectoid Covers of Affinoids

6.5. Strictly Totally Disconnected Covers of Affinoids

6.6. Perfectoid Torsors

6.7. Nearby Cycles are Quasi-Coherent

6.8. Nearby Cycles are Almost Coherent for Smooth X and small &€
6.9. Nearby Cycles are Almost Coherent for General X and &

6.10. Cohomological Bound on Nearby Cycles

6.11. Proof of Theorem 6.1.2

6.12. Proof of Theorem 6.1.9

6.13. Proof of Theorem 6.1.11

Appendix

Appendix A. Derived Complete Modules
Appendix B. Perfectoid Things

B.1.
B.2.

Perfectoid Rings
Universal Perfectoid Cover

Appendix C. The pro-étale and v-sites

C.1.
C.2.
C.3.
CA4.
C.5.

The v-topology

The Quasi-proétale Topology
Structure Sheaves

Vector Bundles in Different Topologies
Etale Coefficients

Appendix D. Achinger’s Result in the Non-Noetherian Case
References

81

84

88

90

95
102
105
108
112
115
115
119
121
127
130
133
133
137
140
145
149
151
154
156
162
164
166
167
170
173
173
175
175
177
181
181
184
188
194
198
200
205



ALMOST COHERENT MODULES AND ALMOST COHERENT SHEAVES 3

1. INTRODUCTION

1.1. Motivation. The purpose of this paper is threefold. The first goal is to develop a sufficiently
rich theory of almost coherent sheaves on schemes and a class of formal schemes. The second
goal is to provide the reader with one interesting source of examples of almost coherent sheaves.
Namely, we show that the complex of p-adic nearby cycles Ry, (€) has quasi-coherent, almost
coherent cohomology sheaves for any admissible formal O¢-scheme X and O;O /p-vector bundle €
(see Definition 6.1.1).

Before we discuss the content of each chapter in detail, we explain the motivation behind the
work done in this manuscript.

The first source motivation comes from the work of P. Scholze on the finiteness of F)-cohomology
groups of proper rigid-analytic varieties over p-adic fields (see [Schl13]). The second source of
motivation (clearly related to the first one) is the desire to set up a robust enough theory of almost
coherent sheaves that is crucially used in our proof of Poincaré Duality for Fp-local systems on
smooth and proper rigid-analytic varieties over p-adic fields in [Zav21a].

We start with the work of P. Scholze. In [Sch13], he showed that there is an almost isomorphism
H'(X,F,) @ Oc/p ~" H'(X, 0%, /p)

for any proper rigid-analytic variety X over a p-adic algebraically closed field €. This almost
isomorphism allows us to reduce studying certain properties of H*(X, F,) for a p-adic proper rigid-
analytic space X to studying almost properties of the cohomology groups H'(X, O}ét /p), or the full

complex RI'( X, O}ét /p). For instance, Scholze shows that H' (X, F)) are finite groups by deducing
it from almost coherence of H'(X, O}ét /p) over O¢/p.

Scholze’s argument does not involve any choice of an admissible formal model for X and is
performed entirely on the generic fiber via an elaborate study of cancellations in certain spectral
sequences. A different natural approach to studying RI'(X, O}ét /p) is to rewrite this complex as

RI (X, 0%, /p) ~RT (350, Rt.O%, /p)
for a choice of an admissible formal Oc-model X and the natural morphism of ringed sites
t: (Xew, 0%, /P) = (Xo0zar; Ox,)

with Xg the mod-p fiber of X. Then we can separately study the complex Ri, (O;r(ét / p) and the

functor RI'(X, —). In order to make this strategy work, we develop the notion of almost coherent
sheaves on X and Xy and show its various properties similar to the properties of coherent sheaves.

This occupies Chapters 2-5. Chapter 6 is devoted to showing that the complex Ri, (O}ét / p) (and,
more generally, “nearby cycles” of any O}ét /p-vector bundle) has almost coherent cohomology

groups. Combining it with the Almost Proper Mapping Theorem 1.2.9, we reprove [Sch13, Lemma
5.8 and Theorem 5.1] in a slightly greater generality.

Theorem 1.1.1. (Lemma 6.3.4, Lemma 6.3.7, and Lemma C.5.10) Let C be a p-adic algebraically
closed non-archimedean field, X a proper rigid-analytic variety over C, and F a Zariski-constructible
sheaf of F,-modules (see Definition 6.1.7). Then

(1) H(X, F ®F, (‘);}ét /p) is an almost finitely generated O¢/p-module for i > 0;
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(2) the natural morphism
H' (X,F) ®p, Oc/p — H' (X, F ©p, 0%, /p)

is an almost isomorphism for ¢ > 0;
(3) H'(X,F ®F, O}ét/p) is almost zero for i > 2 dim X.

Theorem 1.1.2. (Corollary 6.3.8)" In the notation of Theorem 1.1.1. Then
(1) HY(X,J) is a finite group for i > 0;
(2) HY(X,F) ~ 0 for i > 2dim X.

Now we discuss the role this paper plays in our proof of Poincaré Duality in [Zav21a]. We start
with a precise formulation of this result.

Theorem 1.1.3. [Zav21la] Let C be a p-adic algebraically closed non-archimedean field, X a rigid-
analytic variety over C of pure dimension d, and L an Fj-local system on Xg. Then there is a
canonical trace map

tx: B (X, F,(d) > F,

such that the induced pairing
H (X, L) @ H*7/(X, LY(d)) == H*(X,F,(d)) = F,
is perfect.

The essential idea of the proof (at least for L = F,) is to use Theorem 1.1.1 to reduce Poincare
Duality to the almost duality on the complex RI'(X, (‘);}ét /p). This complex is studied via the
isomorphism

RI(X,0%, /p) = R (X, Rt 0%, /p).
Roughly, we separately show almost duality for the “nearby cycles functor” Rit, and the almost
version of Grothendieck Duality for the O¢/p-scheme Xy. In order to even formulate these things
precisely, one needs to have a good way to globalize almost (coherent) modules to almost (coherent)
sheaves in a way that almost coherent sheaves share many properties similar to coherent sheaves

and the “nearby cycles” Ri, (O;}ét / p) (and its integral counterpart) fit into this theory.

The main content of Sections 2-5 is to develop this general theory, and the main content of
Section 6 is to verify that “nearby cycles” are almost coherent.

That being said, we now discuss content and the main results of each section in more detail.

1.2. Foundations of Almost Mathematics (Sections 2-5). Section 2.1 is devoted to defining
the category of almost modules and studying its main properties. This section is very motivated
by [GRO3]. However, it seems that some results that we need later in the paper are not present
in [GRO3], so we give an (almost) self-contained introduction to almost commutative algebra. We
define the notions of the category of almost modules (see the discussion after Corollary 2.1.4),
their tensor products (see Proposition 2.2.1(1)), almost Hom functor alHompa(—, —) (see Propo-
sition 2.2.1(3)), almost finitely generated (see Definitions 2.5.1), almost finitely presented (see
Definition 2.5.2), and almost coherent modules (see Definition 2.6.1). We show that almost coher-
ent modules satisfy most natural properties similar to the properties of classical coherent modules.
We summarize some of them in the theorem below:

ITheorem 1.1.2 can also be easily deduced from the results of [BH21].
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Theorem 1.2.1. (Lemma 2.6.8, Propositions 2.6.18, 2.6.19, 2.6.20, Theorem 2.10.3, and Lemma 2.10.5)
Let R be a ring with an ideal m such that m == m ®z m is R-flat and m? = m.

(1) Almost coherent R%-modules form a Weak Serre subcategory of Mod$%.

(2) If R is an almost coherent ring (i.e. free rank-1 R-module is almost coherent), and M®, N®
two objects in D, (R)®. Then M ®%, N* € D_ . (R)"

acoh

(3) If R is an almost coherent ring, and M® € D, (R)%, N® € D}, (R)*. Then
RalHompga (M N%) € D} (R)*.

acoh

(4) If R is an almost coherent ring, M* € D__,(R)*, N® € D*(R)%, and P® an almost flat

R%module. Then the natural map RHompa (M, N%) ®@pa P* — RHompga (M®, N* ® ga P*)
is an almost isomorphism.

(5) Descent of almost modules along an almost faithfully flat morphism R — S is always
effective.

(6) Let R — S be an almost faithfully flat map, and let M® be an R%module. Suppose
that M* ®pga S is almost finitely generated (resp. almost finitely presented, resp. almost
coherent) S%module. Then so is M.

In case, R is I-adically adhesive for some finitely generated ideal I (see Definition 2.12.1), we
can show that almost finitely generated R-modules satisfy a (weak) version of the Artin-Rees
Lemma, and behave nicely with respect to the completion functor. These results will be crucial for
globalizing the theory of almost coherent modules on formal schemes.

Lemma 1.2.2. (Lemma 2.12.6 and Lemma 2.12.7) Let R be an I-adically adhesive ring with an
ideal m such that 7 C m, m? = m, and m ®z m is R-flat (see Set-up 2.12.3). Let M be an almost
finitely generated R-module. Then

(1) for any R-submodule N C M, the induced topology on N coincides with the I-adic topology;

(2) The natural morphism M ®p R — M is an isomorphism. In particular, if R is [-adically
complete, then any almost finitely generated R-modules is also [-adically complete.

In case R is a (topologically) finitely generated algebra over a perfectoid valuation ring K (see
Definition B.2), we can say even more. In this case, it turns out that R is almost noetherian (see
Definition 2.7.1), so the theory simplifies significantly. Another useful result that we can obtain in
this situation is that it suffices to check that a derived complete complex is almost coherent after
a taking the derived quotient by a pseudo-uniformizer . This is very handy in practise because it
reduces many (subtle) integral question to the torsion case where there are no topological subtleties.

Theorem 1.2.3. (Theorem 2.11.4, Theorem 2.11.8, Theorem 2.13.2) Let K* be a perfectoid
valuation ring with a pseudo-uniformizer w as in Lemma B.5, and R a K *-algebra. Then

(1) R is almost noetherian if R is (topologically) finite type over KT;

(2) if R is a topologically finite type K *-algebra and M is a derived w-adically complete object
in D(R) such that [M/w] € DY (R/w). Then M € D% (R).

acoh acoh

We discuss the extension of almost mathematics to ringed sites in Section 3. The main goal
is to generalize all constructions from almost mathematics to a general ringed site. We define a
notion of almost O x-modules on a ringed site (X, Ox) (see Definition 3.1.9) and of O%-modules
(see Definition 3.1.10) and show that they are equivalent:
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Theorem 1.2.4. (Theorem 3.1.20) Let R be as in Theorem 1.2.1 and (X,0x) a ringed R-site.
Then the functor

(—)*: Modg, — Modoq,
is an equivalence of categories.

We also define the functors —®@—, Homgs (—, —), alHomge (—, —), MO; (—,—), alﬂ-(omog( (—,—),
f«, and f* on the category of O%-modules. We refer to Section 3.2 for an extensive discussion of
these functors. Then we study the derived category of O%-modules and derived analogues of the
functors mentioned above. This is done in Sections 3.4 and 3.5.

We develop the theory of almost finitely presented and almost (quasi-)coherent sheaves on
schemes and a class of formal schemes in Section 4.1. The main goal is to show that these sheaves
behave similarly to the classical coherent sheaves in many aspects.

We roughly define almost finitely presented O%-modules as modules such that, for any finitely
generated sub-ideal mg C m, can be locally approximated by finitely presented O x-modules up to
modules annihilated by mg (see Definition 4.1.4 for a precise definition). Sections 4.1-4.4 are mostly
concerned with local properties of these sheaves. We summarize some of the main results below:

Theorem 1.2.5. (Corollary 4.1.12, Theorem 4.4.6, Lemmas 4.4.8, 4.4.7, 4.4.9, and 4.4.10) Let R
be a ring with an ideal m such that m == m ® g m is R-flat and m? = m.

(1) For any R-scheme X, almost coherent O%-modules form a Weak Serre subcategory of
Modg , -
(2) The functor
(=): Du(R)® — Dgge(Spec R)*
is a t-exact equivalence of triangulated categories for * € {“ ” acoh}. Its quasi-inverse

is given by RI'(Spec R, —). In particular, an almost quasi-coherent ngec p-module F¢ is

almost coherent if and only if F*(Spec R) is an almost coherent R%-module.

—_—

(3) The natural morphism M¢ ®IL%G Na — Ma ®égpecR N is an isomorphism for any M N® €
D(R)“.

(4) Let that f: Spec B — Spec A is an R-morphism of affine schemes. Then Lf*(m) is
functorially isomorphic to M? ®%, B® for any M € D(A).

(5) Let f: X — Y be a quasi-compact and quasi-separated morphism of R-schemes. Suppose
that Y is quasi-compact. Then R f, carries D}_.(X)? to D% .(Y)* for any « € {“”, — +,b}.

aqgc aqc

(6) Suppose that R is almost coherent. Then the natural maps

RalHom ga (M, N) — Ral{om, R(zTﬁ, N9),
pec

RHompa (M®, N*) — RHomg, (M, N*)
pec
are almost isomorphisms for M* € D, (R)*, N* € DT(R)".

We also establish one non-trivial global result on almost finitely presented O%-modules. Namely,
we show that even though the definition of almost finitely presented O%-modules is local, we can
find good approximations by finitely presented O x-modules globally under some mild assumption
on X. This result is systematically used in Chapter 5 to get global properties of almost coherent
O%-modules.
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Theorem 1.2.6. (Corollary 4.3.5) Let X be a quasi-compact and quasi-separated R-scheme, and
let F be an almost quasi-coherent O x-module. Then F is almost finitely presented (resp. almost
finitely generated) if and only if for any finitely generated ideal my C m there is a morphism
f:+ G — F such that G is a quasi-coherent finitely presented (resp. finitely generated) Ox-module ,
mg(ker f) = 0 and mg(Coker f) = 0.

We now discuss the content of Sections 4.5-4.9. The main goal there is to prove analogues of
the results in Theorem 1.2.5 for a class of formal schemes. In order to achieve this we restrict our
attention to the class of topologically finitely presented schemes over a topologically universally
adhesive ring R (see Setup 4.5.1). This, in particular, includes admissible formal schemes over a
mixed characteristic, p-adically complete rank-1 valuation ring O¢ with algebraically closed fraction
field C.

One of the main difficulties in developing a good theory of almost coherent O%-modules on a
formal scheme X is that there is no good abelian theory of “quasi-coherent” on X. This was an
important auxillary tool used in developing the theory of almost coherent sheaves on schemes that
does not have an immediate counterpart in the world of formal schemes.

We overcome this issue in two different ways: we use the notion of adically quasi-coherent
Ox-modules introduced in [FK18] (see Definition 4.5.2) and the notion of derived quasi-coherent
Ox-modules introduced in [Lurl8] (see Definition 4.8.1). The first notion has the advantage that
every adically quasi-coherent Ox-module is an actual Ox-module, but these modules do not form
a Weak Serre subcategory inside Modg,, so they are not always very useful in practice. The
latter definition has the advantage that derived quasi-coherent Ox-modules form a triangulated
subcategory inside D(X), it is quite convenient for certain purposes. However, derived quasi-
coherent Ox-modules are merely objects of D(X) and not actual Ox-modules in the classical sense.
Therefore, we usually use adically quasi-coherent Ox-modules when needed except for Section 4.8,
where the notion of derived quasi-coherent Ox-modules seems to be more useful for our purposes.
In particular, it allows us to define the functor

(_)LAf Dacon(A)* = Dacon(Spf A)*

for any topologically finitely presented R-algebra A in a way that “extends” the classical functor
(—)2: Mod¥°" — Modp, (see Definition 4.8.7 and Lemma 4.8.13).

Theorem 1.2.7. (Lemma 4.5.23, Corollary 4.8.16, Lemmas 4.9.4, 4.9.3, 4.9.4) Let R be a ring with
a finitely generated ideal I such that R is [-adically complete, I-adically topologically universally
adhesive, I-torsion free with an ideal m such that 7 C m, m®> = m and m := m ®p m is R-flat.

(1) For any topologically finitely presented formal R-scheme X, almost coherent O%-modules
form a Weak Serre subcategory of Modg...

(2) The functor
RI(Spf R, —): Dacon(Spf R)* = Dacon(R)"

is a t-exact equivalence of triangulated categories.

(3) The natural morphism (M? @k, N4)LA — (Me)LA ®égpf B (N®)EA is an isomorphism for
any for any M* N® € Dgeon(R)%.

(4) Let §: Spf B — Spf A be a morphism of topologically finitely presented affine formal R-
schemes. Then Lf* ((M “)LA) is functorially isomorphic to (M® ®@%, B*)L2 for any M® €
Dcon(A)%.
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(5) The natural map

(RalHompe (M?, N))** — RalFom, <(M“)LA : (N“)LA> ,
P

(RHom s (M, N%)"* — R¥Homo, ((M“)LA , (N“)LA)

are almost isomorphisms for M* € D, (R)*, N € DI, (R)*.

acoh acoh

Similarly to the case of schemes, almost coherent sheaves on formal schemes satisfy the global
approximation property:

Theorem 1.2.8. (Theorem 4.7.6) Let R be as in Theorem 1.2.7, and X be a finitely presented
formal R-scheme, F an almost finitely generated (resp. almost finitely presented) Ox-module. Then,
for any finitely generated ideal my C m, there is an adically quasi-coherent, finitely generated (resp.
finitely presented) Ox-module § and a map ¢: § — F such that my(Coker ¢) = 0 and mq(ker ¢) = 0.

We discuss global properties of almost coherent sheaves in Chapter 5. Namely, we generalize
certain cohomological properties of classical coherent sheaves to the case of almost coherent sheaves.
We start with the almost version of the Proper Mapping Theorem:

Theorem 1.2.9. (Theorem 5.1.3) Let R be a universally coherent” ring with an ideal m such that
m:=m®prmis R-flat and m?> = m. And let f: X — Y be a proper morphism of finitely presented
R-schemes with quasi-compact Y. Then Rf, carries D* ,(X)% to D* . (Y)® for « € {“”,—, +,b}.

acoh acoh

The essential idea of the proof is to reduce Theorem 1.2.9 to the classical Proper Mapping
Theorem over an universally coherent base [F'I{18, Theorem 1.8.1.3]. The key input to make this
reduction work is Theorem 1.2.6.

We also prove a version of the Almost Proper Mapping Theorem for a morphism of formal
schemes:

Theorem 1.2.10. (Theorem 5.1.6) Let R be a ring with a finitely generated ideal I such that R
is I-adically complete, I-adically topologically universally adhesive an ideal m such that I C m =
U2, (w'/™) for a non-zero divisor w € R, m?> = m and m := m @z m is R-flat. And let f: X — 9
be a proper morphism of finitely presented formal R-schemes with quasi-compact Y. Then Rf.
carries D* (X)) to D*  ()* for x € {“”, — +,b}.

acoh acoh

Then we provide a characterization of quasi-coherent, almost coherent complexes on finitely
presented, separated schemes over a universally coherent base ring R. This is an almost analogue
of [Sta2l, Tag 0CSI]. We follow the same proof strategy but adjust it in certain places to make it
work in the almost setting. This result is important for us as it will later play a crucial role in the
proof of the Formal GAGA Theorem for almost coherent sheaves.

Theorem 1.2.11. (Theorem 5.2.3) Let R be a universally coherent® ring with an ideal m such
that m :== m @z m is R-flat and m? = m. And let X be a separated, finitely presented R-scheme.
Let I € D_.(X) be an object such that

Riomy (?,%) € D, (R)

acoh
for any P € Perf(X). Then F € D X).

q_c,acoh(

2Any finitely presented R-algebra A is coherent
3Any finitely presented R-algebra A is coherent
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Theorem 1.2.12. (Corollary 5.3.3) Let R be as in Theorem 1.2.10, and X a finitely presented
R-scheme. Then the functor
Le*: Zcoh(X)a — DZcoh(X)a

induces an equivalence of categories for x € {“”, 4, —, b}.

We note that the standard proof of the classical formal GAGA theorem via projective methods
has no chance to work in the almost coherent situation (due to a lack of “finiteness” for almost
coherent sheaves). Instead, we “explicitly” construct a pseudo-inverse to Lc¢* in the derived world
by adapting an argument from the paper of J. Hall [Hallg].

The last thing we discuss in Section 5 is the almost version of the Grothendieck Duality. This
is an important technical tool in our proof of Poincaré Duality in [Zav2la]. So we develop some
foundations of the f' functor in the almost world in this manuscript. We summarize the main
properties of this functors below:

Theorem 1.2.13. (Theorem 5.5.8) Let R be as in Theorem 1.2.9, and FPSg be the category of
finitely presented, separated R-schemes. Then there is a well-defined functor (—)! from FPSg into
the 2-category of categories such that

(1) (X)' =Dg(X)°,

aqc

(2) for a smooth morphism f: X — Y of pure relative dimension d, f' ~ Lf*(—) ®L§( Qﬁ(/y[d].

(3) for a proper morphism f: X — Y, f'is right adjoint to Rf,: D' (X)* - D' (V)

acoh acoh

1.3. p-adic Nearby Cycles Sheaves (Section 6). The main goal of Section 6 is to give the
main non-trivial example of almost coherent sheaves. These are the so-called p-adic nearby cycles
sheaves.

We fix a p-adic perfectoid field K, and a rigid-analytic variety X over K with an admissible
formal Og-model X.

The rigid-analytic variety X comes with a morphism of ringed sites
v (X2,0%,) = (Xzar, 0x)

and
v: (X?, O}O/p) — (XO,Zara OXO)

where Xg is the mod-p fiber of X and X is the v-site of the associated diamond (see Appendix C.1)
and O}O its integral “untilted” structure sheaf (see Definition C.3.1).

The main goal of Section 6 is to show that certain nearby cycles sheaves produce examples
of almost coherent sheaves. More precisely, we show that, for any O}O/ p-vector bundle & (see
Definition 6.1.1), the complex Rv,€ has quasi-coherent and almost coherent cohomology sheaves.
We also give a bound on its almost cohomological dimension.

Theorem 1.3.1. (Theorem 6.1.2) Let X an admissible formal Og-scheme with adic generic fiber
X of dimension d and mod-p fiber Xy, and € an O}Q /p-vector bundle. Then

(1) the nearby cycles Rv,.€ € D (Xp) and (Rw,€)? € p %2l (X0)%

gc,acoh acoh

(2) for an affine admissible X = Spf A with the adic generic fiber X, the natural map

H ()Z){e) ~ Riy, (&)

is an isomorphism for every i > 0;
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(3) the formation of Riv,(€) commutes with étale base change, i.e., for any étale morphism
f: 9 — X with adic generic fiber f: Y — X, the natural morphism

fo (R'vx.4(€)) = Rlvp.e (Elyo)
is an isomorphism for any i > 0;
(4) if X has an open affine covering X = (J;c; &; such that €|, o is very small (see Defini-
tion 6.1.1), then
(Rv, &) € Dl (%X0)

acoh
(5) if € is small, there is an admissible blow-up X’ — X such that X’ has an open affine covering
X' = ;e Yi such that 8’(111 )¢ is very small.
In particular, if € is small, there is a cofinal family of admissible formal models {X}};cr
of X such that
R e “ Dl (g ya
V%;v* € acoh( Z,O) .
for each 7 € I.

Remark 1.3.2. We note that Theorem 1.3.1 implies that the nearby cycles complex Rv, € is
quasi-coherent on the nose (as opposed to being almost quasi-coherent). This is quite unexpected
to the author since all previous results on the cohomology groups of OF/p were only available in
the almost category.

Remark 1.3.3. We do not know if an admissible blow-up X’ — X in the formulation of Theo-
rem 1.3.1 is really necessary or just an artefact of the proof. More importantly, we do not know
if, for every O}Q /p-vector bundle &, there is an admissible formal model X such that the “nearby

cycles” sheaf Rvy € lies in pld (%0)“.

acoh
In the proof of Theorem 1.3.1, we crucially use the following result that is essentially due to
B. Heuer (see [Heu] for a similar result in a slightly different level of generality).

Theorem 1.3.4. (Corollary C.4.10) Let X be a perfectoid or locally noetherian adic space over
Spa (Qp,Zy). Then the categories Vecty, Vect¥, and Vect’ (see Definition C.4.1) are equivalent.
Furthermore, if X is affinoid, and € is an (‘);r(<> /p-vector bundle. Then there is

(1) a finite étale surjective morphism X’ — X;

(2) a finite covering by rational subdomains {X/ — X'}icr;

(3) a finite étale surjective morphism X! — X
such that €|xy is a trivial (‘);r(<> /p-vector bundle.

Another family of sheaves for which we can establish a good behaviour of “nearby cycles” is
sheaves of the form J ® O;Q /p for a Zariski-constructible étale sheaf of F)-modules (see Defini-
tion 6.1.7). Namely, in this case we can get a better cohomological bound, and also show that
nearby cycles almost commute with proper base change as this happens in algebraic geometry.
Theorem 1.3.5. (Theorem 6.1.9 and Lemma 6.3.9) Let X be an admissible formal Og-scheme
with adic generic fiber X of dimension d and mod-p fiber Xy, and F € D[ZTC’S] (X;Fp). Then

(1) there is an isomorphism R, (3’" ® O}ér /p) ~Rv, (F® (‘);r(0 /p);

(2) the nearby cycles Rv, (F ® (‘)}O/p) e Dt (X0), and Ru, (F® O}O/p)a e Do (X0)%

qc,acoh acoh
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(3) for an affine admissible X = Spf A, the natural map

H (X9,5 0 0% /p) = Riv. (F 2 0%, /p)
is an isomorphism for every i > 0;

(4) the formation of R'v, (F ® O}Q /p) commutes with étale base change, i.e., for any étale
morphism §: ) — X with adic generic fiber f: Y — X, the natural morphism

i (Rive . (F@ 0% /p)) = Rivg . (F'F @07, /p)

is an isomorphism for any i > 0;

(5) if f: X — Q) is a proper morphism of admissible formal O x-schemes with adic generic fiber
f: X =Y, then the natural morphism

Rl/g»)j* (Rf*9:® O;;Q/p) — Rf07* (RI/;Q* (?@ O}O/p))
is an almost isomorphism.
We also show an integral version of Theorem 1.3.1:

Theorem 1.3.6. (Theorem 6.1.11) Let X be an admissible formal Og-scheme with adic generic
fiber X of dimension d, and € an O}O—vector bundle. Then

(%) and (Rv,&)® € D% (x)a,

acoh

(1) the nearby cycles R, € D

qc,acoh

(2) for an affine admissible X = Spf A with the adic generic fiber X, the natural map
. A )
i (Xy, 8) — Riv, ()

is an isomorphism for every i > 0;

(3) the formation of Riv,(€) commutes with étale base change, i.e., for any étale morphism
f: Y — X with adic generic fiber f: Y — X, the natural morphism

P (R'vx(€)) = Rivy. (Elyo)
is an isomorphism for any i > 0;

(4) if X has an open affine covering X = (J;c; U; such that €|, o is very small (see Defini-
tion 6.1.10), then

(Rv,€)* € D4 (x)e,

acoh

(5) if &€ is small, there is an admissible blow-up X’ — X such that X’ has an open affine covering
X' = ;e Yi such that 8|(ui x)¢ 18 very small.

In particular, if € is small, there is a cofinal family of admissible formal models {X/};cr
of X such that

(Ruy, . £) € DI (7).

acoh

for each 7 € I.

Theorem 1.3.6 has an interesting consequence saying that v-cohomology groups of any O}Q—
vector bundle are almost coherent and almost vanish in degrees larger than 2 dim X. This (together
with Theorem 1.1.1) indicates that there probably should be much stronger (almost) finiteness
results for some class O;O—sheaves.
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Theorem 1.3.7. (Theorem 6.3.3) Let K be a p-adic perfectoid field, X a proper rigid-analytic
K-variety of dimension d, and € an O}Q—vector bundle (resp. Oj{o /p-vector bundle). Then

RI(XY,€) e D290,

acoh

We now explain the main steps of our proof of Theorems 1.3.1 and 1.3.6 for & = (‘);r(<> /p and

&= O;Q respectively:

Proof Sketch. (1) We first show that the sheaves RiV*(O}O /p) are quasi-coherent. The main

(2)
(3)

(4)

(5)

(6)

key input is that cohomology of O}Q /p-vector bundles vanish on strictly totally discon-
nected spaces (see Definition C.2.1), and that each affinoid rigid-analytic variety admits a
v-covering such that all terms of its Cech nerve are strictly totally disconnected.

The same ideas can be used to show that the formation of Riu*(O;O/ p) commutes with
étale base change.

We show that the Ox,-modules Riv, (O}<> / p) are almost coherent for smooth X. This is
done in three steps: we firstly find an admissible blow-up X’ — X such that X’ has an open
affine covering X’ = | J;.; ¢ such that each 4l; = Spf A; admits a finite rig-étale morphism
to K%C, then we show that the cohomology groups H? (MZ?C’U, O;Q /p) are almost coherent
over A;/pA;, and finally we conclude the almost coherence of Riv, ((f);r(<> / p).

The first step is the combination of [BLR95, Proposition 3.7] and Theorem D.4. The
first result allows to choose an admissible blow-up X’ — X with an open affine covering
X = Uie 1 4; such that each 4; admits a rig-étale morphism 4; — K‘éc. Then Theorem D.4

guarantees that actually we can change these morphisms so that ; — K%C are finite and
rig-étale. This is the non-noetherian generalization of Achinger’s result [Ach17, Proposition
6.6.1] proven over a discretely valued ring.

The second step follows the strategy presented in [Sch13]. We construct an explicit affi-
noid perfectoid cover of 4I; that is a Z,(1)%-torsor. So we reduce studying of H (ﬂfav, O;O /D)
to studying cohomology groups of Zp(l)d that can be explicitly understood via the Koszul
complex.

The last step is the consequence of the Almost Proper Mapping Theorem 1.2.9 and the
already obtained results.

The next step is to show that Rv, ((‘);r(<> / p) is almost coherent for a general X. This is
done by choosing a proper hypercovering by smooth spaces X, and then use a version of
cohomological v-descent to conclude almost coherence of the p-adic nearby cycles sheaves.
As an important technical tool, we use the theory of diamonds developed in [Sch17].

Next we show that Ru, (0%, /p) is almost concentrated in degrees [0,d]. This claim is
quite subtle. The key input is the version of the purity theorem [BS22, Theorem 10.11] that
implies that any finite (but not necessarily étale) adic space over an affinoid perfectoid has a
diamond that is isomorphic to a diamond of an affinoid perfectoid. This allows us to reduce
the question of cohomological bounds of Ry, ((‘);r(O / p)a to the question of cohomological
dimension of the pro-finite group Z,(1)?. This can be understood quite explicitly via Koszul
complexes.

Finally, we show Theorem 1.3.6 by reducing it to Theorem 1.3.1. The key input is Theo-
rem 1.2.3 that allows us to check finiteness mod-p.
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1.5. Notation. A non-archimedean field K is always assumed to be complete. A non-archimedean
field K is called p-adic if its ring of powerbounded elements O = K° is a ring of mixed character-
istic (0, p).

We follow [Sta2l, Tag 02MN] for the definition of a (Weak) Serre subcategory of an abelian
cateogry A.

For an R-ringed site (X,0x), an element of the derived category ¥ € D(X), and an element
w € R, we denote by [F/w] the cone of the multiplication by w-morphism, i.e.

[F/w] := cone(T = F).

Namely, we say that a non-empty full subcategory € of an abelian category A is a Serre subcat-
egory if, for any exact sequence A — B — C with A,C € €, we have B € C. We say that C is a
Weak Serre subcategory if, for any exact sequence

A0—>A1—>A2—>A3—>A4
with Ag, A1, Az, Ay € C, we have Ay € C. Look at [Sta2l, Tag 02MP] and [Sta21, Tag 0754] for an
alternative way to describe (Weak) Serre subcategories.

If € is a Serre subcategory of an abelian category A we define the quotient category as a pair
(A/C, F) of an abelian category A/C and an exact functor

F:A— AJC

such that, for any exact functor G: A — B to an abelian category B with € C ker G, there is a
factorization G = H o F for a unique exact functor H: A/C — B. The quotient category always
exists by [Sta2l, Tag 02MS].
If B is a full triangulated subcategory of a triangulated category D we define the Verdier quotient
as a pair (D/B, F) of a triangulated category D/B and an exact functor
F:D—D/B

such that, for any exact functor G: D — D’ to a pre-triangulated category D’ with B C ker G,
there is a factorization G = H o F' for a unique exact functor H: D/B — D’. The Verdier quotient
always exists by [Sta2l, Tag 05RJ].

We say that a diagram of categories
A
h (0%

C

AL

is (2, 1)-commutative if a: koh = go f is a natural isomorphism of functors.


https://stacks.math.columbia.edu/tag/02MN
https://stacks.math.columbia.edu/tag/02MP
https://stacks.math.columbia.edu/tag/0754
https://stacks.math.columbia.edu/tag/02MS
https://stacks.math.columbia.edu/tag/05RJ
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For an abelian group M and commuting endomorphisms fi, ..., f,., we define the Koszul complex
K(M;fi,....fa) =M - M@z Z" — M @z N> (Z") — - — M @z A" (Z")
viewed as a chain complex in cohomological degrees 0, ...,n. The differential

d*: Moz \* (2"~ P M- Mg (Z") ~ ey M

1< << <n 1<ji<<jg+1<n

from M in spot i3 < .-+ < i, to M in spot j; < .-+ < jga1 is nonzero only if {iy,...,ix} C
{1, Jk+1}, in which case it is given by (—=1)™~1f; | where m € {1,...,k + 1} is the unique
integer such that j,, & {i1,...,i}.

If M is an R-module and f; are elements of R the complex K(M; f1,..., fn) is a complex of
R-modules and can be identified with

M- M@rR"— Mg A (R") = -+ — Mg A" (R").

2. ALM0OST COMMUTATIVE ALGEBRA

This chapter is devoted to the study of almost coherent modules. We recall some basic definitions
of almost mathematics in Section 2.1. Then we discuss the main properties of almost finitely
generated and almost finitely presented modules in Section 2.5. These two sections closely follow
the discussion of almost mathematics in [GR03]. Section 2.6 is dedicated to almost coherent modules
and almost coherent rings. We show that almost coherent modules from a Weak Serre subcategory
of R-modules, and they coincide with almost finitely presented ones in the case of almost coherent
rings. We discuss base change results in Section 2.8. Finally, we develop some topological aspects
of almost finitely generated modules over “topologically universally adhesive rings” in Section 2.12.

2.1. The Category of Almost Modules. We begin this section by recalling some basic defini-

tions of almost mathematics from [GRO3]. We fix some “base” ring R with an ideal m such that

m? =m and m = m ®x m is flat. We always do almost mathematics with respect to m.

Lemma 2.1.1. Let M be an R-module. Then the following are equivalent:

(1) The module mM is the zero module.

(2) The module m ®r M is the zero module.

(3) The module m ® M is the zero module.

(4) The module M is annihilated by ¢ for every € € m.
Proof. Note that the multiplication map m ® g m — m is surjective as m?> = m. This implies that
we have surjections

mepr M —»meg M — mM.

This shows that (3) implies (2), and (2) implies (1). It is clear that (2) implies (3), and (1) is
equivalent to (4). So the only thing we are left to show is that (1) implies (2).

Suppose that mM ~ 0. Pick an arbitrary element a ® m € m ® g M with a € m, m € M. Since

m? = m there is a finite number of elements y1, ..., yx, T1,. .., 2 € m such that

k
a= § ZiYi-
i=1
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Then we have an equality
k k

a®m:Zmiyi®m:Zazi®yim:0.
=1 =1

O

Definition 2.1.2. An R-module M is almost zero, if any of the equivalent conditions of Lemma
2.1.1 is satisfied for M.

Lemma 2.1.3. Under the assumption as above, the “multiplication” morphism m ® g m — m is
an isomorphism.

Proof. We consider a short exact sequence
0—-m—R— R/m—D0.
Note that (R/m) @z m =m/m? = 0, so we get a short exact sequence
0 — Torf(R/m,m) = m — m — 0.

Since Torf(R/m,m) is almost zero, Lemma 2.1.1 says that after applying the functor — @z m
we get an isomorphism
mPpM~mepm.
Since m is R-flat, we also see that m ® g m injects into m. Moreover, it maps isomorphically onto
its image mm = m as m? = m. Altogether it shows that
me R m o~ m.
It is straightforward to see that the constructed isomorphism is the “multiplication” map. O

We denote by Y i the category of almost zero R-modules considered as a full subcategory of
MOdR.

Corollary 2.1.4. The category X is a Serre subcategory of Modg®.

Proof. This follows directly from criterion (3) from Lemma 2.1.1, flatness of m and [Sta2l, Tag
02MP]. 0

This corollary allows us to define the quotient category Modf, := Modg /¥R that we call as the
category of almost R-modules”. Note that the localization functor

(—)*: Modr — Mod%

is an exact and essentially surjective functor. We refer to elements of Mod%, as almost R-modules
or R*modules. We will usually denote them by M in order to distinguish almost R-modules from
R-modules.

To simplify some notations, we will use the notation Mod% and Modg. interchangeably.
Definition 2.1.5. A morphism f : M — N is called an almost isomorphism (resp. almost injection,

resp. almost surjection) if the corresponding morphism f* : M?® — N is an isomorphism (resp.
injection, resp. surjection) in Mod%.

We refer to [Sta2l, Tag 02MN] for the discussion of (Weak) Serre categories.
SWe refer to [Sta21, Tag 02MS] for the discussion of quotient categories.


https://stacks.math.columbia.edu/tag/02MP
https://stacks.math.columbia.edu/tag/02MP
https://stacks.math.columbia.edu/tag/02MN
https://stacks.math.columbia.edu/tag/02MS
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Remark 2.1.6. For any R-module M, the natural morphism 7: m ® g M — M is an almost
isomorphism. Indeed, it suffices to show that

m®pkerm ~ 0 and m ®p Coker 7 =~ 0.
Using R-flatness of m, we can reduce the question to showing that the the map
MrmT: MAIrMRIr M > mer M
is an isomorphism. This follows from Lemma 2.1.3.

Definition 2.1.7. Two R-modules M and N are called almost isomorphic if M*® is isomorphic to
N® in Mod¥%.
Lemma 2.1.8. Let f: M — N be a morphism of R-modules, then
(1) The morphism f is an almost injection (resp. almost surjection, resp. almost isomorphism)
if and only if ker(f) (resp. Coker(f), resp. ker(f) and Coker(f)) is an almost zero module.
(2) We have a functorial bijection Homp(m @ g M, N) = Hompgoqs, (M?, N¢).
(3) Modules M and N are almost isomorphic (not necessary via a morphism f) if and only if
me rRM ~ me rRN.
Proof. (1) just follows from definition of the quotient category. (2) is discussed in detail in [GR03,
page 12, (2.2.4)].

Now we show that (3) follows from (1) and (2). Remark 2.1.6 implies that M and N are almost
isomorphic if m®@r M ~m Qg N.

Now suppose that there is an almost isomorphism ¢ : M® — N It has a representative
f:m®rM — N by (2). Now (1) and R-flatness of m imply that m@g f : MrmerM — mQr N
is an isomorphism. Now m ® g m ~ m by Lemma 2.1.3, so m ®p f gives an isomorphism

‘IT‘l@RfZTYI@RM%fﬁ@RN.

We now define the functor of almost sections
(=)«: Mod% — Modpr
as
(M*?), = Hompgoqe, (R, M*) = Hompg(m, M)
for any R*-module M* with an R-module representative M. The construction is clearly functorial
in M, so it does define the functor (—).: Mod% — Modpg.

The functor of almost sections is going to be the right adjoint to the almostification functor (-)®.
Before we discuss why this is the case, we need to define the unit and counit transformations.

We start with the unit of the adjunction. For any R-module M, there is a functorial morphism
v« M — Homp(m, M) = M?
that can easily be seen to be an almost isomorphism.
This allows us to define a functorial morphism
enay: (NH)* — N
for any R%module N Namely, the map ny+: N — N{ is an almost isomorphism, so we can

invert it in the almost category and define
ENax = (17?\77*)_1: (NH)* — N¢
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Now we define another functor
(—)1: Mod% — Modpgr
that is going to be a left adjoint to the almostification functor (—)*. Namely, we put
(M%) = (M*), ®@pm <= M @p m

for any R*module M* with an R-module representative M. This construction is clearly functorial
in M?, so it does define a functor. Similarly to the discussion above, for any R-module M, we
define the transformation

EM,): (Ma)g :&®RM—>M

as the map induces by the the natural morphism m — R. Clearly, e, is an almost isomorphism
for any M. So, this actually allows us to define the morphism

nney: N = (m®pg N)* ~ (N{)*

as Nya| = (5‘}\,7!)_1.
We summarize the main properties of these functors in the lemma below:

Lemma 2.1.9. Let R and m be as above. Then
(1) The functor (—), is the right adjoint to (—)®. In particular, it is left exact.

(2) The unit of the adjunction is equal to naz,«, the counit of the adjunction is equal to eya 4.
In particular, both of the are isomorphisms.

(3) The functor (—); is the left adjoint to the localization functor (—)%.
(4) The functor (—);: Mod% — Modp, is exact.

(5) The unit of the adjunction is equal to 7ya, the counit of the adjunction is equal to ejz).
In particular, both are almost isomorphisms.

Proof. This is explained [GR03, Proposition 2.2.13 and Proposition 2.2.21]. O

Corollary 2.1.10. Let R and m be as above. Then (—)%: Modgr — Mod$%, commutes with limits
and colimits. In particular, Mod$% is complete and cocomplete, and filtered colimits and (arbitrary)
products are exact in Mod$%.

Proof. The first claim follows from the fact that (—)* admits left and right adjoints. The second
claim follows the first claim, exactness of (—)%, and analogous exactness properties in Modg. O

The last thing we need to address in this section is how almost mathematics interacts with base
change. We want to be able to speak about preservation of various properties of modules under
a base change along a map R — S. The issue here is to define the corresponding ideal mg as in
the definition of almost mathematics. It turns out that the most naive ideal mg := mS works well,
but the reason is that the assumptions on the ideal defining almost mathematics are rather weak.
More specifically, we could have required the flatness of the ideal m (instead of m), and then the
ideal mS would not serve well for defining almost mathematics on S. The next lemma shows that
everything works well in the current setup.

Lemma 2.1.11. Let f: R — S be a ring homomorphism, and let mg be the ideal mS C S. Then
we have an equality m% =mg and the S-module mg := mg ®g mg is S-flat.
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Proof. The equality m% = mg follows from the analogous assumption on m and the construction
of mg. As for the flatness issue, we claim that mg ®gmg ~ (m ®g 5) ®s (M ®@p S). That would
certainly imply that desired flatness statement. In order to prove this claim, we look at a short
exact sequence

0—->m—>R—R/m—0

We apply — ®pg S to get a short exact sequence
0 — Torf(R/m,S) = m®r S — mS — 0.

We observe that Torf(R/m, S) is almost zero, so both Torf(R/m, S) ®smS and Torf(R/m, S) ®g
(m ®p S) are zero modules by Lemma 2.1.1. So we use functors — ®g (m ®p S) and — ®g mS to
obtain isomorphisms

(MR S)®s (MRrS)~>mS®r (MR S) ~ (MS) ®s (MS).
Thus we get the desired equality. O
Lemma 2.1.12. Let f: R — S be a ring homomorphism, and F': Modr — Modg an R-linear

functor (resp. F: Mod% — Modg an R-linear functor). Then F sends almost zero R-modules to
almost zero S-modules.

Proof. Suppose that M is an almost zero R-module, so eM = 0 for any ¢ € m. Then ¢F'(M) =0
because F' is R-linear, so F(M) is almost zero by Lemma 2.1.1. O

Corollary 2.1.13. Let f: R — S be a ring homomorphism, and F: Modr — Modg a left or
right exact R-linear functor (resp. F': Mod} — Modg a left or right exact R-linear functor).
Then F' preserves almost isomorphisms.

Proof. We only show the case of a left exact functor F': Modr — Modg, all other cases are
analogous to the this one.

Choose any almost isomorphism f: M" — M", we want to show that F(f) is an almost isomor-
phism. Consider the following exact sequences:

0—-K—M —M—0,
0—+M— M —Q—0.

We know that K and ) are almost zero by our assumption on f. Now, the above short exact
sequences induce the following exact sequences:

0— F(K)— F(M') - F(M) - R'F(K),

0— F(M)— F(M") — F(Q).
Lemma 2.1.12 guarantees that F(K), R'F(K), and F(Q) are almost zero S-modules. Therefore,

the morphisms F(M') — F(M) and F(M) — F(M") are both almost isomorphisms. In particular,
the composition F'(M’) — F(M") is an almost isomorphism as well. O

2.2. Basic Functors on the Categories of Almost Modules. The category of almost modules
admits certain natural functors induced from the category of R-modules. It has two versions of
the Hom-functor and the tensor product functor. We summarize properties of these functors in the
following proposition:

Proposition 2.2.1. Let R,m be as above. Then
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(1) We define tensor product functor — ® ga —: Mod% x Mod% — Mod% as
(M, N) s (M @ NE)"
Then there is a natural transformation of functors

Modp x Modr ——22~_, Modp

l(—)‘w% |

Mod$ x Mod% — =%~ Mod¢,

that makes the diagram (2, 1)-commutative. In particular, there is a functorial isomorphism
(M ®@r N)* >~ M*®@pa N for any M, N € Modg.
(2) There is a functorial isomorphism
Hompa (M*, N*) ~ Homg(m & M, N) .
for any M, N € Modpg. In particular, there is a canonical structure of an R-module on the
group Hompa (M®, N%); thus defines the functor
Hompe(—, —): Mod%, x Modgrs — Modp
(3) We define the functor alHompae(—, —): Mod%. x Modge — Modpa of almost homomor-
phisms as
(M% N%) — Hompa (M N*)* .
Then there is a natural transformation of functors

Hompg(—,—)

Mod% x Modpg Modp

l()ax(% J/(i)a
Mod?%, x Modgs 2" =7) Mod e
that makes the diagram (2, 1)-commutative. In particular, alHompga (M*, N*) 2% Homp(M, N)*
for any M, N € Modpg.

Proof. (1). We define
PM,N: (M!a QR N!a)a — (M QR N)a
to be the morphism induced by
M >~m®rM — M and N ¥~m®@r N — N.

It is clear that pjs v is functorial in both variables, so it defines a natural transformation of functors
p. We also need to check that pps,n is an isomorphism for any M and N. This follows from the
following two observations: ppsn is an isomorphism if and only if ppr y ® g m is an isomorphism:;
and pp, v ®pr m is easily seen to be an isomorphism as m @ g m — m is an isomorphism.

(2) is just a reformulation of Lemma 2.1.8(2).
In order to show (3), we need to define a functorial morphism
pu,n: Homp(M, N)* — alHompa (M®, N®).
We start by using the functorial identification

alHompa (M®, N*) =* Homp(m @ M, N)*
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from (2). Namely, we define pys n as the morphism Homp (M, N)* — Homp(m ® M, N)® induced
by the map m ® M — M. This is clearly functorial in both variables, so it defines the natural
transformation p.

We also need to check that pjs v is an isomorphism for any M and N. This boils down to the
fact that Hompg(—, N) sends almost isomorphisms to almost isomorphisms. This, in turn, follows
from Corollary 2.1.13. O

Remark 2.2.2. It is straightforward to check that if N has a structure of an S*-module for some
R-algebra S, then the R*-modules M*®pa N%, alHompa (M, N*) have functorial-in-M® structures
of S*-modules. This implies that the functors —®@ga N, alHompga (—, N%) naturally land in Mod$,
i.e. define functors

— ®pe N*: Mod} — Mod$, and alHompga(—, N*): Mod%;” — Mod$
Similarly, Hompa(—, N*) defines a functor Mod% — Modg.

The functor of almost homomorphisms is quite important as it turns out to be the inner Hom
functor, i.e. it is right adjoint to the tensor product.

Lemma 2.2.3. Let f: R — S be a ring homomorphism, and let M® be an R*-module and N%, K¢
be S%modules. Then there is a functorial S-linear isomorphism

Homga (M® @pa N K?) ~ Hompa (M, alHomga (N*, K)) .
Proof. This is a consequence of the usual ®-Hom-adjunction, Proposition 2.2.1, and the fact that
m®2 ~ m. Indeed, we have the following sequence of functorial isomorphisms
Homga (M® @pa N, K*) ~ Homg(m @ M ®r N, K)

~ Homg((m®r M) @r (m®@r N), K)
~ Hompg(m ®@p M, Homg(m @ N, K))
~ Hompa (M, alHomga (N¢, K%)) .

The first isomomorphism follows from Proposition 2.2.1(1), (2), the second isomorphism follows

from the observation m®? ~ m, the third isomorphism is just the classical ®-Hom-adjunction, and
the last isomorphism is a consequence of Proposition 2.2.1(2), (3). O

Corollary 2.2.4. (1) Let N be an R%module, then the functor — ®pa N® is left adjoint to
the functor alHompa (N¢, —).

(2) Let R — S be a ring homomorphism. Then the functor — @ S*: Mod% — Mody is left
adjoint to the forgetful functor.

Proof. Part (1) follows from Lemma 2.2.3 by taking S to be equal to R. Part (2) follows from
Lemma 2.2.3 by taking N® to be equal to 5°. O

We finish the section by introducing the certain types of R%-modules that will be used throughout
the paper.

Definition 2.2.5. e An R%module M is flat if the functor M* ® g« —: Mod% — Mod$ is
exact.
e An R*module M? is faithfully flat if it is flat and N® @ ga M* ~ 0 if and only if N¢ ~ 0.
e An R-module M is almost flat (vesp. almost faithfully flat) if an R*-module M® is flat (resp.
faithfully flat)
e An R%module I is injective if the functor Hompa(—, %): Mod%” — Modp is exact.
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e An R*module P is almost projective if the functor alHompga (P*, —): Mod% — ModY, is
exact.

Lemma 2.2.6. The functor (—)*: Modr — Mod$% sends flat (resp. faithfully flat, resp. injective,
resp. projective) R-modules to flat (resp. faithfully flat, resp. injective, resp. almost projective)
R%-modules.

Proof. The case of flat modules is clear from Lemma 2.2.1(1). Now suppose that M is a faithfully
flat R-module. Recall that M ®r —: Modgr — Modg, is an exact and faithful functor. Therefore,
if M ®p N is almost zero, it implies that so is V. Thus Lemma 2.2.1(1) ensures that M* is almost
faithfully flat.

The case of injective modules follows from the fact that (—)® admits an exact left adjoint functor
(=)1. The case of projective modules is clear from the definition. U

Lemma 2.2.7. The functor (—)1: Mod% — Modp sends flat R%-modules to flat R-modules.

Proof. This follows from the formula M* @g N ~ (M® @« N¢), for any R*-module M* and
R-module N. ]

Warning 2.2.8. If M is a faithfully flat R*-module, the R-module M,* may not be faithfully flat.
For instance, R® is a faithfully flat R*-module, but R{" = m is not. For example, m ® g R/m =~ 0.

Corollary 2.2.9. Any bounded above complex C*®* € Comp~ (R*) admits a resolution P** — C*
by a bounded above complex of almost projective modules.

Proof. We consider the complex Cf " € Comp™ (R), this complex admits a resolution by complex
of free modules p: P* — C"". Now we apply (—) to this morphism to get the map

pra P (omtye £ o
The map ¢ is an isomorphism in Comp(R*) by Lemma 2.1.9, and p“ is a quasi-isomorphism. Thus

etop®: P* — (%% is a quasi-isomorphism in Comp(R?). Now note that each term of P*¢ is
almost projective by Lemma 2.2.6. O

2.3. Derived Category of Almost Modules. We define the derived category of almost modules
in two different ways and show that these definitions coincide. Later we define certain derived
functors on the derived category of almost modules. We pay some extra attention to show that the
functors in this section are well-defined on unbounded derived categories.

We start the section by introducing two different notions of the derived category of almost
modules and then show that they are actually the same.

Definition 2.3.1. We define the derived category of almost R-modules as D(R*) .= D(Mod$%).

We define the bounded version of derived category of almost R-modules D*(R%) for x € {4, —, b}
as the full subcategory consisting of bounded below (resp. bounded above, resp. bounded) com-
plexes.

Definition 2.3.2. We define the almost derived category of R-modules as the Verdier quotient
D(R)* .= D(Modg)/Dsx,(Modpg).

We recall that Y r is the Serre subcategory of Modpg that consists of almost zero modules,
and Dy, (Modpg) is the full triangulated category of elements in D(Modpg) with almost zero
cohomology modules.



22 BOGDAN ZAVYALOV

We note that the functor (—)*: Modgr — Mod$% is exact and additive. Thus it can be derived
to the functor (—)*: D(R) — D(R®). Similarly, the functor (—): Mod% — Modp, is additive and
exact, thus it can be derived to the functor (—);: D(R*) — D(R). The standard argument shows
that (=), is a left adjoint functor to the functor (—)® as this already happens on the level of abelian
categories. Now we also want to derive the functor (—),: Mod% — Modpg. In order to do this on
the level of unbounded derived categories, we need to show that D(R®) has “enough K-injective
objects”.

Definition 2.3.3. We say that a complex of R*-module I*% is K-injective if Hom g (ga)(C*?, [*%) =
0 for any acyclic complex C'*® of R%modules.

Remark 2.3.4. We remind the reader that K(R®) stands for the homotopy category of R%-
modules.

The first thing we need to show is that Comp(R*) has “enough” K-injective objects. This will
allow us derive many functors.

Lemma 2.3.5. The functor (—)*: Comp(R) — Comp(R*) sends K-injective R-complexes to
K-injective R%-complexes.

Proof. We note that (—)* admits an exact left adjoint (—); thus [Sta2l, Tag 08BJ] ensures that
(—)“ preserves K-injective complexes. O

Corollary 2.3.6. Every object M** € Comp(R*) is quasi-isomorphic to a K-injective complex.

Proof. We know that the complex M*® € Comp(R) is quasi-isomorphic to a K-injective complex
I* by [Sta2l, Tag 090Y] (or [Sta2l, Tag 079P]). Now we use Lemma 2.3.5 to say that I*% is a
K-injective complex that is quasi-isomorphic to M *?. O

Now as the first application of Corollary 2.3.6 we define the functor (—).: D(R*) — D(R) as
the derived functor of (—),: Mod% — Modg. This functor exists by [Sta2l, Tag 070K].

(=)
Lemma 2.3.7. (1) The functors D(R) £, D(R®) are adjoint. Moreover, the unit (resp.
(=)
counit) morphism

(M%) — M (resp. N — (N))%)

is an almost isomorphism (resp. isomorphism) for any M € D(R), N € D(R?). In particu-
lar, the functor (—)* is essentially surjective.

a

(2) The functors D(R) - > D(R?) are adjoint. Moreover, the unit (resp. counit) morphism

M — (M%), (resp. (N«)* — N)
is an almost isomorphism (resp. isomorphism) for any M € D(R), N € D(R?).

Proof. We start the proof by showing (1). Firstly we note that the functors (—); and (—)* are
adjoint by the discussion above. Now we show the cone of the counit map is always in Dy, (R).
As both functors (—)* and (—), are exact on the level of abelian categories, it suffices to show the
claim for M € Mod$. But then the statement follows from Lemma 2.1.9(5). The same argument
shows that the unit map N — (NV)* is an isomorphism for any N € D(R?).


https://stacks.math.columbia.edu/tag/08BJ
https://stacks.math.columbia.edu/tag/090Y
https://stacks.math.columbia.edu/tag/079P
https://stacks.math.columbia.edu/tag/070K
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Now we go to (2). We define the functor (—),: D(R*) — D(R) as the right derived functor of
the left exact additive functor (—)«: Mod% — Modpg. This functor exists by [Sta2l, Tag 070K]
and Corollary 2.3.6. The functor (—). is right adjoint to (—)* by [Sta2l, Tag 0DVC].

We check that the natural map M — (M?), is an almost isomorphism for any M € D(R). We
choose some K-injective resolution M = I®. Then Lemma 2.3.5 guarantees that M?® — I*% is a
K-injective resolution of the complex M?. The map M — (M?), has a representative

I° — (I*%), .

This map is an almost isomorphism of complexes by Lemma 2.1.9(2). Thus the map M — (M%), is
an almost isomorphism. A similar argument shows that the counit map (N,)* — N is an (almost)
isomorphism for any N € D(R?). 0

Theorem 2.3.8. The functor (—)%: D(R) — D(R*) induces an equivalence of triangulated cate-
gories (—)%: D(R)* — D(R?).

Proof. We recall that the Verdier quotient is constructed as the localization of D(R) along the
morphisms f such that cone(f) € Dy, (R). For instance, this is the definition of Verdier quotient
at [Sta2l, Tag 05RI]. Now we see that a morphism f*: C* — C’® is invertible in D(R®) if and
only if cone(f) € Dy, (R) by the definition of ¥ and exactness of (—)?®. Moreover, (—)% admits a
right adjoint such that (—)% o (—). — Id is an isomorphism of functors. Thus we can apply [GZ67,
Proposition 1.3] to say that the induced functor (—)*: D(R)* — D(R?) must be an equivalence. [

Remark 2.3.9. Theorem 2.3.8 shows that the two notions of the derived category of almost
modules are the same. In what follows, we do not distinguish D(R*) and D(R)* anymore.

2.4. Basic Functors on the Derived Categories of Almost Modules. Now we can “derive”
certain functors constructed in previous section. We start with defining the derived versions of
different Hom functors, after that we move to the case of the derived tensor product functor.

Definition 2.4.1. We define the derived Hom functor
RHompa(—, —): D(R*)? x D(R*) — D(R)

as it is done in [Sta21, Tag 0A5W] using the fact that Comp(R®) has enough K-injective complexes.
We define the Fat modules as R-modules defined as

Extha (M®, N%) == H (RHompe (M®, N%))
for M* N* € Mod$.

Explicitly, for any M*, N* € D(R*), the construction of the complex RHompga (M®, N%) goes as
follows. We pick a representative C'** — M*% and a K-injective resolution N* — I*®. Then we
set RHompa (M*?, N%) = Hom¥ya (C*%, 1**). This construction is independent of the choices and
functorial in both variables. We are not going to review this theory here, but rather refer to [Sta21,
Tag 0A5W] for the details.

Remark 2.4.2. We see that [Sta2l, Tag 0A64] implies that there is a functorial isomorphism
H' (RHompge (M, N%)) ~ Homp gy (M®, N°[i]) .
Lemma 2.4.3. (1) There are functorial isomorphisms
Homp pye (M®, N*) ~ Homp gy (M, N) and RHompga (M*, N*) ~ RHompg(M*, N)
for any M, N € D(R).


https://stacks.math.columbia.edu/tag/070K
https://stacks.math.columbia.edu/tag/0DVC
https://stacks.math.columbia.edu/tag/05RI
https://stacks.math.columbia.edu/tag/0A5W
https://stacks.math.columbia.edu/tag/0A5W
https://stacks.math.columbia.edu/tag/0A64
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(2) For any chosen M* € Mod$%, the functor RHompa (M%, —): D(R)* — D(R) is isomorphic
to the (right) derived functor of Hompa (M%, —).

Proof. The first claim easily follows from the fact (—)% is a right adjoint to the exact functor (—);.
We leave the details to the reader.

The second claim follows from [Sta21, Tag 070K] and Corollary 2.3.6. U

Definition 2.4.4. We define the derived functor of almost homomorphisms

RalHompa(—, —): D(R*)? x D(R*) — D(R")
as

RalHompga (M®, N*) := RHompa (M*, N*)* = RHompg(M*, N)* .

We define the almost Ext modules as R*-modules defined by

alExth, (M?, N%) := H'(RalHompga (M?, N%))
for M, N € Mod%.

Definition 2.4.5. We define the the complex of almost homomorphisms alHom¥pa (K*¢, L**) for
K*® L*® € Comp(R?) as follows:

alHompa (K**, L") = [] alHompe (K% LP?)
n=p+q

with the differential
d(f) = dgea o f — (1) f o dyea .

Lemma 2.4.6. Let P*¢ be a bounded above complex of R*modules with almost projective co-
homology modules. Suppose that M*% — N®% is an almost quasi-isomorphism of bounded below
complex of R*-modules. Then the natural morphism

alHom%. (P*%, M*%) — alHom%p. (P**, N*%)
is an almost quasi-isomorphism.

Proof. We note that as in the case of the usual Hom-complexes, there are convergent® spectral
sequences

B}’ = W (alHompa (P, M*")) = H'™ (alHom$. (P**, M*?))
E'tY = W (alHom}e (P~ N*%)) = H'J (alHom}. (P*, N*%))

Moreover, there is a natural morphism of spectral sequences Ellj — F 11] . Thus it suffices to show
that the associated map on the first page is an almost isomorphism on each entry. Now we use the
fact that alHompa (P~ —) is exact to rewrite the first page of this spectral sequence as

E}/ = alHompa (P~ H/ (M*?))
and the same for E/ 11] . So the question boils down to show that the natural morphisms
alHompa (P~ H/ (M*")) — alHompa. (P~"% H/(N*%))

are almost isomorphisms. But this is clear as M** — N*? is an almost quasi-isomorphism. O

6Here we use that P** is bounded above, M*% and N*“ are bounded below


https://stacks.math.columbia.edu/tag/070K
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Lemma 2.4.7. Let P — PJ* be an almost quasi-isomorphism of bounded above complexes
with almost projective cohomology modules. Suppose that M*“ is a bounded below complex of
R%-modules. Then the natural morphism

alHom%a (Py*, M*®) — alHom%pa (P, M*%)
is an almost quasi-isomorphism.

Proof. We choose some injective resolution M** — I*% of the bounded below complex M**. Then
we have a commutative diagram

alHom%a (Py", M**) —— alHom%a (P, M*%)

| |

alHom%pa (Py", I*%) —— alHom%ya (P, M*%).

The bottom horizontal arrow is an almost quasi-isomorphism by the standard categorical argument
with injective resolutions. The vertical maps are almost quasi-isomorphism by Lemma 2.4.6.  [J

Proposition 2.4.8. (1) There is a natural transformation of functors

D(R)? x D(R) _Riffomp(=7),

&-)”ﬂ% J(—)“
RalHompga (—,—)
D(R*)? x D(R*) ———— = D(R%)
that makes the diagram (2, 1)-commutative. In particular,
RalHompe (M?, N%) 2 RHomp(M, N)®
for any M, N € D(R).
(2) For any chosen M € Mod%, the functor RalHompa (M®, —): D(R®*) — D(R?) is isomor-
phic to the (right) derived functor of alHompga (M®, —).
(3) For any chosen N* € Mod$%, the functor RalHompa(—, N%): D™ (R%)? — D(R®) is iso-
morphic to the (right) derived functor of alHompga(—, N%).

Proof. In order to show Part (1), we construct functorial morphisms
pm,n: RHompg(M, N)* — RalHompga (M®, N®) .
for any M, N € D(R). We recall that there is a functorial identification
RalHompga (M*, N*) =2* RHompg(M*, N)* =2* RHomg(m ®r M, N)*.
So we define
pu.n: RHomp(M, N)* - RHompg(m ®p M, N)*
as the morphism induced by the canonical map m ®z M — M. This is clearly functorial, so it

defines the natural transformation of functors. The only thing we are left to show is that pys n is
an almost isomorphism for any M, N € D(R).

Let us recall that the way we compute RHomp (M, N). It is isomorphic to Hom%(C*®, I*®) for
any choice of a K-injective resolution of N =5 I* and any resolution M = C*. Since m @g C*® is
a resolution of m ® g M by R-flatness of m, we reduce the question to show that the natural map

Hom%(C*, I*) — Hom{(m @i C°, I°)
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is an almost quasi-isomorphism of complexes. We actually show more, we show that it is an almost
isomorphism of complexes. Indeed, the degree n part of this map is the map

[[ Homg(C™9,1?) » ][] Homg(merC 9,I17) .
pt+q=n pt+q=n

Since the (infinite) product is an exact functor in Mod$%, and any (infinite) product of almost zero
modules is almost zero, it is actually sufficient to show that each particular map Hompg(C™9, IP) —
Hompg(m ®@p C~9,1P) is an almost isomorphism. This follows from Proposition 2.2.1(3).

Part (2) is similar to that of Proposition 2.4.3.

Part (3) is also similar to Part (2) of Proposition 2.4.3, but there are some subtleties due to
the fact that Mod% does not have enough projective objects. We fix this issue by using instead
[Sta2l, Tag 06XN] of [Sta2l, Tag 070K]. We apply it to the subset P being the set of bounded
above complexes with almost projective terms. This result is indeed applicable in our situation due
to Corollary 2.2.9 and Lemma 2.4.7. ([l

Now we deal with the case of the derived tensor product functor.

Definition 2.4.9. We say that a complex of R*-module K*“ is almost K-flat if the naive tensor
product complex C'** ®%. K*® is acyclic for any acyclic complex C** of R*-modules

Lemma 2.4.10. The functor (—)*: Comp(R) — Comp(R*) sends K-flat R-complexes to almost
K-flat R*-complexes.

Proof. Suppose that C'* is an acyclic complex of R%modules and K*® is a K-flat compelx. Then
we see that

C.,(l ®.Ra, K.,CL g[l (C. ®‘R K.)CL g[l ({‘ﬁ ®R C. ®.R K.)a ga (({‘ﬁ ®R C.) ®‘R K.)CL .
The latter complex is acyclic as m ® C*® is acyclic and K*® is K-flat. ([l

Corollary 2.4.11. Every object M*® € Comp(R?) is quasi-isomorphic to an almost K-flat com-
plex.

Proof. We know that the complex M*® € Comp(R) is quasi-isomorphic to a K-flat complex K* by
[Sta2l, Tag 06Y4]. Now we use Lemma 2.4.10 to say that K*? is almost K-flat complex that is
quasi-isomorphic to M*“. O

Definition 2.4.12. We define the derived tensor product functor
— @k, —: D(R)* x D(R)* — D(R)"
by the rule (M%, N%) — (M; @% N)) for any M*, N® € D(R)*.

Proposition 2.4.13. (1) There is a natural transformation of functors
L_
D(R) x D(R) —%~, D(R)
(x| / |
*®éa*
D(R)* x D(R)* —— D(R)*

that makes the diagram (2, 1)-commutative. In particular, there is a functorial isomorphism
(M @% N)* ~ M* @k, N for any M, N € D(R).


https://stacks.math.columbia.edu/tag/06XN
https://stacks.math.columbia.edu/tag/070K
https://stacks.math.columbia.edu/tag/06Y4
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(2) For any chosen M € Mod%, the functor M® ®%, —: D(R)* — D(R) is isomorphic to the
(left) derived functor of M®* ®pa —.
Proof. The proof of Part (1) is similar to that of Lemma 2.2.1(1). We leave details to the reader.

The proof of Part (2) is similar to that of Proposition 2.4.8(2). The claim follows by applying
[Sta2l, Tag 06XN] with P being the subset of almost K-flat complexes. This result is indeed
applicable in our situation due to Corollary 2.4.11 and the almost version of [Sta2l, Tag 064L]. O

Lemma 2.4.14. Let M* N% K® € D(R)%, then we have a functorial isomorphism
RHompga (M® @k, N%, K%) ~ RHompga (M?, RalHompga (N%, K%)) .
In particular, the functors RalHompga(N®, —): D(R)* <, D(R)*: — ®%,N® are adjoint.

Proof. The claim follows from the following sequence of canonical identifications:

RHomp. (M® @k. N, K%) ~ RHomp((m ®p M) @% (m @ N), K) Lemma 2.4.3(1)
~ RHompr(m ® g M,RHomgr(m ®r N, K)) [Sta2l, Tag 0A5W]
~ RHompge (M® RHomp(m @ N, K)?) Lemma 2.4.3(1)
~ RHompge (M“, RalHompa (N?, K%)) . Definition 2.4.4
n

Definition 2.4.15. Let f: R — S be a ring homomorphism. We define the base change functor
— @k, 5%: D(R)* - D(5)*

by the rule M? — (M; @k S)® for any M® € D(R)*.

Proposition 2.4.16. (1) There is a natural transformation of functors

®ks

D(R) — D(S)

] / |

=~ Lasa
D(R)* 5 p(g)e

that makes the diagram (2, 1)-commutative. In particular, there is a functorial isomorphism
(M @% S)* ~ M* @k, S for any M € D(R).
(2) The functor — ®%, S*: D(R)* — D(S)® is isomorphic to the (left) derived functor of
— ®%. 5°.
Proof. The proof is identical to Proposition 2.4.13. O

Lemma 2.4.17. Let R — S be a ring homomorphism, and let M* € D(R)*, N* € D(S)*. Then
we have a functorial isomorphism

RHomg. (M® ®%, $*, N%) ~ RHompa(M? N?) .

In particular, the functors Forget: D(S)? < D(R)*: — ®%.5% are adjoint.

Proof. The proof is similar to that of Lemma 2.4.14. O


https://stacks.math.columbia.edu/tag/06XN
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2.5. Almost Finitely Generated and Almost Finitely Presented Modules. We discuss the
notions of almost finitely generated and almost finitely presented modules in section. The discussion
follows [GRO3] closely. The main difference is that we avoid any use of “uniform structures” in our
treatment, we think that it simplifies the exposition. We recall that we fixed some “base” ring R
with an ideal m such that m?> = m and m = m ®p m is flat, and we always do almost mathematics
with respect to this ideal.

Definition 2.5.1. An R-module M is called almost finitely generated, if for any € € m there is an
integer n. and an R-homomorphism

R L m
such that Coker(f) is killed by e.

Definition 2.5.2. An R-module M is called almost finitely presented, if for any €,§ € m there are
integers n. s, me s and a complex

Rmes %y gres Ly pp
such that Coker(f) is killed by € and dé(ker f) C Im g.
Remark 2.5.3. Clearly, any almost finitely presented R-module is almost finitely generated.

Remark 2.5.4. A typical example of an almost finitely presented module that is not finitely
generated is M = @©,>10¢/ pl/"O¢ for an algebraically closed non-archimedean field C' of mixed
characteristic (0, p).

The next few lemmas discuss the most basic properties of almost finitely generated and almost
finitely presented modules. For example, it is not entirely obvious that these notions transfer across
almost isomorphisms. We show that this is actually the case, so these notions descend to Mod%.
We also show that almost finitely generated and almost finitely presented modules have many good
properties that we have for the usual finitely generated and finitely presented modules. Although
all proofs below are elementary, they require some accuracy to rigorously prove them.

Our first main goal is to get some other useful criteria for a module to be almost finitely generated
(resp. almost finitely presented) and finally show that this notion does not depend on a class of
almost isomorphism.

Lemma 2.5.5. Let M be an R-module, then M is almost finitely generated if and only if for any
finitely generated ideal mg C m there a morphism R" Iy M such that mg(Coker f) = 0.

Proof. The “if” part is clear, so we only need to deal with the “only if” part. We choose a set of
generators (£o, . ..,&,) for an ideal my. Then we have R-morphisms

fi: RYi — M
such that &;(Coker f;) = 0 for all . Then the sum of these morphisms
f=@fi: BE M
i=1

defines a map such that mo(Coker f) = 0. Since my was an arbitrary morphism, this finishes the
proof. O
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Lemma 2.5.6. Let M be an almost finitely presented R-module, and let ¢ : R® — M be an
R-homomorphism such that m;(Coker¢) = 0 for some ideal m; C m. Then for every finitely
generated ideal mg C mym there is morphism v : R™ — M such that

R™ % R S M
is a three-term complex and mg(Ker ¢) C Im(¢).
Proof. Since M is almost finitely presented, for any two elements 1,2 € m, we can find a complex
R™ % Loy
such that £;(Coker f) = 0 and ey(ker f) C Im g. Now we choose some element 6 € my, and we shall
define morphisms
a:R™ —- R"and f: R" — R™
such that poa =4df and f o 8 = e1p. Here is the corresponding picture:

Rm™ Y, Rm y M

We define « and 3 in the following way: we fix a basis ey, ..., ey, of R™ and a basis €], ... e},

of R™, then we define
a(e;) = y; € R" for some y; such that ¢(y;) = df(e;),
B(e}) = x; € R™ for some x; such that f(z;) = e1p(e})
and then extend these maps by linearity. It is clear that poa =§f and fo 8 = g1 as it holds on
basis elements.
Now we can define a morphism v : R™ @ R — R" by the rule

P(z,y) = aof(x) — (16)r + aog(y).
We now show that
po1) =0 and e1e26 Kerp C Im1.
We start by showing that ¢ o1 = 0: it suffices to prove that
(o g)(y) € Kery for y € R™, and (o 8)(z) — (e16)x € Ker ¢ for x € R"
We note that we have an equality
(poaog)(y) =d(fog)(y) =d0=0,
so (o g)(y) € Ker(yp). We also have an equality
(po(aof —ei1d)) () = (poaocf)(x) —e1dp(x)
=0(f o B)(x) —erdp(x)
= de1p(x) — e10p(x)
=0.
this shows that (a0 8)(z) — (e10)x € Ker(yp) as well.
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We show that (e120) Ker ¢ C Im(t)): we observe that for any = € Ker ¢ we have 5(z) C Ker f
as f o =ejp. This implies that e55(x) € Im g since €3 Ker f C Im g. Thus there is y € R™2 such
that g(y) = e28(z), so (a0 g)(y) = eaa o f(x). This shows that

U(—eam,y) = —ea(a o B)(x) + 1820 + (o g)(y) =
—eg(ao B)(z) + 1620z + e2(a 0 fB)(x) = e1620x

We conclude that 1902 € Im(v)) for any = € Ker(yp).

Finally, we recall that mg is a finitely generated ideal, and that my C mym = mym? C m;. This
means that we can find a finite set I, and a finite set of elements €;1,;2 € m,d; € m; such that mg
is contained in the ideal J := (e;1€i20;)icr (the ideal generated by all the products €; 1¢;29;). The
previous discussion implies that for each i € I, we have a map 1; : R¥ — R™ such that g o; =0
and (g;1€;20;) (Ker ¢) C Im1);. By passing to the homomorphism

=D vi: R=* - R"
i€l
we get a map v such that ¢ o) =0 and my(Ker ¢) C Im(v)). Therefore 1) does the job. O

Lemma 2.5.7. Let M be an R-module. Then the following conditions are equivalent:

(1) The R-module M is almost finitely presented.

(2) For any finitely generated ideal my C m there exist a finitely presented R-module N and a
homomorphism f : N — M such that mg(ker ) = 0 and mg(Coker f) = 0.

(3) For any finitely generated ideal my C m there exist integers n, m and a three-term complex
JrENy LN Y
such that mg(Coker f) = 0 and mp(Ker f) C Img.

Proof. 1t is clear that the condition (3) implies both conditions (1) and (2).

We show that (1) implies (3). Since M is an almost finitely generated R-module, Lemma 2.5.5

guarantees that for any finitely generated ideal m’ C m there is a morphism R" i> M such that
m’(Coker f) = 0.

We know that mg C m = m?, this easily implies that there is a finitely generated ideal m; C m
such that mg C mym C m;. So, using m’ = my, we can find a homomorphism R" %y M such that
my (Coker ¢) = 0. Lemma 2.5.6 claims that we can also find a homomorphism ¢: R™ — R™ such
that

R™ % R % M
is a three-term complex and mg(ker ) C Ime. Since mg C m; and my(Coker p) = 0, we get

that mg(Coker ¢) = 0 as well. This finishes the proof since my was an arbitrary finitely generated
sub-ideal of m.

Now we show that (2) implies (3). We pick an arbitrary finitely generated ideal my C m, and
we try to find a three-term complex

Ny LN Y
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such that mg(Coker f) = 0 and mg(ker f) C Im(g). In order to achieve this we use the assumption
(2) to find a morphism h : N — M such that N is a finitely presented R-module, my(Coker h) = 0,
and mg(ker h) = 0. Since N is finitely presented we can find a short exact sequence

"% RIS N S0

It is straightforward to see that a three-term complex

R % g ST gy
satisfies the condition that mo(Coker f) = 0 and mg(ker f) C Im(g). O

Lemma 2.5.8. Let M be an R-module, and suppose that for any finitely generated ideal my C m
there exists a morphism f: N — M such that mg(ker f) = 0, mp(Coker f) = 0 and N is almost
finitely generated (resp. almost finitely presented). Then M is also almost finitely generated (resp.
almost finitely presented).

Proof. We give a proof only in the almost finitely presented case; the other case is easier. We pick
an arbitrary finitely generated ideal mg C m and another finitely generated ideal m; C m such that
my C m%. Then we use the assumption to get a morphism

fiN—>M

such that my(Ker f) = 0,my(Coker f) = 0 and N is an almost finitely presented R-module.
Lemma 2.5.7 guarantees that there is a three-term complex

R™ 2 R % N
such that m;(Coker g) = 0 and m;(Ker g) C Imh. Then we can consider a three-term complex
R By g L5000, g

it is easily seen that m?(Coker f’) = 0 and m?(ker f') C Im(h). Since my C m? we conclude that
mg(Coker /) = 0 and mg(ker f') C Im(h). This shows that M is almost finitely presented. O

Lemma 2.5.9. Let M be an R-module, and {N;};c; is a filtered diagram of R-modules. Then
(1) The natural morphism
78+ colim; Hompg (M, N;) — Homp(M, colim; N;)
is almost injective for an almost finitely generated M
(2) The natural morphism
78, : colim; Hompg(M, N;) — Homp (M, colim; N;)
is an almost isomorphism and
vir: colim Exth(M, N;) — Exth(M, colim N;)
is almost injective for an almost finitely presented M.

Proof. We give a proof for an almost finitely presented M, the case of an almost finitely generated
M 1is similar.

Step 1: The case of finitely presented M. If M is finitely presented, 724 is an isomorphism and
73, is injective. This follows from [Sta2l, Tag 064T] and [Sta21, Tag 0G8W].

Step 2: General case. We fix a finitely generated ideal my C m. Since my C m = m?, there is

a finitely generated ideal my such that mg C mf{. Now we use Lemma 2.5.7(2) to find a finitely
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presented module M’ and a morphism f: M’ — M such that ker(f) and Coker(f) are annihilated
by m;. We denote the image of f by M” and consider the short exact sequences

0—-K—>M—-M -0,

0-M'=>M-—=-Q—0

with K and @ being annihilated by my. After applying the functors colim; Hompg(—, N;) and
Hompg(—, colim; N;) and considering the associated long exact sequences, we see that

bi: colimy Ext’y(M, N;) — colimy Ext’h (M’ Ny)
and

c;: BExty (M, colimy N;) — Extl (M, colimy N;)
have kernels and cokernels annihilated by m? for any i > 0. Now we consider a commutative
diagram

'Y}M/

colimy Extl (M', N;) — Ext’ (M’ colim; N;)

colimy Extly (M, N;) —* Extis (M, colim; N;)

By Step 1, we know that %, is an isomorphism for i = 0 and injective for i = 1. Moreover, we

know that b; and ¢; have kernels and cokernels annihilated by m?. Then it is easy to see that

Coker(7Y,), ker(Y,), and ker(yi,) are annihilated by m{. In particular, they are annihilated by

mo C m{. Since mg was arbitrary finitely generated sub-ideal my C m, we conclude that 724 is an
almost isomorphism and fy}w is almost injective. O
Lemma 2.5.10. Let M be an R-module.

(1) If, for any filtered diagram of R-modules {N;};c;, the natural morphism
colim; Homp (M, N;) — Homp(M, colims N;)

is almost injective, then M is almost finitely generated.

(2) If, for any filtered system of R-modules {N;}, the natural morphism
colim; Homp (M, N;) — Homp(M, colim; N;)
is an almost isomorphism, then M is almost finitely presented.

Proof. (1) : Note that M ~ colim; M; is a filtered colimit of its finitely generated submodules.
Therefore, we see that

colim; Hompg(M, M /M;) ~* Hompg (M, colim; (M /M;)) =~ 0.

Consider an element « of colim; Homp (M, M/M;) that has a representative the quotient morphism
M — M/M; (for some choice of i € I). Then, for every ¢ € m, ea = 0 in colim; Hompg (M, M /M;).
Explicitly this means that there is j > ¢ such that eM C M;. Now we choose a surjection R™ — M;
to see that the composition f: R™ — M gives a map with e(Coker f) = 0. Now note that this
property is preserved by choose any j' > j. Therefore, for any mg = (e1,...,&5,), we can find
a finitely generated submodule M; C M such that mgM C M;. Therefore, M is almost finitely
generated.
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(2) : Fix any finitely generated sub-ideal mg = (e1,...,6,) C m. We use [Sta2l, Tag 00HA]
to write M =~ colimp M) as a filtered colimit of finitely presented R-modules. By assumption, the
natural morphism

colimy Homp (M, My) — Homp(M, colimp M) = Homp(M, M)
is an almost isomorphism. In particular, €;Id,s is in the image of this map for every ¢ = 1,...,n.
This means that, for every g;, there is A\; € A and a morphism g¢;: M — M), such that the
composition
Iri0gi =eildwm,
where fy,: My, — M. Note that existence of such g; is preserved by replacing \; by any A, > ;.
Therefore, using that {M,} is a filtered diagram, we can find one index A with maps

gi: M — M),
such that fy o g; = ¢;1d)s. Now we consider a morphism
F; = g;o fx —eildp, : My — M.
Note that Im(F;) C ker(fy) because
frogio fa— frelddu, =eifx —eifa = 0.

We also have that e; ker(fy) C Im(F;) because Filye(r,) = €:ld. Therefore, >, Im(F;) is a finite
R-module such that

mo(ker fy) C ZIm(Fi) C ker(fy).

Therefore, f: M' = M/}, Im(F;)) — M is morphism such that M’ is finitely presented,
mg(ker f) = 0, and mg(Coker f) = 0. Since my C m was an arbitrary finitely generated sub-ideal,
we conclude that M is almost finitely presented. O

Corollary 2.5.11. Let M be an R-module. Then

(1) M is almost finitely generated if and only if, for every filtered diagram {N?}ie; of R%-
modules, the natural morphism

colims alHomp(M*, N*) — alHomp(M?, colim; N{')
is injective in Mod¥%;
(2) M is almost finitely presented if and only if, for every filtered diagram {N¢};cr of R‘-
modules, the natural morphism

colimy alHompg(M*?, N*) — alHomp(M?, colim; N;*)
is an isomorphism in Mod%;

Proof. Tt formally follows from Lemma 2.5.9, Lemma 2.5.10, Proposition 2.2.1 (3), and Corol-
lary 2.1.10. (|

Corollary 2.5.12. Let M and N be two almost isomorphic R-modules (see Definition 2.1.7). Then
M is almost finitely generated (resp. almost finitely presented) if and only if so is N.

Proof. Corollary 2.5.11 implies that M is almost finitely generated (resp. almost finitely presented)
if and only if M is. Since M{* ~ N, we get the desired result. ([

Corollary 2.5.13. Let R — S be an almost isomorphism of rings. Then the forgetful functor
Mod%. — ModFg. is an equivalence for x € {“ 7, aft, afp}.
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Proof. Corollary 2.5.11 ensures that it suffices to prove the claim for x = “” as the property of

being almost finitely generated (resp. almost finitely presented) depends only on the category
Modg. and not on the ring R itself.

Corollary 2.2.4 (2) guarantee that the forgetful functor admits a right adjoint —®p«S*: Mod% —
Mod¢%. Therefore, it suffices to show that the natural morphisms
M®*® M® QRa ga
and
N® ®pa S* — N
are isomorphisms for any M € Mod% and N € Modg. This is obvious from the fact that R* — S¢

is an isomorphism of R%-modules. ]

Definition 2.5.14. We say that an R%module M* € Mod%, is almost finitely generated (resp.
almost finitely presented) if its representative M € Modp, is almost finitely generated (resp. almost
finitely presented). This definition does not depend on a choice of representative by Lemma 2.5.12

We now want to establish certain good properties of almost finitely presented modules in short
exact sequences. This will be crucial later to develop a good theory of almost coherent modules.

Lemma 2.5.15. Let 0 — M’ % M % M” = 0 be an exact sequence of R-modules, then

(1) If M is almost finitely generated, then so is M".
(2) If M’ and M" are almost finitely generated (resp. finitely presented), then so is M.

(3) If M is almost finitely generated and M” is almost finitely presented, then M’ is almost
finitely generated.

(4) If M is almost finitely presented and M’ is almost finitely generated, then M" is almost
finitely presented.

Proof. The previous version of this manuscript contained a direct (but very tedious) proof of
this claim. However, now we only note that it can be easily deduced from Lemma 2.5.9 and
Lemma 2.5.10 via the five lemma (or diagram chase). We only note that the Ext! part of
Lemma 2.5.9 (2) is crucial to make the argument work. O

Corollary 2.5.16. Let 0 — M’ % Mo Yy M" 5 0 be an exact sequence of R*modules. Then
all the conclusions of Lemma 2.5.15 still hold.

Proof. We use Lemma 2.1.9(4),(5) to see that the sequence

0 — (M), 25 (M), L5 (M), — 0

is exact and almost isomorphic to the original one. Moreover, Corollary 2.5.12 says that each of
those modules N* is almost finitely generated (resp. almost finitely presented) if and only if so is
the corresponding N®. Thus the problem is reduced to Lemma 2.5.15. ]

Lemma 2.5.17. Let M® N° be two almost finitely generated (resp. almost finitely presented)
R*modules, then so is M® @ga N*. Similarly, M ®pr N is almost finitely generated (resp. almost
finitely presented) for any almost finitely generated (resp. almost finitely presented) R-modules M
and N.
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Proof. We show the claim only in the case of almost finitely presented modules, the case of almost
finitely generated modules is significantly easier. Moreover, we use Proposition 2.2.1(1) to reduce
the question to show that the tensor product of two almost finitely presented R-modules is almost
finitely presented.

Step 1. The case of finitely presented modules: If both M and N are finitely presented, then this
is a standard fact proven in [Bou98, II, §3.6, Proposition 6].

Step 2. The case of M being finitely presented: Now we deal with the case of a finitely presented

R-module M and merely almost finitely presented N. We fix a finitely generated ideal mg C m and

a finitely generated ideal my such that mg C m?. Now we use Lemma 2.5.7(2) to find a finitely

presented module N’ and a morphism f: N’ — N such that ker(f) and Coker(f) are annihilated
by mgy. We denote the image of f by N” and consider the short exact sequences

0—-K—-N —-N"-0,

0—+N'"—=-N-=-Q—=0

with K and @ being annihilated by mg. After applying the functor M ®gr —, we get the following
exact sequences:
M@rK —->M@pr N - M®rN' =0,
Torf(M,Q) « M@r N" = M @z N - M @rQ — 0 .
We note that M @g K, Torl* (M, Q), and M ®r Q are annihilated by my. Now it is straightforward

to conclude that the map
Meprf: M®@N - M®N

has kernel and cokernel annihilated by m; C m%. Moreover, M @ N’ is a finitely presented module
by Step 1. Since m; was an arbitrary finitely generated subideal of m, we conclude that M ® N is
almost finitely presented by Lemma 2.5.7(2).

Step 3. The general case: Repeat the argument of Step 2 once again using Step 2 in place of
Step 1 at the end, and Lemma 2.5.8 in place of Lemma 2.5.7(2). O

Lemma 2.5.18. Let M be an almost finitely presented R-module, let N be any R-module, and let
P be an almost flat R-module. Then the natural map Homgr(M,N) ®r P — Hompg(M, N ®@r P)
is an almost isomorphism.

Similarly, Hompgae (M%, N%) @ ga P* — Hompge (M*, N® @ ga P®) is an almost isomorphism for any
almost finitely presented R%module M?, any R*-module N*, and an almost flat R*-module P®.

Proof. Proposition 2.2.1(1) and (3) ensure that it suffices to prove the claim for the case of honest
R-modules M, N, and P.
Step 1. The case of a finitely presented module M: We choose a presentation of M:

R"—-R"™ —>M—0
Then we use that P is almost flat to get a morphism of almost exact sequences:
0 —— Hompr(M,N)®r P —— Hompg(R™,N) g P —— Hompg(R",N) ®r P

| | |

0—— HOIHR(M,N®R P) —_— HOIHR(Rm,®RP) —_— HomR(Rn,N®R P)
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Clearly, the second and third vertical arrows are (almost) isomorphisms, so the first vertical arrow
is an almost isomorphism as well.

Step 2. The General Case: The case of almost finitely presented module M follows from the
finitely presented case by approximating it by finitely presented ones. This is similar to the strategy
used in Lemma 2.5.17, we leave the details to the reader. O

The last thing that we will need is the interaction between properties of an R-module M and its
“reduction” M/I for some finitely generated ideal I C m. For example, we know that for an ideal
I C rad(R) and a finite module M, Nakayama’s lemma states that M /I = 0 if and only if M = 0.
Another thing is that an I-adically complete module M is R-finite if and only if M /I is R/I-finite.
It turns out that both facts have their “almost” analogues.

Lemma 2.5.19. Let I C m Nrad(R) be a finitely generated ideal. If M is an almost finitely
generated R-module such that M/IM ~ 0. Then M ~ 0. If M/IM =% 0, then M = (.

Proof. We use a definition of an almost finitely generated module to find a finite submodule N that
contains IM. If M/IM is isomorphic to the zero module, then the containment IM C N C M
implies that N = M. Thus M is actually finitely generated, now we use the usual Nakayama’s
Lemma to finish the proof.

If M /1M is merely almost isomorphic to the zero module, then we see that the inclusion IM C M
is an almost isomorphism. In particular, mM is contained in IM. Using that m?> = m, we obtain
an equality

mM =m?*M = m(IM) = I(mM)
Thus we can apply the argument from above to conclude that mM = 0. This finishes the proof as
mM =% M. O

Lemma 2.5.20. Let R be [-adically complete for some finitely generated I C m. Then an I-
adically complete R-module M is almost finitely generated if and only if M /IM is almost finitely
generated.

Proof. [GR0O3, Lemma 5.3.18] O

2.6. Almost Coherent Modules and Almost Coherent Rings. This section is devoted to
the study of “almost coherent” modules. They are supposed to be “almost” analogues of usual
coherent modules. We show that they always form a Weak Serre subcategory in Modpg. Then we
study the special case of almost coherent modules over an almost coherent ring, and show that in
this case almost coherent modules are the same as almost finitely presented modules. We recall
that we fixed some “base” ring R with an ideal m such that m?> = m and m = m ® m is flat, and
always we do almost mathematics with respect to this ideal.

Definition 2.6.1. We say that an (almost) R-module M is almost coherent if it is almost finitely
generated and every almost finitely generated almost submodule N% C M?* is almost finitely pre-
sented.

Remark 2.6.2. An almost submodule f: N* < M®* does not necessarily give rise to a submodule
N' C M for some (N')® ~ N. The most we can say is that there is an injection fi: (N%); < (M%),
whose almostification is equal to the the morphism f (this follows from Lemma 2.1.8(2)).

Lemma 2.6.3. Let R — S be an almost isomorphism of rings. Then the forgetful functor
Mod2! — Mod¥! is an equivalence.

Proof. 1t directly follows from Corollary 2.5.13 and Definition 2.6.1. O
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Lemma 2.6.4. Let M® be an almost R-module with a representative M € Modpg. Then the
following are equivalent

(1) The almost module M“ is almost coherent.

(2) The actual R-module (M®), is almost finitely generated, and any almost finitely generated
R-submodule of (M%), is almost finitely presented.

(3) The actual R-module (M%), is almost finitely generated, and any almost finitely generated
R-submodule of (M%), is almost finitely presented.

Proof. First of all, we note that Corollary 2.5.12 guarantees that M is almost finitely generated
if and only if so is (M%).. Secondly, Lemma 2.1.9 implies that the functor (—),. is left exact.
Therefore, any almost submodule N¢ C M% gives rise to an actual submodule (N%), C (M%),
that is almost isomorphic to N. In reverse, any submodule N C (M?®), gives rise to an almost
submodule of M“*. Hence, we see that all almost finitely generated almost submodules of M® are
almost finitely presented if and only if all actual almost finitely generated submodules of M, are
almost finitely presented (here we again use Corollary 2.5.12). This shows the equivalence of (1)
and (2). The same argument shows that (1) is equivalent to (3). O

Note that it is not that clear whether a coherent R-module is almost coherent. The issue is
that in the definition of almost coherent modules we need to be able to handle all almost finitely
generated almost submodules and not only finitely generated. The lemma below is a useful tool to
deal with such problems, in particular, it turns out (Corollary 2.6.7) that all coherent modules are
indeed almost coherent, but we do not know a direct way to see it.

Lemma 2.6.5. Let M be an R-module. Then M is an almost coherent module if one of the
following holds:

(1) For any finitely generated ideal my C m there exists a coherent R-module N and morphism
f: N — M such that mg(ker f) = 0 and mo(Coker f) = 0.

(2) For any finitely generated ideal my C m there exists an almost coherent R-module N and
morphism f: N — M such that mg(ker f) = 0 and my(Coker f) = 0.

Proof. We start the proof by noting that M comes with the natural almost isomorphism M — M2,
so both of the assumptions on M pass through this almost isomorphism. Thus, Lemma 2.6.4 implies
that it suffices to show that M, = M is almost coherent.

Lemma 2.5.7 guarantees that M, is almost finitely generated. Thus we only need to check
the second condition from Definition 2.6.1. So we pick an arbitrary almost finitely generated R-
submodule M; C M,, we want to show that it is almost finitely presented. We choose an arbitrary
finitely generated ideal mp C m and another finitely generated ideal m; C m such that my C m?.

We use Lemma 2.5.8 to find a morphism ¢ : R™ — M such that m;(Coker ) = 0. Let ey, ..., e,
be the standard basis in R", and define x; := ¢(e;) to be their images. We also choose some set of
generators (£1,...,&y) for the ideal my.

Now we recall that by our assumption there is a morphism f: N — M, with a(n) (almost)
coherent R-module N such that m;(Coker f) = 0 and my(ker f) = 0. This implies that €;z; is
in the image of f for any ¢ = 1,...,m,5 = 1,---n. Let us choose some y;; € N such that
f(yij) = eiz;, and we define an R-module N’ as the submodule of N generated by all y; ;, this is
a finite R-module by the construction. Since N is a (almost) coherent module, we conclude that
N’ is actually (almost) finitely presented.
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We observe that f/ := f|y/ naturally lands in M7, and we have my (ker f') = 0 and m?(Coker f') =
0. Since mp C m? this shows that the morphism

N Lo
has a kernel and cokernel killed by mg. Lemma 2.5.8 shows that M is almost finitely presented. [
Question 2.6.6. Does the converse of this Lemma hold?
Corollary 2.6.7. Any coherent R-module M is almost coherent.

The next thing that we want to show is that almost coherent modules from a Weak Serre
subcategory of Modpg. This is an almost analogue of the corresponding statement in the classical
case.

Lemma 2.6.8. Let R and m as above. Then

(1) An almost finitely generated almost submodule of an almost coherent module is almost
coherent.

(2) Let ¢ : N* — M® be an almost homomorphism from an almost finitely generated R*-module
to an almost coherent R*-module, then ker ¢ is almost finitely generated R*-module.

(3) Let ¢ : N* — M?® be an injective almost homomorphism of almost coherent R%-modules,
then Coker ¢ is almost coherent R*-module.

(4) Let ¢ : N* — M*® be an almost homomorphism of almost coherent R%-modules, then ker ¢
and Coker ¢ are almost coherent R*-modules.

(5) Given a short exact sequence of R*-modules 0 — M'* — M®* — M"* — 0 if two out of
three are almost coherent so is the third.

Proof. (1): This is evident from the definition of an almost coherent almost module.

(2): Let us define N"* := Im ¢ and N'* := ker ¢, then Corollary 2.5.16 implies that N”* is an
almost finitely generated almost submodule of M¢. It is actually almost finitely presented since
M® is almost coherent, we use Corollary 2.5.16 to get that N’ is almost finitely generated as well.

(8): We denote Coker ¢ by M"® then we have a short exact sequence
0— N*— M*— M" — 0.

Corollary 2.5.16 implies that M”® is almost finitely generated. Let us choose any almost finitely
generated almost submodule M{* C M"® and denote its pre-image in M® by M{. Then we have a
short exact sequence

0— N*— Mj — M{* — 0.

Corollary 2.5.16 guarantees that M7{ is an almost finitely generated almost submodule of M.
Since M*“ is almost coherent, we see that M{ is an almost finitely presented R*-module. Therefore,
Corollary 2.5.16 implies that M{'® is also almost finitely presented. Hence, the R%module M"® is
almost coherent.

(4): We know that N'* := ker ¢ is almost finitely generated by (2). Since N® is almost coherent,
we conclude that N is almost coherent by (1). We define N := Im ¢ and M"® := Coker ¢, then
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we note that we have two short exact sequences
0—= N*—= N*—= N" -0,
0— N" - M*— M"* — 0.

We observe that (3) shows that N’ is almost coherent, then we use (3) once more to conclude
that M"® is also almost coherent.

(5): The only thing that we are left to show is that if M’* and M"® are almost coherent so is
M®*. Tt is almost finitely generated by Corollary 2.5.16. Now to check the second condition from
Definition 2.6.1, we choose an almost finitely generated almost submodule M C M®. Let us denote
by M{* its image in M"* and by M| the kernel of this map. So we have a short exact sequence

0 — M{® — M{ — M{* — 0.

Corollary 2.5.16 guarantees that M{® is an almost finitely generated almost submodule of the
almost coherent R*-module M"*. Hence, (1) implies that M]* is almost coherent, in particular,
it is almost finitely presented. Moreover, we can now use (2) to get that M|* is an almost finitely
generated almost submodule of M'®. Since M'® is almost coherent, we conclude that M|* is actually
almost finitely presented. Finally, Corollary 2.5.16 shows that M{ is almost finitely presented as
well. This finishes the proof of almost coherence of the R*-module M. O

Corollary 2.6.9. Let M® be an almost finitely presented R®-modules and let N* be an almost
coherent R%module. Then M® ®ga N® and alHompa (M*, N®) are almost coherent.

Proof. We use Proposition 2.2.1(1),(3) to reduce the question to show that M@z N and Hompg (M, N)
are almost coherent R-modules for any almost finitely presented R-module M and almost coherent
R-module N.
Step 1. The case of finitely presented module M: In this case we pick a presentation of M as the
quotient
R"-R"—M—0.

Then we have short exact sequences
N N" 5 M®rN —0
and
0 — Homp(M,N) - N™ — N™ .
We note that Lemma 2.6.8(5) implies that N and N™ are almost coherent. Thus Lemma 2.6.8(5)
guarantees that both M @ N and Homp(M, N) are almost coherent as well.

Step 2. The General Case: The argument is similar to the one used in Step 2 of the proof of
Lemma 2.5.17. We approximate M with finitely presented R-modules. This gives us an approx-
imations of M? @ N* and alHompe(M*, N®) by almost coherent modules. Now Lemma 2.6.5
guarantees that these modules are actually almost coherent. We leave details to the interested
reader. g

We define Mod %" (resp. Mod%<") to be the strictly full” subcategoty of Modp (resp. Modga)
consisting of almost coherent R-modules (resp. R*-modules).

Corollary 2.6.10. The category Mod‘}‘%cOh (resp. Mod%(?h) is a Weak Serre subcategory of Modg
(resp. Modpga).

Ti.e. full subcategory that is closed under isomorphisms.



40 BOGDAN ZAVYALOV

Corollary 2.6.10 and the discussion in [Sta21, Tag 06UP] ensure that Dgeon(R) and Dgeopn(R)
are strictly full saturated’ triangulated subcategories of D(R) and D(R)* respectively. We define
D' (R) = Dgcon(R) N D (R) and similarly for all other bounded versions.

acoh

Lemma 2.6.11. Let M € D(R) be a complex of R-modules. Then M € D,qn(R) if one of the
following holds:

(1) For every finitely generated ideal mg C m, thereis N € Dcon(R) and a morphism f: N — M
such that mg (H (cone (f))) = 0 for every i € Z,

(2) For every finitely generated ideal mg C m, there is N € Dgcon(R) and a morphism f: N —
M such that mg (H’ (cone (f))) = 0 for every i € Z.

Proof. This is an easy consequence of Lemma 2.6.5 and the definition of Dgcon(R). (]

The last part of this subsection is dedicated to the study of almost coherent rings and almost
coherent modules over almost coherent rings. Recall that coherent modules over a coherent ring
coincide with finitely presented ones. Similarly, we will show that almost coherent modules over an
almost coherent ring turn out to be the same as almost finitely presented ones.

Definition 2.6.12. We say that a ring R is almost coherent if the rank-1 free module R is almost
coherent as an R-module.

Lemma 2.6.13. A coherent ring R is almost coherent.
Proof. Apply Corrollary 2.6.7 to a rank-1 free module R. U

Lemma 2.6.14. If R is an almost coherent ring, then any almost finitely presented R-module M
is almost coherent.

Proof. Step 1: If M is finitely presented over R, then we can write it as a cokernel of a map be-
tween free finite rank modules. A free finite rank module over an almost coherent ring is almost
coherent by Lemma 2.6.8(5). A cokernel of a map of almost coherent modules is almost coherent
by Lemma 2.6.8(4). Therefore, any finitely presented M is almost coherent.

Step 2: Suppose that M is merely almost finitely presented. Lemma 2.5.7 guarantees that, for
any finitely generated mg C m, we can find a finitely presented module N and a map f: N - M
such that ker f and Coker f are annihilated by mg. N is almost coherent by Step 1. Therefore,
Lemma 2.6.5(2) implies that M is almost coherent as well. 0

Corollary 2.6.15. Let R be an almost coherent ring. Then an R-module M is almost coherent if
and only if it is almost finitely presented.

Proof. The “only if” part is clear from the definition, the “if” part follows from Lemma 2.6.14. [J

Our next big goal is to show that bounded above almost coherent complexes over an almost
coherent ring are exactly ”almost pseudo-coherent complexes” in some precise way. More precisely,
that any element M € D__, (R) can be “approximated” up to any small torsion by complexes of
finite free modules.

8These are full subcategories of D(R) and D(R)® of complexes with almost coherent cohomology modules,
respectively.
9A strictly full subcategory D’ of a triangulated category D is saturated if X @Y € D’ implies X,Y € D’.
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Proposition 2.6.16. Let R be an almost coherent ring and M € D™ (R). Then M € D__, (R) if
and only if, for every finitely generated ideal mg C m, there is a complex F'® of finite free R-modules,
and a morphism

f:F*—> M
such that mg (H'(cone(f))) = 0 for every i € Z. Moreover, if M € D
F* € Comp='(R).

Coh(R) one can choose

Proof. The “if” direction is Lemma 2.6.11. So we only need to prove the “only if” direction. For
this direction, we fix a finitely generated ideal my C m and another finitely generated ideal m; C m
such that mg C m?.

Without loss of generality, we may and do assume that M € D<?(R), and we choose a complex
M* € Comp="(R) that represents M. Now we prove a slightly more precise claim:

Claim: For everyn € Z, there is a complez of finite free modules F with a morphism fn: Fy —
M?* such that

(1) Fy € Compl"(R);
(2) o2"LE* = F* | and 02" f,, = fn_1, where 02"~ is the naive truncation;
(8) kernels and cokernels of H'(f,,) are annihilated by my for i > n + 1;

(4) the cokernel of H™(f,,) is annihilated by my;

Proof of the claim: We argue by descending induction on n. If n > 1, F'* = 0 works. Now
we suppose that we can construct Fj;, and wish to construct F;_;. Consider the morphism f,
presented as a commutative diagram

dr o 47T
0 0 Fptt ——
l l iff: lf”“
dn 2 n 1 n+1
M2 Dy g1 S NS VIR T

Firstly, ker(d%) is almost coherent as a kernel between finitely presented modules over an almost
coherent ring. Secondly, the R-module
"= ker (ker (d%) — H" (M)),
is also almost coherent as a kernel between almost coherent modules. Therefore, there is a finite
free R-module F'"~! and a morphism
d: F"~t — B"

such that m;(Cokerd’) = 0. Since H®~!(M) is almost coherent, we can find a finite free R-module
F""=1 and a morphism
A B HYH(M)
such that mj(Coker \) = 0. Let v: F"™~! — Z"~1(M*®) be any lift of A to the module of closed
elements Z"~1(M*) = ker(d; ). We define
f//n—l: F//n—l N Mnfl
be the composition of v with the inclusion Z"~Y(M*®) — ML,
Now we wish to define F;_; and f,—1. We start with F_;; we put F)" | = F/" if m > n,

n—1

Fn,=0ifm<n-—1, Fg’_ll = "1 @ F"""1 and define the only non-evident differential
dannl le@Flml—>Fn

n—1 —



42 BOGDAN ZAVYALOV

to be zero on F""~! and equal to d’ on F'™~L. Tt is evident that d% o d’x ' = 0, so this structure
defines us a complex F;_; of finite free R-modules.

We are only left to define f,—1. We must put f/*, = f/*ifm>n—1and f* | =0if m <n-1,
so the only question is to define f7~{. By construction f?(d’F™~') c d};*M"!, so we can find

fl % F/nfl _>Mn71
h1®
such that d" o f! | = f%od’. Thus we define
fgjll anl _ F/n—l @F//n—l N Mn—l

n—1 —
to be f/_; on F'" L and f” | on F”"!. Then it is evident from the construction that f2_; is a
morphism of complexes, i.e. the diagram

n—1 n+1
dF d% dF

—1 n+1
— F" > _ .
0 n—1 anl

J lflf_f l n—1 ‘/ﬂfﬂ
dn+1

iy diy dy, M
M2 M, -l s M™ y Mt M T

By construction, kernel and cokernel of H*(f,,_1) are annihilated by m;, and cokernel of H*~1(f, 1)
is annihilated by m;. So this finishes the proof of the claim.

Now the morphism f: F'®* — M?® simply comes as the colimit of f,, i.e.
f = colim f,,: F* := colim Fy — M®.

It is easy to see that cohomology groups of cone(f) are annihilated by mg C m3. O
Corollary 2.6.17. Let R be a coherent ring and M € D®(R). Then M € Db . (R) if and only

if, for every finitely generated ideal my C m, there is a complex N € D? , (R) and a morphism
f: N — M such that my(H*(cone(f))) = 0 for all 4.

Proof. The “if” direction is Lemma 2.6.11. So we only need to deal with the “only if” direction.
Assume that M € DY(R). Then Proposition 2.6.16 implies that there is F € D_,(R) and a
morphism f: F — M such that mo(H?(cone(f))) = 0 for all i. Now replace F by F’ :== 72°F to
get the desired approximation with F’ € Db  (R). O

coh

Proposition 2.6.18. Let R be an almost coherent ring, and let M*, N be two objectsin D, (R)®.
Then M® @k, N* € D, (R)"

acoh
Proof. Proposition 2.4.13 ensures that it suffices to show that M ®% N € D_ . (R) for M, N €
D_ , (R). Clearly, we can cohomologically shift both M and N to assume that they lie D=V (R).

coh
Now we fix a finitely generated ideal m; C m and use Proposition 2.6.16 to find an exact triangle

F*—- M —Q
where F'* € D=°(R) a complex of finite free modules and H*(Q) are all annihilated by m;. Then it
is easy to see that kernel and cokernel of the map
H™'(F* ®% N) — H(M ®% N)

are annihilated by m’i“. Now we note that, clearly,

FCoEN~F @4 N
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lies in D__, (R) because F'* is a complex of finite free modules. For each pair of an integer i > 0
and a finitely generated ideal mg C m = m**!, we can find another finitely generated ideal m; such
that mg C mifrl. Therefore, the map

H™'(F* ®% N) - H (M ®% N)
is a morphism with an almost coherent source and mg-torsion kernel and cokernel. Therefore,
Lemma 2.6.5 (2) implies the claim. O

Proposition 2.6.19. Let R be an almost coherent ring, and let M* € D, (R)?, N® € D}, (R)“.
Then RalHompa (M% N%) € Dt  (R)*.

acoh

Proof. The proof is similar to that of Proposition 2.6.18. We use Proposition 2.4.8 and the same
approximation argument to reduce to the case M = F*® is a bounded above complex of a finite
free modules. In this case the claim is essentially obvious due to the explicit construction of the
Hom-complex Hom% (F*, N). O

Proposition 2.6.20. Let R be an almost coherent ring, let M € D, (R), N € DT(R), and let P
be an almost flat R-module. Then the natural map RHompg (M, N) @ P — RHompg(M, N ®pr P)
is an almost isomorphism.

Similarly, RHompga (M®, N%) ®%, P* — RHompga (M?%, N® ®%, P?) is an almost isomorphism for
any M* e D, (R)*, N* € DT(R)%, and let P* a flat R%module.

Proof. The proof is similar to that of the lemmas above. O

Corollary 2.6.21. Let R be an almost coherent ring, let M® € D__, (R)?, N € D*(R)%, and let
P? be an almost flat R*-module. Then the natural map

RalHompa (M, N%) @k, P* — RalHompa(M?, N® @ga P?)
is an isomorphism in D(R?).
2.7. Almost Noetherian Rings. The main goal of this section is to define the almost analogue of
the noetherianness property and verify some of its basic properties. However, we want to emphasize

that Hilbert’s Nullstellensatz seems much more subtle in the almost world (see Warning 2.7.9). We
are able to establish it only in a very particular situation in Section 2.11.

As in the previous sections, we fix a ring R with an ideal m such that m> =m and m = m ®zm
is flat, and always we do almost mathematics with respect to this ideal.

Definition 2.7.1. A ring R is almost noetherian if every ideal I C R is almost finitely generated.

The main goal is to show that every almost finitely generated module over an almost noetherian
ring is almost finitely presented. In particular, an almost noetherian ring is almost coherent.

Lemma 2.7.2. Let R be an almost noetherian ring, and M C R" an R-submodule. Then M is
almost finitely generated.

Proof. We argue by induction on n. The base of induction is n = 1, where the claim follows from
the definition of an almost noetherian ring.

Suppose we know the claim for n — 1, so we deduce the claim for n. Denote by R"~1 C R" a free
R-module spanned by first n — 1 standard basis elements of R", and denote by M’ := M N R"~!
the intersection of M with R"~'. Then we have a short exact sequence

0—M — M- M —0,
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where M" is naturally an R-submodule of R ~ R"/R"~!. By the induction hypothesis, M" is almost
finitely generated. M" is almost finitely generated by almost noetherianness of R. Therefore, M is
almost finitely generated by Lemma 2.5.15 (2). O

Lemma 2.7.3. Let R be an almost noetherian ring. Then any almost finitely generated R-module
M is almost finitely presented.

Proof. Pick any finitely generated sub-ideal mg C m. By Lemma 2.5.5, there is an R-linear homo-
morphism

f:R"—> M
such that mg(Coker f) = 0. Consider N := ker(f). Lemma 2.7.2 ensures that N is also almost
finitely generated, so there is an R-linear homomorphism

g:R™" - N
such that mg(Coker g') = 0. Therefore, the composition

JrENy LN Y

is a three-term complex with my(Coker f) = 0 and mg(ker f) C Im(g). Since my was an ar-

bitrary finitely generated sub-ideal in m, we conclude that M is almost finitely presented by
Lemma 2.5.7 (3). O

Corollary 2.7.4. A ring R is almost noetherian if and only if any almost finitely generated R-
module M is almost finitely presented.

Proof. If R is almost noetherian, then any almost finitely generated R-module is almost finitely
presented due to Lemma 2.7.3.

Now we suppose that every almost finitely generated R-module is almost finitely presented, and
we wish to show that R is almost noetherian. Consider an ideal I C R. Then R/I is clearly a
finitely generated R-module, in particular, it is almost finitely generated. Therefore, it is almost
finitely presented by our assumption on R. Now the short exact sequence

0—+1—-R—>R/I—0
and Lemma 2.5.15 (3) imply that I is almost finitely generated. 0

Corollary 2.7.5. Let R — R’ be an almost isomorphism of rings. Then R is almost noetherian if
and only if R’ is.

Corollary 2.7.6. Let R be an almost noetherian ring, and M an almost finitely generated R-
module. Then any submodule N C M is almost finitely generated.

Proof. Consider the short exact sequence

0—-N—-M— M/N —D0.

By construction, M/N is almost finitely generated and, therefore, almost finitely presented by
Lemma 2.7.3. So Lemma 2.5.15 (3) implies that N is almost finitely generated. O

Corollary 2.7.7. Let R be an almost noetherian ring. Then R is almost coherent.

Proof. Lemma 2.6.4 guarantees that it suffices to show that every finitely generated sub-module of
Ry is almost finitely presented Ry ~ m is almost finitely generated and every finitely generated sub-
module of Ry is almost finitely presented. The first property is trivial since R) is almost isomorphic
to R, and the second one follows from Lemma 2.7.3. O
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Corollary 2.7.8. Let R be an almost noetherian ring. Then an R-module M (resp. an R*-module
M®) is almost coherent if and only if it is almost finitely generated.

Proof. Tt suffices to prove the claim for an honest R-module M. Corollary 2.7.7 and Corollary 2.6.15
imply that M is almost coherent if and only if it is almost finitely presented. Now Lemma 2.7.3
says that M is almost finitely presented if and only if it is almost finitely generated. This finishes
the proof. O

Warning 2.7.9. Unlike the case of usual noetherian rings, Hilbert’s Nullstellensatz seems as a much
more subtle problem in the almost world. In particular, we do not know if a polynomial algebra
in a finite number of variables over an almost noetherian ring is almost noetherian. However, we
show that Hilbert’s Nullstellensatz holds for perfectoid valuation rings in Section 2.11.

2.8. Base Change for Almost Modules. The last topic that we want to discuss about almost
modules over general rings is their behavior with respect to base change. Recall that given a ring
homomorphism ¢: R — S we always do almost mathematics on S-modules with respect to the
ideal mg := mS; look at Lemma 2.1.11 to see why mg is flat.

Lemma 2.8.1. Let ¢ : R — S be a ring homomorphism, and let M® be an almost finitely generated
(resp. almost finitely presented) R*-module. Then the module Mg := M ®pga S* is almost finitely
generated (resp. almost finitely presented).

Proof. The claim follows from Lemma 2.5.7(2) and the fact that for any finitely generated ideal
m( C mg there is a finitely generated ideal my C m such that mj; C mpS. We only give a complete
proof in the case of finitely presented modules as the other case is an easier version of the same.

Firstly, we note that it suffices to show that M ®pg S is almost finitely presented. Now the
observation above implies that it suffices to check the condition of Lemma 2.5.7(2) only for ideals
of the form myS for a finitely generated subideal mg C m. Then we choose some finitely generated
ideal m; C m such that my C m? and we use Lemma 2.5.7(2) to find a finitely presented module
N and a map f: N — M such that m;(Ker f) = m;(Coker f) = 0. Consider an exact sequence

0sKsNLM-aQ=o
and denote the image f by M’. Then we have the following exact sequences:
K®rS -+ N®rS— M ®@rS—0

Torf(Q,8) = M' 9 S - M ®r S — Q @R S

Since K ®p S, Torl'(Q,S) and Q ®p S are killed by myS, we conclude that Coker(f ®p S) and
ker(f ®p S) are annihilated by m?S. In particular, they are killed by mpS. Since N @ S is finitely
presented over S, Lemma 2.5.7 finishes the proof. O

Corollary 2.8.2. Let R — S be a ring homomorphism of almost coherent rings, and let M* be
an object of D, (R)®. Then M®®%, S € D, . (S)"

acoh acoh

Proof. The proof is similar to that of Proposition 2.6.18. We use Proposition 2.4.16 and a similar
approximation argument based on Proposition 2.6.16 to reduce to the case M ~ F'*, where F* is a
bounded above complex of finite free modules. In this case, the claim is essentially obvious. ]

Lemma 2.8.3. Let S be a R-algebra that is finite (resp. finitely presented) as an R-module, and
let M® be an S*-module. Then M“ is almost finitely generated (resp. almost finitely presented)
over R® if and only if it is almost finitely generated (resp. almost finitely presented) over S®.
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Proof. As always, we firstly reduce the question to the case of an honest S-module M. Now we
use the observation that it suffices to check the condition of Lemma 2.5.7(2) only for the ideals of
the form my.S for some finitely generated ideal mg C m C R. Then the only non-trivial direction is
to show that M is almost finitely presented over S if it is almost finitely presented over R. This is
proven in a more general situation in Lemma 2.8.4 O

Lemma 2.8.4. Let S be a possibly non-commutative R-algebra that is finite as a left (resp. right)
R-module, and let M be a left (resp. right) S-module that is almost finitely presented over R.
Then M is almost finitely presented over S (i.e. for every finitely generated ideal my C m, there
exists a finitely presented left (resp. right) S-module N and a map N — M such that ker f and
Coker f are annihilated by mg).

Remark 2.8.5. This lemma will actually be used for a non-commutative ring S in the proof of
Theorem 5.2.1 that, in turn, will be used in the proof of formal GAGA for almost coherent sheaves
Theorem 5.3.2. Namely, we will apply to result to S = Endpy (O ® O(1) @ ... O(N)).

Besides this application, Lemma 2.8.4 will be mostly used for almost coherent commutative rings
R and S, where the proof can be significantly simplified.

Proof. We give a proof for left S-modules, the proof for right S-modules is the same. We start

the proof by choosing some generators x1,...,x, of S as an R-module. Then we pick a finitely
generated ideal my C m and another finitely generated ideal m; such that my C m?. And we also
choose some generators (£1,...,e,) = my and find a three-term complex

RS R L 0

such that mj(Coker f) = 0 and my(ker f) C Img. We consider the images y; == f(e;) € M of the
standard basis elements in R™. Then we can find some f; ; s » € R such that

m
estilj = ¥ Bijss - Yr With Bijor € R

r=1

forany s=1,...k; i=1,...,n; j=1,...,m. Moreover, we have t “relations”

m
Zai,jyj =0 with o; ; € R
j=1
such that for any relation > ", bjy; = 0 with b; € R and any ¢ € my, we have that the vector
{eb;i}[*, € R™ lives in the R-subspace generated by vectors {a; ;}i", for j =1,...,t. Or, in other
words, if 377" @; jy; = 0 then e(3_72; a4 jej) € Im(g) for any € € my.
Now we are finally ready to define a three-term complex

grmhit Ly gm 2, g

We define the map ¢ as the unique S-linear homomorphism such that ¢(e;) = y; for the standard
basis in S™. We define v as the unique S-linear homomorphism such that

m m
V(fijs) = esziej — Zﬁz‘,j,s,r -e, and P(f]) = Zaz,jej
r=1 j=1

for the standard basis

/ k-+t
{fivjas’ fi }ign,jgm,sgk,lgt e s

Then we clearly have that ¢ o1 = 0 and that m;(Coker ¢) = 0. We claim that m?(ker ¢) C Im 1.
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Let o(3 %, cie;) = 0 for some elements ¢; € S. We can write each

n
c; = ZTZ'JJ}]' with rij € R (2.1)
j=1
because 1, ..., x, are R-module generators of S. Thus, the condition that ¢(} ;" cie;) = 0 is

equivalent to Z” r;jT;y; = 0. Now recall that for any s = 1,...k we have

m
EsTiY; = E Bj,i,s,r “Yr-
r=1

Therefore, multiplying equation 2.1 by &4, we get an equality
m m
0=cs | D rigasyi | =Y rig (Z Biissr - yr) =D | Do riiBiss | wr
ij i r=1 r=1 \ i,j
This means that for any s’ = 1,...,k the vector {es (>, ;7,Bjisr)}res € R™ lives in an R-
subspace generated by vectors {a; ;},. In particular, for any r and ¢, 55’(Zij'ri,jﬁj,i,s,rer) is
equal to v (some sum of f]) by definition of .
After unwinding all the definitions we get the following;:

m
Eg'€s E Ci€; | = Eg€s E T3 L€
=1

1]

=co [ D miy <6s$j€z' = Bjisrer+ > 5j,z',s,r€r>
%] r r

=cy § Tij <€s$j€i— § 5j,i,s,r€r> + ey E E riiBisr | €r
i, r T 2,]

= | ey Z rijfiis | (some sum of fl’)
i,
So we see that m% ker(¢) C Im1). In particular, we have mgker(¢) C Im. Now we replace the
map ¢: S™ — M with the induced map

@: Coker(¢) — M

to get a map from a finitely presented left S-module such that ker(%) and Coker() are annihillated
by mg. ]

2.9. Almost Faithfully Flat Algebras. This section is devoted to the notion of almost faithfully
flat morphism of algebras. This notion is a bit subtle in the almost context. Similar to the case of the
usual commutative algebra, one defines R — S to be almost (faithfully) flat if S is a (faithfully) flat
R%module. Note that this implies that S is a flat R-module, but S{* is not necessarilly faithfully
flat as an R-module if S is faithfully flat as an R*-module (see Warning C.1.8).

Another subtlety of this definition is that S{* is not longer an R-algebra. So it seems difficult
to relate almost faithful flatness of an R-algebra to some actual faithful flatness from this point of
view. However, it turns out that things get better if we change the definition of the (—);-functor.
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We introduce a different functor (—)n: Algr — Algp. However, this functor will not in general
send almost flat morphisms to flat morphisms, but it will send almost faithfully flat morphisms to
faithfully flat morphisms. So it will be very usefull to deduce certain properties of almost faithfully
flat morphisms from the analogous properties of classically faithfully flat morphisms.

We follows the exposition in [GRO3] pretty closely here.
For the rest of the section, we fix a ring R with an ideal of almost mathematics m.

Definition 2.9.1. A homomorphism of R-algebras A — B is almost flat (resp. almost faithfully
flat) if B is a flat (resp. faithfully flat) A%-module (see Definition 2.2.5).

Lemma 2.9.2. Any (faithfully) flat A-algebra B is almost (faithfully) flat.
Proof. 1t follows directly from Lemma 2.2.6. O

Lemma 2.9.3. Let A be an R-algebra and f: A — B a morphism of R-algebras. Then B is almost
faithfully flat over A if and only if B® is a flat A*-module and A% — B?® is universally injective,
i.e., for any A*-module M*?, the natural morphism M* — M® ® 4o B® is injective in Mod%.

Proof. Suppose that B is almost faithfully flat. Then B® is a flat A®-module by definition. So we
only need to show that A* — B® is universally injective. Pick any M* € Mod? and consider an
A% module

N®:=ker(M* - M* ®4a B).

It comes with a short exact sequence

0— N*— M*— M*—0,
where M'® = M®/N“. Flatness of B® implies that we have a short exact sequence

0— N*®4a B* > M* ® 40 B* - M’ ® 40 B* — 0.

Now we see that the morphism

N ®@pa B* = M®* ® 40 B
is equal to zero by our choice of N*. But it is also injective (in Mod$%), so N* ® 4o B* ~ 0. Since
B?® is faithfully flat over A%, we conclude that N% ~ 0.

Now we suppose that B* is a flat A%-module and A% — B“ is universally injective. Thus, for
any A%module M?, we have an injection M® — M® ® g« B*. So if M* ® 4o B* ~ (0, we conclude
that M® ~ 0. Thus B® is faithfully flat over A®. t

Corollary 2.9.4. Let A be an R-algebra and f: A — B is a morphism of R-algebras. Then B is
almost faithfully flat over A if and only if B* and Coker(f®) are flat A*-modules.

Proof. By Lemma 2.9.3, it suffices to show that f¢ is universally injective if and only if Coker(f®) is
A%-flat. We note that, for any A%module M¢, ker(M® — M®® 4o B*) ~ H™}(M® ®%, Coker(f%)).
In particular,

H! (M ®L. Coker(f®)) ~0
for any A%-module M* if and only if the functor — ® 4« Coker(f*): Mod% — Mod is exact. In
other words, A® — B® is universally injective if and only if Coker(f?) is flat over A®. O

Now we define the functor (—)y: Algp — Algp. We start by constructing an R-algebra structure
on R® Af = R® (m®pg A) by defining the multiplication as

(roa)-(rod)=r)® (rd +r'a+ad)
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and the summation law is the usual one. One easily checks that this is a well-defined (unital,
commutative) R-algebra structure on R® Af. We consider the R-submodule I4 of R® A generated
by elements of the form (mn,—m ®n ® 14) for m, n € m.

Lemma 2.9.5. The R-module I4 C R® A} is an ideal.
Proof. It suffices to show that, for any element (r,z ® y ® a) in R ® Af, the product
rozy®a)- (mnd®-—-men®ly)
lies in I4 for any m, n € m. By definition,
rozy®a)- (mMnd-men®ly) =mn)d(—rmnlg+rmyn@a—rmyn ® a)
=r(mn@®-men®ly) e l,.
O
Definition 2.9.6. The functor (—)y: Algp — Algp is defined as
A— (R AY)/1a
with the induced R-algebra structure.
For any R-algebra A, there is a functorial R-algebra homomorphism R © A} — A defined by
r® (men®a)—r+mna.
Clearly, this homomorphism is zero on [ 4 so it descends to an R-algebra homomorphism n: Ay — A.
Lemma 2.9.7. (1) For any R-algebra A, the natural morphism 7: Ay — A is an almost iso-
morphism.

(2) A morphism of R-algebras f: A — B is almost injective (as a morphism of R-modules) if
and only if fii: Ay — By is injective.
(3) For any morphism of R-algebras f: A — B, there is a canonical isomorphism of A;-modules
Coker( fiy) ~ Coker(f).
(4) The functor (—)y: Algp — Algp commutes with tensor products.
Proof. (1) : We recall that the morphism A; — A is almost isomorphism. In particular, it is almost
surjective. Thus Ay — A is also almost surjective. Now we check almost injectivity. Suppose
n(@) = 0 where a =r @ Zle m;@n; Qa; € ROm® A and @ € Ay is the class of @ in Ay. Then
the condition n(a@) = 0 implies that there is an equality

k
T+ Z min;a; =0
i=1
in A. In particular, for every ¢ € m, we have er = Ele(—mi)(eniai) in A. Thus, we see that
k
ea =ecr @ Zmi XRn; @ ea;
i=1

k
(—mi)(en;a;) & Zml QKnica; Q14
1 i=1

I
M=

<.
Il

I
M=

((—my) (enia;) @ m; @ enja; @ 14) € 14.
1

<.
Il
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Therefore, ea = 0 for every € € m. In particular, n is almost injective.

(2) and (3) : Consider a commutative diagram

Ay N By

iﬁA lﬂB
A1 B

Since n4 and np are almost isomorphism, we see that f is almost injective if and only if fi is
almost injective. So we are left to show that fy is injective if f is almost injective, and Coker(fy) =
Coker(f),. For this, we consider a commutative diagram of short exact sequences

0 Ix R & A Ay > 0
J/a \LIdEsz lf!!
0 > Ip Ro B By > 0.

Clearly, « is surjective, ker(Id® f)) = ker(fi) = ker(f);, and Coker(Id® f;) = Coker(fi) = Coker(f).
Thus, the Snake Lemma implies that

ker(f)1 — ker(fn)
is surjective and
Coker( fi1) — Coker(f)
is an isomorphism. Thus fy is injective if f is almost injective, and Coker(fi1) = Coker(f):.
(4) : This is an elementary but pretty tedious computation. We leave it to the interested reader.

O

Corollary 2.9.8. For any R-algebra A, the forgetful functor Mod’« — Mod. is an equivalence
for x € {“ 7, aft, afp, acoh}. h

Proof. For * = “ 7 the claim follows from Lemma 2.9.7 (1), Corollary 2.5.13, and Lemma 2.6.3. [J

Corollary 2.9.9. Let f: A — B be an almost faithfully flat morphism of R-algebras. Then
fu: Ay — By is faithfully flat.

Proof. Denote by @ the cokernel f as an A-module. Then Lemma 2.9.3 and Lemma 2.9.7 (2),
(3) ensure that fi: Ay — By is injective and Coker(fy) = Coker(f);. Now Corollary 2.9.4 and
Lemma 2.2.7 applied to Afj ~ A® imply that Coker(fu) = Coker(f) is a flat Ay-module. This
already implies that B is a flat Ay-module as an extension of two flat Ay-modules. To see that it
is faithfully flat, we note that flatness of Coker(f) implies that

M — M®A” B

is injective for any Ay-module M. So M ® 4, By ~ 0 if and onlyif M ~ 0. In other words, By is a
faithfully flat Apy-module. ]

Warning 2.9.10. The functor (—); does not send flat A-algebras to flat Ay-algebras. See [GRO3,
Remark 3.1.3].

For the future reference, we also show that the base change functor interacts especially well with
the Hom-functor in the almost flat situation.



ALMOST COHERENT MODULES AND ALMOST COHERENT SHEAVES 51

Lemma 2.9.11. Let R — S be an almost flat morphism, M an almost finitely presented R-module,
and N an R-module. Then the natural map

Hompg(M,N)®r S — Homg(M ®r S, N ®g S)
is an almost isomorphism.
Proof. This follows from the classical ®-Hom adjunction and Lemma 2.5.18. U

Lemma 2.9.12. Let R be an almost coherent ring, R — S be an almost flat map, and M €
D, .(R), N € DT(R). Then the natural map

RHompg(M, N) ®% $ — RHomg(M % S, N @k 9)
is an almost isomorphism.

Proof. We recall that we always have a canonical isomorphism RHompg(K, L) ~ RHomg(K®%S, L)
for any K € D™ (R) and any L € D" (S). This implies that it suffices to show that the natural map
RHomg(M, N) ®% S — RHomp(M, N @% 9)
is an almost isomorphism. This follows from Proposition 2.6.20. O
2.10. Almost Faithfully Flat Descent. The main goal of this section is to show almost faithfully

flat descent for almost modules.

For the rest of the section, we fix a ring R with an ideal of almost mathematics m.
In this section, for any morphism A — B of R-algebras, we denote the tensor product functor
— ®4a B* simply by
f*: Mod% — Mod%.
In particular, if A — B is a morphism of R-algebras, the canonical “co-projection” morphisms
pi: B — B ®4 B induce morphisms
p; : Mody — Mod%g ,
for i € {1,2}. The same applies to the “co-projections”
p;j: MOd%@AB - MOd%@AB@AB
for i # j € {1,2}.
Definition 2.10.1. An almost descent category Desc‘fg/A for a morphism of R-algebras A — B is
a category whose objects are pairs (M?, ¢), where M* € Mod% and
¢: p1(M*) — py(M*)
in an isomorphism of (B ®4 B)®-modules such that pj 3(¢) = p3 3(¢) o p] 5(#). Morphisms between
(M, ¢pr) and (N%, o) are defined to be B*-linear homomorphisms f: M?% — N® such that the
diagram

* ¢ *
p1(Ma) — p2(Ma)

lpm lp;(n
* a d) * a
p1(N ) — p2(N )
commutes.

Remark 2.10.2. Explicitly, an object of the descent category Desc, /A is a B%-module M® with a
(B ®4 B)%linear homomorphism ¢: M®* ® 40 B* — B® ® 4o M*® satisfying the “cocycle condition”.
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There is a natural functor
Ind: Mod} — Desc 4
that sends M to f*(M®) = M* ® 4« B* with a canonical identification ¢: pj f* (M?) >~ p5f* (M*)
coming from the equality f op; = f o ps.
To define a functor in the other direction, we note that we have natural B*-module morphisms
ti: M* — pf (M*) for i € {1,2}. Explicitly, they are defined as morphisms induced by ¢1(m) = m®1
and ta(m) = 1 ® m. Therefore, given a descent data (M?, ¢) € Desc“B/A, we can define

ker(M?, ¢) := ker(M* RNV ®pa BY).
This is an A%-module, and it is not difficult to check that this association is functorial in Desc’ /A"
Therefore, it defines a functor
ker: Descy,, — Modj.
We show that ker and Ind are quasi-inverse to each other and induce an equivalence between
Desc, /A and Mod9 for an almost faithfully flat morphism f: A — B.

Theorem 2.10.3. Let f: A — B be an almost faithfully flat morphism. Then
Ind: Mod} — Desc/y
is an equivalence, and its quasi-inverse is given by the functor ker: Desc’; s ModY%.

Proof. Corollary 2.9.8 and Corollary 2.9.9 imply that we may replace f with fi to assume that
f is faithfully flat. Then the claim follows from the classical faithfully flat descent (see [BL.RIO0,
Theorem 6.1/4]) and the observation that the non-almost versions of Ind and ker carry almost
isomorphisms to almost isomorphisms. O

On a similar note, we show that the Amitsur complex for an almost faithfully flat morphism is
acyclic.

Lemma 2.10.4. Let f: A — B be an almost faithfully flat morphism of R-algebras, and M €
Mod%. Then the Amitsur complex

0—>Ma—>Ma®AaBa—)Ma(g)AaBa@AaBa%

is an exact complex of Mod%-modules (see the discussion around [Sta21, Tag 023K] for the precise
definition of differentials in this complex).

Proof. Corollary 2.9.8 and Corollary 2.9.9 imply that we may replace f with f) to assume that f
is faithfully flat. Then the claim follows from [Sta2l, Tag 023M]. O

Now we show that some properties of A*-modules can be verified after a faithfully flat base
change.

Lemma 2.10.5. Let f: A — B be an almost faithfully flat morphism of R-algebras, and let M?®
be an A%module. Then M? is an almost finitely generated (resp. almost finitely presented) A°-
module if and only if M?® ® 40 B® is an almost finitely generated (resp. almost finitely presented)
B%module.

Proof. Corollary 2.9.8 and Corollary 2.9.9 imply that we may replace f with fi to assume that f
is a faithfully flat morphism. Then a standard argument reduces the questions to the case of an
honest A-module M, i.e. we show that an A-module M is almost finitely generated (resp. almost
finitely presented) if so is the B-module M ® 4 B.


https://stacks.math.columbia.edu/tag/023K
https://stacks.math.columbia.edu/tag/023M
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We start with the almost finitely generated case. So we suppose that M ® 4 B is almost finitely
generated, thus given any £ € m we can choose a morphism g : B" — M ® 4 B such that e(Coker g) =
0. Let us consider the standard basis e, ..., e, of B", and we write

g(e;) = Zmi’j ® b; ; with m; ; € M, b; ; € B.
J

We define an A-module F' to be a finite free A-module with a basis ¢; ;. Then we define morphism
h: F— M

as a unique A-linear homomorphism with h(e; ;) = m; ;. It is easy to see that ¢(Coker(h®4 B)) = 0.
Since f is faithfully flat, this implies that e(Coker h) = 0. We conclude that M is almost finitely
generated as ¢ was an arbitrary element of m.

Now we deal with the almost finitely presented case. We pick some finitely generated ideal
mg C m, and another finitely generated ideal m; C m such that mg C mim. We try to find a
three-term complex

LNy UENS
such that my(Coker f) = 0 and mg(ker f) C Im g.

The settled almost finitely generated case implies that M is at least almost finitely generated.
In particular, we have some morphism

ar Loy
such that m;(Coker f) = 0, thus m;(Coker(f ®4 B)) = 0 as well. Therefore, we can apply Lemma
2.5.6 to find a homomorphism ¢': B™ — B™ such that mg(ker(f®4B)) C Im(g’) and (f®4B)og’ =
0. This implies that ¢’ actually lands inside ker(f ®4 B) = ker(f) ®4 B by A-flatness of B.
Now we do the same trick as above: we write
g(e) = ZmiJ ® b; j with m; ; € ker(f), b;; € B.
J

We define an R-module F' to be a finite free A-module with a basis e; ;. Then we define a morphism
g: F — ker(f)

as the unique A-linear morphism such that g(e; ;) = m; ;. Then we see that mg(ker(f ®4 B)) C
Im(g ®4 B). Since B is faithfully flat we conclude that mg(ker f) C Im(g) as well. This shows that
a three-term complex

Foandom
does the job. Therefore, M is an almost finitely presented A-module. g

Corollary 2.10.6. Let f: A — B be an almost faithfully flat morphism of R-algebras, let M® be
an A%module. Suppose that M® ® 4« B® is an almost coherent B*-module. Then so is M®.

Proof. This follows directly from Lemma 2.6.3 and Lemma 2.10.5. g

Lemma 2.10.7. Let f: A — B be an almost faithfully flat morphism of R-algebras, and let M?®
be an A%module. Then M“ is a flat (resp. faithfully flat) A%-module if and only if M®* ® 4o B® is
a flat (resp. faithfully flat) B®-module.

Proof. The classical proof works verbatim in the almost world. We leave details to the reader. [J
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2.11. (Topologically) Finite Type K ™-Algebras. This section is devoted to the proof that
(topologically) finite type algebras over a perfectoid valuation ring K+ are almost noetherian. We
refer to Appendix B.1 for the relevant background on perfectoid valuation rings.

For the rest of the section we fix a perfectoid valuation ring K* (see Definition B.2) with
perfectoid fraction field K, associated rank-1 valuation ring O = K° (see Remark B.3), and ideal
of topologically nilpotent elements m = K°° C K'. Lemma B.6 ensures that m is flat over KT
and m ~ m? = m. Therefore, it makes sense to do almost mathematics with respect to the pair
(K™, m). In what follows, we always do almost mathematics on K*-modules with respect to this
ideal.

Warning 2.1. The ideal m C K is not the maximal ideal of K. Instead, it is the maximal ideal
of the associated rank-1 valuation ring Og.

Lemma 2.11.1. Let KT be a perfectoid valuation ring. Then the natural inclusion ¢: KT — O
is an almost isomorphism.

Proof. Clearly, the map ¢: KT — Ok is injective, so it suffices to show that its cokernel is almost
zero, i.e. annihilated by any € € m. Pick an element € O, then ex € m C K*. Therefore we
conclude that ¢(Coker ¢) = 0 finishing the proof. O

The first main result of this section is that any (topologically) finite type algebra over Kt is
almost noetherian.

Lemma 2.11.2. Let K™ be a perfectoid valuation ring, and n > 0 an integer. Then the Tate
algebra K*(Ty,...,T,) is almost noetherian.

Proof. Firstly, we note that O (Ty,...,T,) ~ Kt(T1,...,T,) @+ Of. Therefore, Lemma 2.11.1
implies that the natural morphism

KT, ..., T,) — Ok (Th,...,Ty)
is an almost isomorphism. So Corollary 2.7.5 ensures that it suffices to show that Ox (T1,...,T})

is almost noetherian.

Pick any ideal I C Ox(T1,...,T,) = K(T1,...,T,)° and 0 # ¢ € m. Now [Bosl4, Lemma 6.4/5]
applied to B = K(T1,...,T,,), E = Og(Ty,...,T,), E' = I, and a = |[e|x guarantees that there is
a finite submodule E” C I such that eI C E”. Since € was an arbitrary element of m, we conclude

that [ is indeed almost finitely generated. ([l
Corollary 2.11.3. Let K be a perfectoid valuation ring, @ € m, and n > 0 an integer. Then the
polynomial algebra (K /w™)[T1,...,T,] is almost noetherian for any m > 1.

Proof. 1t easily follows from Lemma 2.11.2, Corollary 2.7.4, and Lemma 2.8.3. O

Theorem 2.11.4. Let K be a perfectoid valuation ring, and A a topologically finite type K-
algebra. Then A is almost noetherian.

Proof. Since A is topologically finite type over KT, there exists a surjection

f: KH{T,...,T,) = A—0.
Pick an ideal I C A and consider its preimage J = f~1(I). Then J is almost finitely generated over
K*(Ty,...,T,) by Lemma 2.11.2. Therefore, Lemma 2.5.15 (1) ensures that I is almost finitely

generated over KT (Ty,...,T,). Finally, Lemma 2.8.3 ensures that I is therefore also almost finitely
generated over A. O
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Now we are going to show that any finite type K T-algebra is almost noetherian. Before doing
this, we need a couple of preliminary lemmas.

Lemma 2.11.5. Let R be a rank-1 valuation ring with a non-zero topologically nilpotent element
w € R, and M a finite R[T1,...,T,]-module. Then M[w™] = M [w®] for some ¢ > 0.

Proof. The R[Ty,...,T,]-module M’ := M/M[w®™] is finitely generated. Moreover M’ is R-flat
because it is torsion-free (and R is a valuation ring). Therefore, [Sta2l, Tag 053E] ensures that
M’ is finitely presented over R[Ty,...,T,]. Thus we conclude that M[w®™] is finitely generated. In
particular, M[w™] = M[w®] for some N. O

Lemma 2.11.6. Let R be a rank-1 valuation ring with a non-zero topologically nilpotent element
w € R, M a finite R[T1,...,T,]-module, and N C M an R[T1,...,T,]|-submodule. Then there is ¢
such that

NN@w™*M =o™(N Nw°M)
for every m > 0.
Proof. Lemma 2.11.5 ensures that there ¢ such that (M/N)[@w*>] = (M /N)[w®]. Therefore, [F'K18,
Lemma 0.8.2.14] guarantees that, indeed,
NN@" M = o™(NNw°M)
for every m > 0. O

Lemma 2.11.7. Let KT be a perfectoid valuation ring, and n > 0 an integer. Then the polynomial
algebra KT[Ty,...,T,] is almost noetherian.

Proof. Similar to the proof of Lemma 2.11.2, it suffices to treat the case K+ = Ok a perfectoid
valuation ring of rank-1 with a pseudo-uniformizer .

Now we fix an ideal I C A = Og[T4,...,T,] and wish to show that I is almost finitely gener-
ated. Recall that the polynomial algebra K[T1,...,T,] is noetherian by Hilbert’s Nullstellensatz.
Therefore, the ideal

1[1] C K[Ty,..., T,

w

is finitely generated. So we can choose a finitely generated sub-ideal J C I such that any element
of I/J is annihilated by a power of w, i.e. (I/J)[w™] = I/J. Clearly I/J is a submodule of a
finite A-module A/J, so Lemma 2.11.5 easily implies that

I/J = I/))@™] = (1/J])[w=]
for some ¢ > 0. In other words, @l C J. Now we use Lemma 2.11.6 to get an integer ¢ such that
INw®AcC @l CJ

We note that I/(INw®A) is an ideal in A/w® A, and therefore it is almost finitely generated over

A/ w® A by Corollary 2.11.3. Lemma 2.8.3 guarantees that it is also almost finitely generated over
A.

The inclusion I N w®A C J implies that I/J is a quotient of an almost finitely generated
A/(IN wC/A), and so is also almost finitely generated. Finally, the short exact sequence

0—-J—=>1—-1/J—0
and Lemma 2.5.15 (2) imply that I is almost finitely generated as well. 0


https://stacks.math.columbia.edu/tag/053E
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Theorem 2.11.8. Let K be a perfectoid valuation ring, and A a finite type K T-algebra. Then
A is almost noetherian.

Proof. 1t follows from Lemma 2.11.7 similar to how Theorem 2.11.4 follows from Lemma 2.11.2. [

2.12. Almost Finitely Generated Modules over Adhesive Rings. This section discusses
some basic aspects of almost finitely generated modules over adhesive rings. The motivation for
this discussion will be the notion of almost coherent sheaves on formal schemes that we develop
in Section 4.5. The results of this Section would be crucial in verifying certain good properties
of adically quasi-coherent, almost coherent sheaves on “good” formal schemes. One of the main
ingredients that we would need is the “Weak” version of the Artin-Rees Lemma (Lemma 2.12.6)
and Lemma 2.12.7. Recall that these properties are already known for finite modules over the
so-called “adhesive” rings. This is explained in a beautiful paper [FGK11]. The main goal of this
section is to extend these result to the case of almost finitely generated modules.

That being said, let us introduce the Setup for this section. We start with the definition of an
adhesive ring:

Definition 2.12.1. [FGK11, Definition 7.1.1] An adically topologized ring R endowed with the
adic topology defined by a finitely generated ideal I C R is said to be (I-adically) adhesive if it is
Noetherian outside'” I and satisfies the following condition: for any finitely generated R-module
M, its I*°-torsion part M[I°°] is finitely generated.

Remark 2.12.2. Following the convention of [FGIK11] we do not require a ring R with adic
topology to be either I-adically complete or separated.

Set-up 2.12.3. We fix an I-adically adhesive ring R with an ideal m such that 7 C m, m®> = m
and m := m ®g m is flat. We always do almost mathematics with respect to the ideal m.

The main example of an adhesive ring is a (topologically) finitely presented algebra over a
complete microbial valuation ring. This follows from [FGK11, Proposition 7.2.2] and [FGKI1,
Theorem 7.3.2]. For example, any topologically finitely presented algebra over a complete rank-1
valuation ring is adhesive.

Lemma 2.12.4. Let R be as in the Setup 2.12.3, and let M be an I-torsionfree almost finitely
generated module. Then M is almost finitely presented. Similarly, any saturated submodule!'! of
an almost finitely generated R-module is almost finitely generated.

Proof. As M is almost finitely generated, we can find a finitely generated submodule N C M that
contains mgM for a choice of a finitely generated ideal mg C m. Since N is a submodule of M, it
is itself I-torsionfree. Then [FGK11, Proposition 7.1.2] shows that N is finitely presented. Then
Lemma 2.5.7(2) implies that M is almost finitely presented.

Now let M be an almost finitely generated R-module, and let M’ C M be a saturated submodule.
Then M /M’ is almost finitely generated by Lemma 2.5.15(1) and it is I-torsionfree. Therefore, it
is almost finitely presented by the argument above. Then Lemma 2.5.15(3) guarantees that M’ is
almost finitely generated. O

Lemma 2.12.5. Let R be as in the Setup 2.12.3, and let M be an almost finitely generated
R-module. Then the I°°-torsion module M[I*°] is bounded (i.e. there is an integer n such that
MI[I™] = M[I®)).

0By definition, this means that the scheme Spec A\ V/(I) is noetherian.
HA submodule N C M is saturated if M/N[I*] = 0.
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Proof. Since M is almost finitely generated and the ideal I C m is finitely generated, we conclude
that there exists a finitely generated submodule N C M such that IM C N. Then I(M[I*®]) C
N[I*®], and N[I*] is finitely generated by adhesiveness of the ring R. In particular, there is
an integer n such that N[/°°] is annihilated by I"™. This implies that any element of M[I*] is
annihilated by n + 1. O

Lemma 2.12.6. Let R be as in the Setup 2.12.3, and let M be an almost finitely generated R-
module. Suppose that N C M is a submodule of M. For any integer n, there is an integer m such
that NN I™M C I™"N. In particular, the induced topology on the module N coincides with the
I-adic one.

Proof. It M is finitely generated, then this is [FGK11, Theorem 4.2.2]. In general we use the
definition of almost finitely generated module to find a submodule M’ C M such that M’ is finitely
generated and IM C M’'. We define N’ := N N M’ as the intersection of those modules. Then
the established “weak” form of the Artin-Rees Lemma for finitely generated R-modules provides
us with an integer m such that N’ N I"™M’ c I""N'. In particular, we have

I"IMAN cI™M' NN c I"N' C I"N.
Then we conclude that
I"PMANCI™MAMNNcI™MnN cI"N.
Since n was arbitrary, we conclude the claim. ([l

Lemma 2.12.7. Let R be as in the Setup 2.12.3, and let M be an almost finitely generated R-
module. Then the natural morphism M ®r R — M is an isomorphism. In particular, any almost
finitely generated module over a complete adhesive ring is complete.

Proof. We know that the claim holds for finitely generated modules by [FGK 11, Proposition 4.3.4].
Now we deal with the almost finitely generated case. We choose a finitely generated submodule
N C M such that IM C N. Lemma 2.12.6 implies that the induced topology on N coincides with
the I-adic topology on N. Thus the short exact sequence

0—-N—-M-—M/N—0

remains exact after completion. Since R — R is flat by [FGK11, Proposition 4.3.4], we conclude
that we have a morphism of short exact sequences

0*>N®R§*>M®R§*>(M/N)®Rfi*>0

l@N J/@ M lso M/N

~ — —

0 N M M/N —— 0

Note that ¢y is an isomorphism as NV is finitely generated, and ¢,/ is isomorphism since it is
an I-torsion module so M/N ~ (M/N) ®g R ~ M/N. The five-lemma implies that ¢/ is an
isomorphism as well. ]

Corollary 2.12.8. Let R be as in the Setup 2.12.3, and let M € Dyeop(R). Suppose that R is
I-adically complete. Then M is I-adically derived complete'?.

121 00k at [Sta2l, Tag 091N] for the definition of derived completeness (or Definition A.1 in case of a principal
ideal I).
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Proof. First of all, we note that [Sta21, Tag 091P] implies that M is derived complete if and only if
so are H'(M) for any integer i. So it suffices to show that any almost coherent R-module is derived
complete. Lemma 2.12.7 gives that any such module is classically complete, and [Sta21, Tag 091T]
ensures that any classically complete module is derived complete. O

2.13. Modules Over Topologically Finite Type K -Algebras. The main goal of this section
is to show that almost coherentness of derived complete modules over a topologically finite type
KT-algebras can be checked modulo the pseudo-uniformizer.

For the rest of the section we fix a valuation perfectoid ring K* (see Definition B.2) with
perfectoid fraction field K, associated rank-1 valuation ring O = K° (see Remark B.3), and
ideal of topologically nilpotent elements m = K°° C KT with a pseudo-uniformizer @ € m as in
Lemma B.5 (in particular, m = |J, @!/?"K¥). Lemma B.6 ensures that m is flat over KT and
m ~ m? = m. Therefore, it makes sense to do almost mathematics with respect to the pair (K+,m).
In what follows, we always do almost mathematics on K T-modules with respect to this ideal.

Lemma 2.13.1. Let R be a topologically finite type K'-algebra, and M an R-module that is
w-adically derived complete. Suppose that M/wM is almost coherent, then M is almost coherent
as well.

Proof. Theorem 2.11.4 ensures that R is almost noetherian, and so Corollary 2.7.8 implies that it
suffices to check that M is almost finitely generated. Recall that m = J,, w/P" Kt for a pseudo-
uniformizer w as in Lemma B.5.

The assumption on M says that M /wM is almost coherent. Therefore, there is a morphism
g: (R/wR) — M/wM
such that w!/?(Coker §) = 0. We denote its cokernel by @ := Coker(g). Now we lift § to a morphism
g: R > M
and denote is cokernel by @ := Coker(g).

Step 1: Q is annihilated by w'/P. Suppose that w/PQ +# 0, so there is 29 € Q such that
w!/Pgy # 0. Firstly, we note that Q/w ~ Q is annihilated by w'/?, so

wl/pxg = wr = wl_l/p(wl/pajl)
Now we apply the same thing to z1 to get
@Pry = @' VP (@ Pry) = (@ VP2 (@ P ay).
Keep going, to get a sequence of elements x,, € @ such that
W VP (ol Pr,) = @/, .
The sequence {w'/Pz;} gives an element of

wl-1/p wl-1/p

T9(Q, w' /7)== limn(... Q)
that is non-trivial because w'/Pzy # 0. Now we note that R is derived w-adically complete since R
is classically w-adically complete by [Bosl4, Corollary 7.3/9] and any classically complete module
is derived complete by [Sta2l, Tag 091T]. Therefore, @ is w-adically derived complete derived
complete as a cokernel of derived complete modules (see [Sta2l, Tag 091U]). Now [Sta2l, Tag
0918], Remark A.2, and [Sta21, Tag 091Q)] imply that 7°(Q, @' ~'/?) must be zero leading to the
contradiction.


https://stacks.math.columbia.edu/tag/091P
https://stacks.math.columbia.edu/tag/091T
https://stacks.math.columbia.edu/tag/091T
https://stacks.math.columbia.edu/tag/091U
https://stacks.math.columbia.edu/tag/091S
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Step 2: M is almost coherent. Note that Q ~ Q/wQ and Q is w'/P-torsion, so Q ~ Q. We
know that Q is almost finitely generated over R/wR because it is a quotient of an almost finitely
generated module M /wwM. Therefore, Q ~ @Q is almost finitely generated over R by Lemma 2.8.3.
Now M is an extension of a finite R-module Im(g) by an almost finitely generated R-module @, so
it is also almost finitely generated by Lemma 2.5.15 (2). In particular, it is almost coherent since
R is almost noetherian. O

Theorem 2.13.2. Let R be a topologically finite type Kt-algebra, and M € D(R) a w-adically
e (R/w), then M € DU (R).

acoh acoh

derived complete complex. Suppose that [M/w] € D

Proof. Lemma A.3 guarantees that M € Dld (R), so we only need to show that cohomology groups
of M are almost coherent over R.

We argue by induction on d — c¢. If ¢ = d, then HY(M)/w ~ H%([M/w]) is almost coherent.
Therefore, M ~ H%(M)[—d] is almost coherent by Lemma 2.13.1.

If d > ¢, we consider an exact triangle
TSI — M — HY(M)[—d).

We see that both 7<%~ and H%(M) are derived complete by [Sta21, Tag 091P] and [Sta21, Tag
091S]. Moreover, we know that H%(M)/w ~ H%([M/w]) is almost coherent. Therefore, H%(M) is
almost coherent by Lemma 2.13.1. Finally,

(=17 M /] == cone ([M/=] — [HU(M) /][~d]) [1]

is a (shifted) cone of a morphism in D%, (R/w), therefore, [r=4"1M /] also lies in D?_, (R/w).
By the induction hypothesis, we conclude that 7= 1M € DLCC’S}:I](R). So M € DLCCZI;Z(R) O

Corollary 2.13.3. Let R be a topologically finite type K *-algebra, and M € D(R) a w-adically
derived complete complex. Suppose that [M?/w] € Dl (R/w)?, then M* € Dl (R)“.

acoh acoh

Proof. Note that m ® M is derived complete by Lemma A.4. So the claim follows from Theo-
rem 2.13.2 applied to m ® M. O

3. ALMOST MATHEMATICS ON RINGED SITES

The main goal of this Chapter is to “globalize” results from Chapter 2. The two main cases
of interest are almost coherent sheaves on schemes and “good” formal schemes. In order to treat
those case somewhat uniformly we define some notions in the most general set-up of locally ringed
spaces and check their basic properties. This is the content of Section 3.1. Sections 4.1 are 4.5 are
devoted to the setting up foundations of almost coherent sheaves on schemes and formal schemes,
respectively. In particular, we show that the notion of almost finitely generated (resp. presented,
resp. coherent) module globalizes well on schemes and some “good” formal schemes. We prove
the Proper Mapping Theorems in Section 5.1 both in the algebraic and formal Setups. Finally, we
show the formal GAGA Theorem for adically quasi-coherent, almost coherent sheaves in Section 5.3.
This is perhaps the most surprising result in this chapters as almost coherent sheaves are usually
not finite type sheaves, so the “classical” proofs of Formal GAGA Theorem cannot really work in
that situation.


https://stacks.math.columbia.edu/tag/091P
https://stacks.math.columbia.edu/tag/091S
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3.1. The Category of O%-modules. We start this section by fixing a ring R with an ideal m
such that m = m? and m = m ®p m is R-flat. We always do almost mathematics with respect to
this ideal. The main goal of this section is to globalize the notion of almost mathematics on ringed
R-sites.

The main object of our study in this Section will be a ringed site (X, Ox) with Ox being a sheaf of
R-algebras. We call such sites as ringed R-sites. Note that any ringed site (X, Ox) is, in particular,
a ringed Ox(X)-site. On each open U, it makes sense to speak about almost mathematics on
Ox (U)-modules with respect to the ideal mOx (U)". Usually definitions of many notions in almost
mathematics involve tensoring against the module m. We globalize this procedure in the following
definition:

Definition 3.1.1. Let (X,Ox) be a ringed R-site, and let F be any Ox-module. Then we define
the sheaf m ® F as the sheafification of the the presheaf that is defined as
U—merFU)

Remark 3.1.2. We note that this definition coincides with the tensor product m ® r F, where m
is the constant sheaf associated with the R-module m. Using flatness of the R-module m, it is easy
to see that the functor — @ m is exact and descends to a functor on the derived categories:

~ @m: D(X) = D(X)

where we denote by D(X) the derived category of Ox-modules. Another way to think about it is
to introduce the sheaf my := m ® Ox. Then one easily see that there is a functorial isomorphism
mRF~my Qo F for any Ox-module F.

Definition 3.1.3. We say that an Ox-module F is almost zero if m @ F is zero. We denote the
category of almost zero O x-modules by > x.

Remark 3.1.4. Since m is an R-flat module, we easily see that the category of almost zero Ox-
modules form a Serre subcategory of Modyp, = Modx.

Lemma 3.1.5. Let (X, Ox) be a ringed R-site, and let F be an O x-module. Suppose that U is a
base of topology on X. Then the following conditions are equivalent:

(1) F ® m is the zero sheaf.
(2) For any e e m, eF = 0.
(3) For any U € U, the module m @ F(U) is zero.
(4) For any U € U, the module m @ F(U) is zero.
(5) For any U € U, the module m (F(U)) is zero.

Proof. We firstly show that (1) implies (2). We pick an element ¢ € m = m? and write it as
e =Y x;-y; for some x;,y; € m. So the multiplication by € map can be decomposed as

e i DU ING: N RLIN
where the last map is induced by the multiplication by m — R. Then if F ® m = 0, then the
multiplication by € map is zero for any € € m. Now (2) easily implies (5). Lemma 2.1.1 ensures

that (3), (4), and (5) are equivalent. Finally, (3) clearly implies (1). O
Lemma 3.1.6. Let (X,0x) be a ringed R-site, and let F be an almost zero Ox-module. Then
HY(U,F) =2 0 for any open U € X'* and any i > 0.

L3100k at Lemma 2.1.11 for the reason why this makes sense.
N open U € X is by definition an object U € Ob(X) of the category underlying the site X.
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Proof. It F is almost zero, then ¢F = 0 for any ¢ € m by Lemma 3.1.5. Since the functors
H'(X, —) are R-linear, we conclude that eH*(U, J) = 0 for any open U and any ¢ € m,i > 0. Thus
Lemma 2.1.1 ensures that H* (U, J) =2 0. O

Definition 3.1.7. We say that a homomorphism ¢: F — G of Ox-modules is an almost isomor-
phism if ker(y) and Coker(p) are almost zero.

Lemma 3.1.8. A homomorphism ¢: F — G of Ox-modules is an almost isomorphism if and only
if p(U): F(U) — G(U) is an almost isomorphism of O x(U)-modules for any open U € X.

Proof. The < implication is clear from the definitions. We give a proof of the = implication.

Suppose that ¢ is an almost isomorphism. We define the auxillary O x-modules: X := ker(p),F =
Im(¢p), Q := Coker(p). Lemma 3.1.6 implies that the maps

F(U) - F(U) and F(U) — S(U

)
are almost isomorphisms. In particular, the composition F(U) — G(U) must also be an almost
isomorphism. O

Now we discuss the notion of almost Ox-modules on a ringed R-site (X, Ox). This notion can
be defined in two different ways: either as the quotient of the category of O x-modules by the Serre
subcategory of almost zero modules or as modules over the almost structure sheaf O%. We need to
explain these two notions in more detail now.

Definition 3.1.9. We define the category of almost O x-modules as the quotient category
Modj, = Mody, /Xx .

Now we want to define the category Modyse of O%-modules that we will show to be equivalent
to Mod(, . We recall that the almostification functor (—)® is exact on the level of modules and
commutes with arbitrary products. This allows us to define the almost structure sheaf:

Definition 3.1.10. The almost structure sheaf 0% is the sheaf'” of R%modules 9% : (Ob(X))%? —
Mod% defined as U — Ox (U)“.

Definition 3.1.11. We define the category of 0% -modules Modge, as the category of the modules
over 0% € Shv(X, R?) in the categorical sense. More precisely, the objects are sheaves of R‘-
modules F with a map F®ge 0% — J over R® satisfying the usual axioms for a module. Morphisms
are defined in the evident way.

We now define the functor
(_)a: MOdoX — Modog(
that sends a sheaf to its “almostification”, i.e. it applies the functor (—)%: Modr — Mod¥%
section-wise. Since the almostification functor (—)* is exact and commutes with arbitrary product,
it is evident that F* is actually a sheaf for any Ox-module F. Moreover, it is clear that F* ~ 0 for
any almost zero O x-module F. Thus, it induces the functor

(=)*: Modg, — Modpg, -
The claim is that this functor induces the equivalence of categories. The first step towards the
proof is to construct the right adjoint to (—)*: Mody, — Modgs . Our construction of the right

adjoint functor will use the existence of the left adjoint functor. So we slightly postpone the proof
of the mentioned above equivalence and discuss adjoints to (—)%.

1514 is a sheaf exactly because (—)? is exact and commutes with arbitrary products.
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We start with the definition of the left adjoint functor. The idea is to apply the functor
(=)1: Mod% — Mod% section-wise, though this strategy does not quite work as (—); does not
commute with infinite products.

Definition 3.1.12. o We define the functor (—): Modgs — Modgx 16 as
T U—TFU))

e We define the functor (—);: Modge — Modgy as the composition (—) = (=)# o (-)P,
where (—)# is the sheafification functor.

Lemma 3.1.13. Let (X,Ox) be a ringed R-site. Then

(1) The functor
(—)[Z MOdog( — MOd@X
is the left adjoint to the localization functor (—)*: Modgp, — Modps . In particular, we
have a functorial isomorphism

Homog{ (3:7 ga) = HOHIOX (9:!7 9)
for any F € Modpe , § € Mody,.
(2) The functor (—): Modgs — Modo, is exact.

(3) The counit morphism (F*); — F is an almost isomorphism for any ¥ € Modg, . The unit
morphism § — (G)® is an isomorphism for any § € Modpq . In particular, the functor
(—)“ is essentially surjective.

Proof. (1) follows from Lemma 2.1.9(3) and the adjunction between sheafication and the forgetful
functor. More precisely, we have the following functorial isomorphisms

Homgs (F, §) = HomMOng (97,9) ~ Home, (%1,9) .

We show (2). It is easy to see that (—), is left exact from Lemma 2.1.9(4) and the exactness of
the sheafification functor. It is also right exact since it is a left adjoint functor to (—)®.

Now we show (3). Lemma 2.1.9(5) ensures that the kernel and cokernel of the counit map of
presheaves (F¢)} — J are annihilated by any ¢ € m. Then the same holds after sheafification,

proving the (F*) — F is an almost isomorphism by Lemma 3.1.5.

We consider the unit map § — (91)%, we note that using the adjuction ((—)i, (—)%) section-wise,
we can refine this map
§— (50" = (" -
It suffices to show that both maps are isomorphisms, the first map is an isomorphism by Lemma 2.1.9(5).
In particular, this implies that (9{’ )% is already a sheaf of almost R®-modules, but then we see that
the natural map (3)® — (G1)® must also be an isomorphism as it coincides with the sheafification
in the category of presheaves of R*-modules. O

Remark 3.1.14. In what follows, we denote the objects of Modge by F* to distinguish Ox and
0%-modules. This notation does not cause any confusion as (—)* is indeed essentially surjective.

Now we construct the right adjoint functor to (—)?®. The naive idea of applying (—). section-wise
works well in this case. The only thing we emphasize here is that essential surjectivity of (—)% is
used in our definition of (—).,.

16Modgx stands for the category of modules over Ox in the category of presheaves
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Definition 3.1.15. The functor of almost sections (—).: Modgs — Mody, is defined as
F* — (U — Hompg (m,F (U)))
with the structure of O x-module coming from the structure of O x-module on .

Remark 3.1.16. The functor (—). is well-defined, i.e. is independent of a choice of F and defines
a sheaf of O x-modules. The first claim follows from Lemma 2.1.8(2) and Lemma 3.1.8, the second
claim follows from the fact that Hompg (m, —) commutes with arbitrary products.

Lemma 3.1.17. Let (X,Ox) be a ringed R-site. Then
(1) The functor (—).: Modps — Modo, is the right adjoint to the exact localization functor
(=)*: Mody, — Modgys, . In particular, it is left exact.
(2) The unit morphism F — (F¢), is an almost isomorphism for any ¥ € Modg, . The counit
morphism (§¢)* — G is an isomorphism for any §* € Mods, .

Proof. 1t is sufficient to check both claims section-wise. This, in turn, follow from Lemma 2.1.9(1)
and Lemma 2.1.9(2) respectively. O

Corollary 3.1.18. The functor (—)*: Modp, — Modys commutes with limits and colimits. In

particular, Modge is complete and cocomplete, and filtered colimits and (finite) products are exact
in MOdog{.

Proof. The first claim follows from the fact that (—)* admits left and right adjoints. The second
claim follows the first claim, exactness of (—)%, and analogous exactness properties in Modgr. [

Corollary 3.1.19. Let (X, Ox) be a ringed R-site. Then the functor
(—=)*: Modp, — Modgs,
is exact.
Proof. The functor (—)% is exact as it has both left and right adjoints. O

Theorem 3.1.20. Let (X, Ox) be a ringed R-site. Then the functor
(—=)*: Modg, — Modos,
is an equivalence of categories.

Proof. Lemma 3.1.17 implies that the functor (—)*: Mody, — Modgs has right adjoint functor
(=)« such that the counit morphism (—)% o (=), — Id is an isomorphism of functors. Moreover,
exactness of (—)® implies that a morphism ¢: F — G is an almost isomorphism if and only if
e F* — G%is an isomorphism. Thus [GZ67, Proposition 1.3] guarantees that the induced functor
(—)*: Modg, — Modgs, is an equivalence. O

Remark 3.1.21. In what follows, we do not distinguish Modgs and Modg . Moreover, we
sometimes denote both categories by Mod% or Mod x«to simplify the notation.

3.2. Basic Functors on the Category Of 0%-Modules. We discuss how to define certain
basic functors on Mod%. Our main functors of interest are Hom, alHom, ®, f*, and f.. We define
their almost analogues and their relation with the original functors. As a by-product we give a
slightly more intrinsic definition of (—)«: Mod% — Mody along the lines of the definition of the
Mod$%-version of this functor.

For the rest of the section we fix a ringed site (X, Ox) that we consider as a ringed O x (X)-site.
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Definition 3.2.1. e The global Hom functor
Homgq (—, —): Mod¥. x Modxa — Modg, (x)

is defined as (5, ) — Homge (5, 5%).
e The local Hom functor

Homgq (—,—): Mod¥. x Modx« — Modx

is defined as (F%,G%) <U — Homoe (F|u, Sa]U)>. The standard argument shows that

this functor is well-defined, i.e. iHomog( (F,9) is indeed a sheaf of Ox-modules.
Lemma 3.2.2. Let U be an open in X, and let 3%, 5% be O%-modules. Then the natural map
I (U, Homgg (3°,9%)) — Homoy, ([, 9"lv)
is an isomorphism of O x (U)-modules.

Proof. This is evident from the definition. ]

Lemma 3.2.3. Let (X,0x) be a ringed R-site. Then there is a functorial isomorphism of O x-
modules

Mo&(&“)g“) = Mox((g’ﬂ)!,g)
for 7 € Mod% and § € Mody.

Proof. Lemma 3.2.2 and Lemma 3.1.13 ensure that the desired isomorphism exists section-wise. It

glues to a global isomorphism of sheaves since these section-wise isomorphisms are functorial in
U. O

Now we move on to show a promised more intrinsic definition of the functor (—).. As a warm-up
we need the following result:

Lemma 3.2.4. Suppose that the ringed R-site (X, Ox) has a final object. By slightly abusing the
notation, we also denote the final object by X. Then the evaluation map

evy : Hompe (0%, §%) = Homg , (x)= (O% (X), 5" (X))
p = p(X)
is an isomorphism of O x (X )-modules for any §* € Mod%.

Proof. As (—)® is essentially surjective by Lemma 3.1.13(3), there actually exists some O x-module
§ with almostification being equal to §*. Now we recall that the data of an O%-linear ho-
momorphism ¢: 0% — G is equivalent to the data of Ox(U)%linear homomorphisms ¢y €
Homg , (t7ye (0% (U), §%(U)) for each open U in X such the diagram

Ox(U)* 22 g(U)e

U
f’@g(‘v lrsahg

Ox (V) 245 g(v)e
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commutes for any V' C U. Now we note that an Ox(U)%linear homomorphism ¢y uniquely
determines an O x (V)*-linear homomorphism ¢y in such a diagram. Indeed, this follows from the
equality

= HomoX(U) (m ® Ox
= HOInOX(U)‘l (OX (U)a ) 9 (V)a) .

Now we use the assumption that X is the final object to conclude that any homomorphism ¢: 0% —
G* is uniquely defined by ¢(X). O

Corollary 3.2.5. Let (X, Ox) be an R-ringed site, and let U € X be an open. Then the evaluation
map
evy : Homog, (OF, §li) — Homgy, ) (O (U), § (U))
@ = o(U)
is an isomorphism of O x (U)-modules for any §* € Mod%.

Proof. For the purpose of the proof, we can change the site X by the slicing site X/U of objects
over U. Then U automatically becomes the final object in X /U, so we can just apply Lemma 3.2.4
to finish the proof. O

Now we are ready to prove a new description of the sheaf version of the functor (—)s,.

Lemma 3.2.6. Let (X,0x) be a ringed R-site. Then there is a functorial isomorphism of Ox-
modules
%Omoax (OaX7 SFa) — EF?
for 3* € Mod¥%.
Proof. Lemma 3.2.2 and Corollary 3.2.5 imply that there is an isomorphism of O x (U)-modules
I (U, Homgy, (0%.5%)) = Homg, )« (0F (U), 5 (1))

that is functorial in both U and F¢. Now we use the functorial isomorphism of Ox (U)

Homg,, 1) (O (U)*, 7 (U)) ~ Hompa (R, F* (U)) = (F)(U)
to construct a functorial isomorphism

I (U, Homes, (0%.57)) = (5).(U) -

Functoriality in U ensures that it glues to the global isomorphism of Ox-modules

Homys (0%, T) = F¢.

Now we discuss the functor of almost homomorphisms.
Definition 3.2.7. e The global alHom functor
alHomge (—, —): Mod¥. x Modx« — Modga
is defined as
(5%, §%) = Homopq (3%, 5%)* ~ Homo, ((F), ,9) .
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e The local alHom functor
alFomy, (—, —): Mod¥, x Modxe — Mod x«
is defined as

(F*,G%) = <U — alHomgg (5|v, 9“\U)“) :

Remark 3.2.8. At this point we have not checked that alﬂfomog((?“,ga) is actually a sheaf.
However, this follows from the following lemma.

Lemma 3.2.9. The natural map
Homy (M F, 9)* — Mog{ (,5%)
is an almost isomorphism of O%-modules for any 7,5 € ModY. In particular, alfomya (3, 5%)
is a sheaf of O%-modules.
Proof. This follows from the sequence of functorial in U isomorphisms:
Homy (Mm@ F, G)(U)* ~* Homg, (m @ F|y, Glv)*
~* alHomoyg, (F[v, §%v)
~ alHomes (5, §%)(U)
O

In order to make Definition 3.2.7, we need to show that these functors can actually be computed
by using any representative for ¢ and G¢.
Proposition 3.2.10. Let (X, Ox) be a ringed R-site. Then:
(1) There is a natural transformation of functors

Home  (—,—
Mod? x Mody ——2X"7), Mody

l(—)ax(—w/ l(—)a
alHomog( (=,—)

Mod%¥, x Modxa —————— Modxa
that makes the diagram (2, 1)-commutative. In particular, alHomge (F,9%) ~ Homg , (7, 9)*
for any F,9 € Mody.
(2) Then there is a natural transformation of functors

op ﬂ'fomox(—,—)
Mody x Modx ———— Modyx

(—)GX(—)G/ J(_)a
‘L alﬂ'fomga (—,-)

Mod?¥, x Modxs ———— Mod x«

that makes the diagram (2, 1)-commutative. In particular, alFom e (F,5%) ~ Homgy (T, 9)°
for any F,9 € Modx.

Proof. The proof is similar to the proof of Proposition 2.2.1(3). The only new thing is that we need
to prove an analogue of Corollary 2.1.13, i.e. that the functors alHomg, (—,9), alfomgy, (-, 9)

preserve almost isomorphisms. It essentially boils down to showing that Extfgx (K,9) =* 0 and
m%x(f](, G) =0 for any X € ¥x,3 € Modx, and an integer i > 0.
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Now Lemma 3.1.5 implies that eX = 0 for any ¢ € m. Thus we see that Extfgx (X,G) and
@@X (X, 9) are also annihilated by any € € m since the functors Extfgx(—, 9), @6)((—, G) are

R-linear. Thus EX'E%X (X, G) and @%X (X, G) are almost zero by Lemma 2.1.1 and Lemma 3.1.5
respectively. ]

Definition 3.2.11. The tensor product functor — ®@ge —: Mod% x Mod% — ModY is defined
as
(F%, 8% = IV @ox G -

Proposition 3.2.12. There is a natural transformation of functors

Modx x Modx % Modx
= 2 |
Mod% x Mod% — %, Mod%
that makes the diagram (2, 1)-commutative. In particular, there is a functorial isomorphism
(F ®ox 9)" = F* ®oq, §°
for any J,9 € Mody.
Proof. The proof is absolutely analogous to that of Propisition 2.2.1(1). O

The tensor product is adjoint to Hom as it happens in the case of R*-modules. We give a proof
of the local version of this statement.

Lemma 3.2.13. Let (X,0x) be a ringed R-site, and let F, % H* be O%-modules. Then there
is a functorial isomorphism

Homga (T @oa. 5%, H) ~ Homye (T, alHomgs (5%, H)) .
After passing to the global sections, this gives the isomorphism
Homys, (F* ®o2 5% H?) ~ Homys, (?G,MOQ(SG, HY)) .
And after passing to the almostifications, it gives an isomorphism
alFome, (F° @og. §%H) = alHom, (F°, aldomg, (%, H)) .

Proof. We compute I'(U, C}Comog( (F*®@pa G, H?)) by using Lemma 3.2.2 and the standard ®-Hom
adjunction. Namely,

r (U, Homi, (9@ ®os, 57, }c“)) ~ Homyy, (ff“\U ®os, 9“]U,J{“]U) Lemma 3.2.2
~ Hompg ((Flv ®o, Glv)*, Hv) Proposition 3.2.12
~ Homg, (m ® (Fly ®o, Slv),H|v) Lemma 3.1.13
~ Homy,, ((m® F|v) ®o, (m @ Glv),H|v) m®? ~m
~ Homyg,, (m ® F|u, Homg,, (M @ Glv, H|y)) @ — Hom adjunction
~ Homgg, (Fv, alHomy,, (Mm@ Glu, Hlv)) Lemma 3.1.13
~T (U, Homi, (?@,MO% (9“,5{%)) Lemma 3.2.2

Since these identifications are functorial in U, we can glue them to a global isomorphism
Homge (F* ®oa 5%, H*) =~ Homga (F*, alHompa (5, H?)) .
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This finishes the proof. O

Corollary 3.2.14. Let (X, Ox) be a ringed R-site, and let F* be an O%-module. Then the functor
— ®oa T is left adjoint to alHoms (e, —).

For what follows, we fix a map f: (X,0x) — (Y, Oy) of ringed R-sites. We are going to define
the almost version of the pullback and pushforward functors.

Definition 3.2.15. The pullback functor f¥: Mod% — Mody§ is defined as

Fe= (7 (3"
In what follows, we will often abuse notation and simply write f* instead of f;. This is “allowed”
by Proposition 3.2.19.

As always, we want to show that this functor can be actually computed by applying f* to any
representative of F*. The main ingredient is to show that f* sends almost isomorphisms to almost
isomorphisms. The following lemma shows slightly more, and will be quite useful later on.

Lemma 3.2.16. Let f: (X,0x) — (Y,0Oy) be a morphism of ringed R-sites. Then for any Ox-
module F, there is a natural isomorphism ¢(F): f*(m ® F) - m® f*F functorial in F.

Proof. We use Remark 3.1.2 to say that m ® J is functorially isomorphic to my ®¢, F, where
my = m®prOy. Now we note that f*(my-) ~ my as can be easily seen (using the m is R-flat) from
the very definitions. Therefore, ¢;(JF) comes from the fact that the pullback functor commutes
with the tensor product. More precisely, we define it as the composition

frmeF) = f1(my ®o, F) = f1(@y) oy f7(F) = mx @oy f(F) -

We now also show a derived version of Lemma 3.2.16 that will be used later in the text.

Lemma 3.2.17. Let f: (X,0x) — (Y,0y) be a morphism of ringed R-sites. Then for any
F € D(X), there is a natural isomorphism

er(F):Lffm®F) >meLf*F
functorial in &F.

Proof. Similarly, we use Remark 3.1.2 to say that m ® F is functorially isomorphic to my ®¢, F,
where my := m ®r Oy. Now we note that Lf*(my) ~ f*(my) ~ my as m is R-flat. The rest of
the proof is the same using the L f* functorially commutes with the derived tensor product. O

Corollary 3.2.18. Let f: (X,0x) — (Y, Oy) be a morphism of ringed R-sites, and let ¢: F — G
be an almost isomorphism of Oy-modules. Then the homomorphism f*(¢): f*(F) — f*(9) is an
almost isomorphism.

Proof. The question boils down to show that the homomorphism
m® f(F) - me f(9)

is an isomorphism. Lemma 3.2.16 ensures that it is sufficient to prove that the map
ffmed) - ff(ime9)

is an isomorphism. But this is clear as the map m® F — m ® § is already an isomorphism. ]
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Proposition 3.2.19. Let f: (X,0x) — (Y, Oy) be a morphism of ringed R-sites. Then there is a
natural transformation of functors

Mody ., Modyx

Jor = e

Mody —> Mod$%
that makes the diagram (2,1)-commutative. In particular, there is a functorial isomorphism
(f*F)* ~ fx(F?) for any F € Mody.

Proof. The proof is similar to Proposition 2.2.1. We define pgs: f*(m ® F)* — f*(F)* as the map
induced by the natural homomorphism m ® § — F. It is clearly functorial in &, and it is an
isomorphism by Corollary 3.2.18. O

Definition 3.2.20. The pushforward functor f¢: Mod% — Mody is defined as
“ e (f (F1)°

In what follows, we will often abuse the notations and simply write f. instead of fZ. This is
“allowed” by Proposition 3.2.24.

Definition 3.2.21. The global sections functor T'*(X, —): Mod% — Mod%, is defined as

F - I(X, 59
In what follows, we will often abuse the notations and simply write I" instead of I'*. This is also
“allowed” by Proposition 3.2.24.
Remark 3.2.22. The global section functor can be realized as the pushforward along the map
(X,0x) — (%, R).
Lemma 3.2.23. Let f: (X,0x) — (Y, Oy) be a morphism of ringed R-sites, and let p: F — G be

an almost isomorphism. Then the morphism f.(¢): f«(F) = f«(G) is an almost isomorphism.

Proof. The standard argument with considering the kernel and cokernel of ¢ shows that it is
sufficient to prove that f,K =% 0, R'f,K =2 0 for any almost zero O x-module K. This follows
from R-linearity of f, and Lemma 3.1.5. U

Proposition 3.2.24. Let f: (X,0x) — (Y, Oy) be a morphism of ringed R-spaces. Then there is
a natural transformation of functors

Modx ST LN Mody

l( / l
Mod% —> Mod§
that makes the diagram (2,1)-commutative. In particular, there is a functorial isomorphism

(fuF)* =~ f4(F?) for any F € Modyx. The same results hold true for I'*(X, —).

Proof. We define py: fi(m ® F)* — f.(F)* as the map induced by the natural homomorphism
m®F — F. It is clearly functorial in F, and it is an isomorphism by Lemma 3.2.23. O

Lemma 3.2.25. Let (X,0x) be a ringed R-site, and let F,§ be O%-modules. Then there is a
natural morphism

T (U, alHomes (5, 9a)) — alHomoe, ([, §%07)

is an isomorphism of R*-modules for any open U C X.
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Proof. The claim easily follows from Lemma 3.2.2, Proposition 3.2.10(2), and Proposition 3.2.24
]

Lemma 3.2.26. Let f: (X,0x) — (Y, Oy) be a morphism of ringed R-site, and let ¥* € Mody,
and §% € Mod%. Then there is a functorial isomorphism of Oy-modules

feHomge (f*(F%),5%) =~ Homge (5%, £(5%)) -
After passing to the global sections, this gives the isomorphism of Oy (Y)-modules
Homge (f*(5%),5%) ~ Homgg (F%, f+(5%)) -
And after passing to the almostifications, it gives the isomorphism of Of-modules
fealHomgq (f*(3%),5%) =* alHompg (5, £+(5%)) -
Proof. This is a combination of the classical (f*, f.)-adjunction, Lemma 3.1.13, Lemma 3.2.16,
Proposition 3.2.19, and Proposition 3.2.24. Indeed, we choose an open U C Y and denote its

preimage by V = f~1(U). We also define F¢ := F|;; and §¢% = G%|y,. The claim follows from the
sequence of functorial isomorphisms

r (U, Homega, (F, fs (9“))) ~ Homoe (7, f« (5V)) Lemma 3.2.2
~ Homoe (F7, f+ (Gv)%) Proposition 3.2.24
~ Homgp,, (m ® Fy, f« (Sv)) Lemma 3.1.13
~ Homg,, (f*(m® Fy),Sv) (f*, f«)-adjunction
~ Homg, (m® f* (Fv),Sv) Lemma 3.2.16
~ Homgg, (f* (Fv)*, V) Lemma 3.1.13
~ Homoe, (f* (F7).5V) Proposition 3.2.19
~T (U, feHomga (f*(F%), 9”)) . Lemma 3.2.2

Since these identifications are functorial in U, we can glue them to a global isomorphism
J«Homga (f*(F%),5%) = Homga, (T, £(5%)) -

u
Corollary 3.2.27. Let f: (X,0x) — (Y, Oy) be a morphism of ringed R-site. Then the functors

*

Mod% < Mody{ are adjoint.

3.3. The Projection Formula. The definition of O x-modules behaves especially nicely on locally
spectral spaces'’. For instance, we show that we can explicitly describe sections of m®F on a basis of
opens for such spaces. Moreover, we show that the projection formula holds for spectral morphisms
of locally spectral spaces.

Remark 3.3.1. We mention one problem of working with locally spectral spaces that we deliber-
ately avoid in all of our proofs. Suppose that X is a locally ringed space and U C X is an open
spectral subspace then the natural map U — X need not be quasi-compact. In particular, an
intersection of two open spectral subspaces in X need not be spectral itself.

In order to get such examples, one can consider X to a scheme that is not quasi-separated and
U an open affine subscheme. Then the inclusion map U — X is usually not quasi-compact.

1TWe refer to [Sta2l, Tag 08YF] and [Wed19, §3] for a comprehensive discussion of (locally) spectral spaces
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Lemma 3.3.2. Let (X,Ox) be a locally spectral, locally ringed R-space. Then for any spectral®
open subset U C X the natural morphism

merFU) = (me F)(U)
is an isomorphism of O x (U)-modules.

Proof. As spectral subspaces form a basis of topology on X, it suffices to show that the functor
U—-merFU)

restricted to spectral open subsets satisfy the sheaf condition. In particular, we can assume that
X itself is spectral.

As any open spectral U is quasi-compact, we conclude that any open covering U = |J;c; Us
admits a refinement by a finite one. Thus, it is sufficient to check the sheaf condition for finite
coverings of a spectral spaces by spectral open subspaces. Thus, we need to show that, for any
finite covering U = | J;¢; U, the sequence

n n
0 merFU) - [[@erFU) - [ @erFUNU)).
i=1 ij=1
is exact. But this follows from flatness of m and the fact that tensor product commutes with finite
direct products. O

Now we want to show a version of the projection formula for the functor m® —, it will take some
time to rigorously prove it. We recall that a map of locally spectral spaces is called spectral, if the
pre-image of any spectral open subset is spectral.

Lemma 3.3.3. Let (X, Ox) be a spectral locally ringed R-space. Then for any injective O x-module
J the Ox-module m ® J is an H°(X, —)-acyclic.

Proof. We start the proof by noting that [Sta21, Tag 01EV] guarantees that it suffices to show that
the Cech cohomology groups I[Ii(U, m ® J) vanish for all open subsets U C X and ¢ > 0. Since any
open subset of a locally spectral space is locally spectral, it suffices to show that H/(U,m ® J) = 0
for ¢ > 0.

We note that quasi-compact opens form a basis for the topology on X. Since X is quasi-compact,
finite coverings by quasi-compact opens form a cofinal subsystem in the system of coverings of X.
Thus it is enough to check vanishing of higher H*(U, m ® J) for any such coverings U of X.

We pick such a covering U : X = U} U; and observe that all the intersections U;, ... ;,, = Ni-,U;,
are again quasi-compact by spectrality of X. In particular, they are spectral. Now we invoke [Sta21,
Tag 0A36] to say that it suffices to show that

@& V) =2 (& e 9)0)

is surjective for any inclusion of any spectral open subsets U <— V. Lemma 3.3.2 says that this map
Taeyll is identified with the map

le@RTg\g ~

mepI(V) —— mxrI(U).

But now we note that Tj|g is surjective since any injective O x-module is flasque by [Sta2l, Tag
01EA], and therefore the map m ®pg ry|}; is surjective as well. O

18We remind the reader that actually any quasi-compact quasi-separated open subset of a locally spectral space
is spectral. This can be easily seen from the definitions.
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Corollary 3.3.4. Let f: (X,0x) — (Y,0y) be a spectral morphism of locally spectral, locally
ringed R-spaces, and let J be an injective O x-module. Then m ® J is an f,(—)-acyclic

Proof. 1t suffices to show that for any open spectral U C Y the higher cohomology groups
H'(Xy, (M ©9)|x,)
vanish. This follows from Lemma 3.3.3 since X is spectral by the assumption on f. O

Lemma 3.3.5. Let f: (X,0x) — (Y, Oy) be a spectral morphism of locally spectral, locally ringed
R-spaces, and let F be an O x-module. Then there is an isomorphism

f:m® fuF— fi(m®F)
functorial in F.
Proof. It suffices to define a morphism on a basis of spectral open subspaces U C Y. For any such
U CY we define
Bu:(me £F)U) = fu(me F)(U)
as the composition of isomorphisms

—1

(M® LF)U) L mwp (£F)U) = 0o F(Xy) —L (e F)(Xp) = f(7 e F)(U)

with oy and ax,, isomorphisms from Lemma 3.3.2. Since the construction of o was functorial in
U we conclude that 8 defines a morphism of sheaves. It is an isomorphism because we constructed
By to be isomorphism an a basis of Y. O]

Lemma 3.3.6. Let f: (X,0x) — (Y, Oy) be a spectral morphism of locally spectral, locally ringed
R-spaces. Then for any F € D(X), there is a morphism
pi(F) m@RALF - RE(MTF)
functorial in F. This map is an isomorphism in either of the following cases:
e The complex F is bounded below, i.e. ¥ € DT(X), or
e The space X is locally of uniformly bounded Krull dimension and ¥ € D(X).

Proof. We start the proof by constructing the map p;(J). Note that by the adjunction, it suffices
to construct a map

LffmeoRALF) -meF
We also denote the counit of the adjunction between Lf* and R f, by

ng: LFFRf.F = F

Then we define the map

LfmeoRfAHF) -meF
as the composition

~ RfF) m ~
L (meRAT) LD S o L RAT B G0 T

where the first map is the isomorphism coming from Lemma 3.2.17 and the second map comes from
the adjunction morphism eg.

Now we show that p;(F) is an isomorphism for ¥ € D (X). We choose an injective resolution
F — J°. In this case we use Corollary 3.3.4 to note that § is the natural map

L0 = f(@meT?)
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that is an isomorphism by Lemma 3.3.5.

The last thing we need to show is that pf(JF) is an isomorphism for any F € D(X) if X is locally
of uniformly bounded Krull dimension. The claim is local, so we may and do assume that both
X and Y are spectral spaces. As X is quasi-compact (as it is spectral now) and locally of finite
Krull dimension, we conclude that X has finite Krull dimension, say N := dim X. Then [Sch92,
Corollary 4.6] (another reference is [Sta21, Tag 0A3G]) implies that HY(U,§) = 0 for any open
spectral U C X, G € Mody, and i > N. In particular, R'f.G = 0 for any G € Modyx, and i > N.
Thus we see that the assumptions of [Sta21, Tag 0D6U] are verified in this case (with A = Modx
and A’ = Mody ), so the natural map

H (RET) — 3 (Rf (127F))
is an isomorphism for any F € D(X), j > N —n. As m is R-flat, we get the commutative diagram

3 (m @ Rf.F) H(ps) y H(Rf. (M F))

s s

HI (pTZ—ng')

30 (@ @ RS, (r2"F)) L= 90 (RS, (7@ 72 "F))

with the vertical arrows being isomorphisms for j > N — n, and the bottom horizontal map is an
isomorphism as 727"F € D*(X). Thus, by choosing an appropriate n > 0, we see that H’(pg) is
an isomorphism for any j; so pg is an isomorphism itself. ]

3.4. Derived Category of 0% -Modules. This section is a global analogue of Section 2.3. We
give two different definitions of the derived category of almost Ox-modules and show that they
coincide.

Definition 3.4.1. We define the derived category of 0% -modules as D(X®) := D(ModY%).

We define the bounded version of derived category of almost R-modules D*(X®) for « € {4, —, b}
as the full subcategory of D(X %) consisting of bounded below (resp. bounded above, resp. bounded)
complexes.

Definition 3.4.2. We define the almost derived category of Ox-modules as the Verdier quotient!”
D(X)a = D(Modx)/DZX (MOdX).

Remark 3.4.3. We recall that X x is the Serre subcategory of Mod x that consists of almost zero
O x-modules.

We note that the functor (—)*: Modx — Mod% is exact and additive. Thus it can be derived
to the functor (—)%: D(X) — D(X*). Similarly, the functor (—): Mod% — Modx can be derived
to the functor (—);: D(X?%) — D(X). The standard argument shows that (—), is a left adjoint
functor to the functor (—)* as this already happens on the level of abelian categories.

We also want to establish a derived version of the functor (—).. But since functor is only left
exact, we do need to do some work to derive it. Namely, we need to ensure that O%-modules admit
enough K-injective complexes.

Definition 3.4.4. We say that a complex of O%-module I** is K-injective if Homp (ga ) (C*4, I%%) =
0 for any acyclic complex C'** of R%-modules.

19We refer to [Sta21, Tag 05RA] for an extensive discussion of Verdier quotients of triangulated categories.
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Remark 3.4.5. We remind the reader that K(0%) stands for the homotopy category of O%-
modules.

Lemma 3.4.6. The functor (—)*: Comp(Ox) — Comp(0% ) sends K-injective O%-complexes to
K-injective O%-complexes.

Proof. We note that (—)® admits an exact left adjoint (—); thus [Sta2l, Tag 08BJ] ensures that
(—)“ preserves K-injective complexes. O

Corollary 3.4.7. Let (X,0x) be a ringed R-site. Then every object F** € Comp(0%) is quasi-
isomorphic to a K-injective complex.

Proof. The proof of Corollary 2.3.6 works verbatim with the only exception that one needs to use
[Sta21, Tag 079P] instead of [Sta21, Tag 090Y]. O

Now, similarly to the case of R%modules, we define the functor (—).: D(X?) — D(X) as the
derived functor of (—).: Mod% — Modx. This functor exists by [Sta2l, Tag 070K].

Lemma 3.4.8. Let (X,Ox) be a ringed R-site. Then

(1) The functors D(X) * '} D(X®) are adjoint. Moreover, the counit (resp. unit) mor-
(=)
phism
(F*) — F (resp. §— (51)%)

is an almost isomorphism (resp. isomorphism) for any ¥ € D(X),§ € D(X®). In particular,
the functor (—)® is essentially surjective.

(2) The functor (—)*: D(X) — D(X?) also admits a right adjoint functor (—),: D(X®) —
D(X). Moreover, the unit (resp. counit) morphism

F — (F)4 (resp. (94)* — 9)
is an almost isomorphism (resp. isomorphism) for any ¥ € D(X),§ € D(X?).
Proof. The proof is absolutely similar to Lemma 2.3.7. O

Theorem 3.4.9. The functor (—)%: D(X) — D(X?%) induces an equivalence of triangulated cate-
gories (—)%: D(X)* — D(X?).

Proof. The proof is similar to that of Theorem 2.3.8. O

Remark 3.4.10. Theorem 3.4.9 shows that the two notions of the derived category of almost
modules are the same. In what follows, we do not distinguish D(X %) and D(X)* anymore.

3.5. Basic Functors on the Derived Categories of 0% -modules. Now we can “derive” certain
functors constructed in section 3.2. For the rest of the section we fix a ringed R-site (X, Ox). The
section follows the exposition of section 2.4 very closely.

Definition 3.5.1. We define the derived Hom functors
R}omya (—,—): D(X*)” x D(X*) — D(X“), and
RHomge (—, —): D(X*)” x D(X) — D(R)
as it is done in [Sta2l, Tag 08DH] and [Sta21, Tag 0B6A], respectively.


https://stacks.math.columbia.edu/tag/08BJ
https://stacks.math.columbia.edu/tag/079P
https://stacks.math.columbia.edu/tag/090Y
https://stacks.math.columbia.edu/tag/070K
https://stacks.math.columbia.edu/tag/08DH
https://stacks.math.columbia.edu/tag/0B6A

ALMOST COHERENT MODULES AND ALMOST COHERENT SHEAVES 75

Definition 3.5.2. We define the global Ext-modules as the R-modules
Extpe (3¢, G) = H'(RHomog (3, §%))
for 3, 5% € Mod%.
We define the local Ext-sheaves as the O x-modules Ext! g((EF“, g%) = U{Z(RMO%(T’, G%)) for
F,G% € Mod%.
Remark 3.5.3. We see that [Sta2l, Tag 0A64] implies that there is a functorial isomorphism
H’ (RHomog( (F¢, 9“)) ~ Homp gy« (F, G%i])
for F¢,G% € D(X)*.
Remark 3.5.4. The standard argument shows that there is a functorial isomorphism
RI'(U, RHomga (%,5%)) ~ RHomog (F*|v, §%|v)
for any open U € X, 3¢, G% € D(X)“.

Now we give show a local version of the ((—)i, (—)®)-adjunction, and relate RHom (resp. RHom)
to the certain derived functor. This goes in complete analogy with the situation in the usual (not
almost) world.

Lemma 3.5.5. Let (X, Ox) be a ringed R-site. Then
(1) There is a functorial isomorphism
RHomg, (5,5%) ~ RHomg, (F7, 9)
for any 3* € D(X)* and § € D(X). In particular, this isomorphism induces functorial
isomorphisms
RHomge (%, 5%) ~ RHomg (57, §) and Hompx)«(F*, §%) ~ RHompx) (7", 9) .
(2) For any chosen 3¢ € ModY, the functor RHomge (5%, —): D(X)* — D(R) is isomorphic
to the (right) derived functor of Homgq (F¢, -).
(3) For any chosen F* € ModY%, the functor RHomgs (5%, —): D(X)* — D(X) is isomorphic
to the (right) derived functor of Homge (¢, —).
Proof. We prove Part (1). We firstly define the map
R omys, (3, §%) = RHomg (57, 9) .
We choose some representation F*¢ of 5 and a quasi-isomorphism § = J® of G to a K-injective

complex J®. Then we know that J*¢ is a K-injective resolution of §¢ by Lemma 3.4.6. Therefore,
the construction of the derived hom says that we have isomorphisms

R?Comog((frm, G%) ~ f]-fom('%z( (F*9,7%)
RX}omg (37, 9) ~ Homg (F7°,7°)
Now we recall that term-wise we have the following equalities:
n ®.a qe.,a\ __ —q,a qp,a
Homjye (F5,9%) = +H Homgs (F~4,T7%)
ptg=n

Homyg (T, 7%) = H Homg  (F) P, IP)
pt+q=n
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Thus we can apply Lemma 3.2.3 term-wise to produce an isomorphism
fin: Homge (T, %) — Homg  (F7,°)

for each n. It is then straightforward to see that x, commute with the differential, and thus induce
the isomorphism of complexes

K: %om('gg((fr”’“,?’“) = Homp  (F9,7°) .
In particular, it produces the desired isomorphism Rﬂ{omog((ﬂ"“, g = Rﬂ{omog((ﬂ"a, G%). The
construction is clearly functorial in both F* and G.
Parts (2) and (3) are identical to Lemma 2.4.3(2). O
Definition 3.5.6. We define the derived almost Hom functors
Ralﬂ-(omog((—, —): D(XY)? x D(X%) - D(X?)
RalHomogf(—, —): D(X*)? x D(X%) — D(R?)

as
RalHomgs (5%, 5%) = RHomg. (7*,5%)" = RHomy  (F7, )"

RalHOmoc)z( (gja, 9a) = RHOmog( (g’“a, 9“)“ = RHOID@X( fl, 9)(1
Definition 3.5.7. We define the global almost Ext modules as the R%-modules alExt! a (F%,9%) =
Hi(RalHom@g{ (F*,G%)) for F%, G* € Mod%.
We define the local almost Ext sheaves as the O%-modules al€xt! a (F,G%) = J—Ci(Ralﬂfomog( (F%,9%))
for 3, 6% € ModY%.
Proposition 3.5.8. Let (X,0x) be a ringed R-site. Then:
(1) There is a natural transformation of functors

R3om (_’_)
D(X)% x D(X) ox

D(X)

(=) x (=) (=)

Ralﬂ'fomoaX (——)
D(X)P x D(X9) D(X9)

that makes the diagram (2, 1)-commutative. In particular, Ral¥omya (9,5%) ~ RHomg, (F,9)"
for any &, 9 € D(X).

(2) For any chosen 3 € Mod$%, the functor Ralﬂ-(ornog{(f}'a7 —): D(X)* - D(X)* is isomor-
phic to the (right) derived functor of al}omgs (F, —).

(3) The analogous results hold true for the functor RalHomog((—, -).

Proof. The proof is identical to that of Proposition 2.4.8. One only needs to use Proposition 3.2.10
in place of Proposition 2.2.1(3). O

Now we deal with the case of the derived tensor product functor. We will show that our definition
of the derived tensor product functor makes Ral%omog{ (—, —) into the inner Hom functor.
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Definition 3.5.9. We say that a complex of O%-module F* is almost K-flat if the naive tensor
product complex C*¢ ®6g( F*% is acyclic for any acyclic complex C€*“ of O%-modules.

Lemma 3.5.10. The functor (—)*: Comp(Ox) — Comp(0%) sends K-flat Ox-complexes to
almost K-flat O%-complexes.

Proof. The proof Lemma 2.4.10 applies verbatim. (]

Lemma 3.5.11. Let f: (X,0x) — (Y,0y) be a morphism of ringed R-sites, and let F*¢ €
Comp(0%) be an almost K-flat complex. Then f*(F**) € Comp(0%) is almost K-flat.

Proof. The proof of [Sta2l, Tag 06Y W] works verbatim in this situation. O

Corollary 3.5.12. Every object F** € Comp(0%) is quasi-isomorphic to an almost K-flat com-
plex.

Proof. The proof of Corollary 2.4.11 applies verbatim with the only difference that one needs to
use [Sta2l, Tag 06YF] in place of [Sta2l, Tag 06Y4]. O

Definition 3.5.13. We define the derived tensor product functor
— ®fs —: D(X)* x D(X)* = D(X)*
by the rule (¢, 3%) — (G ®éx Gi)® for any F¢, G € D(X)“.

Proposition 3.5.14. (1) There is a natural transformation of functors

L

D(X) x D(X) 2, D(X)

a _\a P _\a
(=) x( )l /@Jéx—? l( )
D(X)® x D(X)* —% D(X)®

that makes the diagram (2, 1)-commutative. In particular, there is a functorial isomorphism
(?@éx G)e ~ g ®é§( G* for any F,G € D(X).

(2) For any chosen F* € Mod%, the functor F¢ ®%, —: D(X)® — D(X)? is isomorphic to the
(left) derived functor of F* ®ge —.

Proof. Again, the proof is identical to that of Proposition 3.5.14. The only non-trivial input that
we need is existence of sufficiently many K-flat complexes of O%-modules. But this is guaranteed
by Lemma 3.5.12. O

Remark 3.5.15. For any F¢, G* € D(X)“, there is a canonical morphism
RalXomyq (5,5 @5, F* — §°

that, after the identifications from Proposition 3.5.8 and Proposition 3.5.14, is the almostification
of the canonical morphism

R3omg . (F7, 1) ®éx It =Gt
from [Sta21, Tag 0A8V].


https://stacks.math.columbia.edu/tag/06YW
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Lemma 3.5.16. Let (X,0x) be a ringed R-site, and let ¥, 3% H* € D(X)*. Then we have a
functorial isomorphism

R¥Homq (F* @ 5% H") = RHomga (3¢, RalHompa (5%, H?)) -
This induces functorial isomorphisms
RHomog, (F* ®f, G, H") = RHomogg (5, RalHom p. (5%, H"))
RalHomgq (F* ©Fs G H) =~ RalHomeq (5, RalHomp. (5%, H))
RalHomgsq (F* ®é§( 9%, H*) ~ RalHomge (F*, RalHom pa (5%, H?)) .

Proof. The proof of the first isomorphism is very similar to that of Lemma 2.4.14. We leave the
details to the interested reader. The second isomorphism comes from the fist one by applying the
functor RI'(X, —). The third and the fourth isomorphisms are obtained by applying (—)® to the
first and the second isomorphisms respectively. Here we implicitly use Proposition 3.5.8. (|

Corollary 3.5.17. Let (X,0x) be a ringed R-site, and let §* € D(X)®. Then the functors
RalHomg. (5%, —): D(X)* & D(X)*: — ®g§(9a
are adjoint.

The next two functors we deal with are the derived pullback and derived pushforward. We start
with the derived pullback.

Definition 3.5.18. Let f: (X,0x) — (Y,0y) be a morphism of ringed R-sites. We define the
derived pullback functor

Lf*:D(Y)* - D(X)*
as the derived functor of the right exact, additive functor f*: Mod{ — Mod¥%.

Remark 3.5.19. We need to explain why the desired derived functor exists and how it can be
computed. It turns out that it can be constructed by choosing K-flat resolutions, the argument for
this is identical to [Sta21, Tag 06YY]. We only emphasize that three main inputs are Lemma 3.5.11,
Lemma 3.5.10 and an almost analogue of [Sta2l, Tag 06YG].

Proposition 3.5.20. Let f: (X,0x) — (Y, Oy) be a morphism of ringed R-sites. Then there is a
natural transformation of functors

DY) = D(X)

= o
X)e

(-)e y
DY) 2 Dy

that makes the diagram (2,1)-commutative. In particular, there is a functorial isomorphism
(Lf*F)* ~ Lf*(F) for any F € D(Y).

Proof. We construct the natural tranformation p: Lf* o (—)* = (—)% o Lf* as follows. Pick any
object F € D(Y') and its K-flat representative K®, then KX* is adapted to compute the usual derived
pullback Lf*. Lemma 3.5.11 ensures K*“ is also adapted to compute the almost version of the
derived pullback Lf*. So we define the morphism

pr: (fT(m@XK®))* = fH(K*)*


https://stacks.math.columbia.edu/tag/06YY
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as the natural morphism induced by m ® X®* — X*®. This map is clearly functorial, so it defines a
transformation of functors p. In order to show that it is an isomorphism of functors, it suffices to
show that the map

F(ROK) > (%)
is an almost isomorphism of complexes for any K-flat complex K*®. But this is clear as m@X® — K*®
is an almost isomorphism, and Corollary 3.2.18 ensures that f* preserves almost isomorphisms. [

Definition 3.5.21. Let f: (X,0x) — (Y,0y) be a morphism of ringed R-sites. We define the
derived pushforward functor
Rf.: D(X)* — D(Y)"
as the derived functor of the left exact, additive functor f.: Mod% — Mody..
We define the derived global sections functor RI'(U, —): D(X)* — D(R)* in a similar way for
any open U C X.

Remark 3.5.22. This functor exists by abstract nonsense (i.e. [Sta2l, Tag 070K]) as the category
Mod$% has enough K-injective complexes by Lemma 3.4.7.

Proposition 3.5.23. Let f: (X,0x) — (Y, Oy) be a morphism of ringed R-sites. Then there is a
natural transformation of functors

D(X) 2 D(Y)

%{) / |

a Rfx

(=)
D( —= D(Y)*

that makes the diagram (2,1)-commutative. In particular, there is a functorial isomorphism

(RfF)® ~ Rf(F) for any F € D(X). The analogous results hold for the functor RI'(U, —).

Proof. The proof is very similar to that of Proposition 3.5.20. The main essential ingredients are:
(—)® sends K-injective complexes to K-injective complexes, and f, preserves almost isomorphisms.
These two results were shown in Lemma 3.4.6 and Lemma 3.2.23. U

Lemma 3.5.24. Let (X,Ox) be a ringed R-site, let F be an O%-module, and let U € X be an
open object. Then we have a canonical isomorphism

RI'(U, RalHomge (F*,5%)) ~ RalHomeg (F*|v, 5%|v)
Proof. This easily follows from Remark 3.5.4, Proposition 3.5.8, and Proposition 3.5.23. O

Lemma 3.5.25. Let f: (X,0x) — (Y,0y) be a locally ringed morphism of R-spaces. Then there
is a functorial isomorphism

Rf.R3omos (Lf*F",5") ~ R¥:omo, (5°, Rf.5")
for 5% € D(Y)?, G € D(X)®. This isomorphism induces isomorphisms
RfRalHomya (Lf*F*,§) ~ RalFHomy. (F*, Rf.5%)
RHomgg (Lf*F%,§%) ~ RHomgg (3% Rf.G%) .
RalHomgs, (Lf*F*,G%) ~ RalHomge, (F* R f.9%) .


https://stacks.math.columbia.edu/tag/070K
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Proof. 1t is a standard exercise to show that the first isomorphism implies all other isomorphisms
by applying certain functors to it, so we deal only with the first one. The proof of the first one is
also quite standard and similar to Lemma 3.2.26, but we spell it out for the reader’s convenience.
The desired isomorphism comes from a sequence of canonical identifications:

RfRHomye (Lf*(F%),5%) ~ R RHomga (Lf*(F)*, 59 Proposition 3.5.20
~ Rf.RHomy, (m @ Lf*(F),9) Lemma 3.5.5(1)
~ Rf.RHomy, (Lf*(m® J),9) Lemma 3.2.17
~ RXHomg, (m® F,Rf(9)) Classical
~ R¥oms (F*Rf(9) Lemma 3.5.5(1)
~ RHomge (3, Rf(5)) Proposition 3.5.23.

0

Corollary 3.5.26. Let f: (X,0x) — (Y,0y) be a locally ringed morphism of locally ringed
R-spaces. Then the functors Rf.(—): D(X)* & D(Y)*: Lf*(—) are adjoint.

Now we discuss the projection formula in the world of almost sheaves. Suppose f: (X,0x) —
(Y,0y) a locally ringed morphism of locally ringed R-spaces, F% € D(X)?, and 5% € D(Y)*. We
wish to construct the projection morphism

p: RI(TY) @6 §* = RI(T* @fs L (5).
By Corollary 3.5.26, data of this morphism is equivalent to the data of a morphism
LI (RA(T%) ©f; %) — T° @b, LF(S).

This morphism is defined as the composition of natural isomorphism

Lf*(Rf(F) @6y %) = Lf*(Rf.(F)) ®fq L (5%
and the morphism

Li*(Rf.(T9) @, LA (9% <55 5o @k, L (9%)
induced by the co-unit of the (Lf*, R f.)-adjunction.

Proposition 3.5.27. Let f: (X,0x) — (Y,0y) be a locally ringed morphism of locally ringed
R-spaces, F* € D(X)%, and § € D(Y') a perfect complex. Then the projection morphism

p: Rf(TY) @6a §* = Rf(T* ®Fa LF*(5)
is an isomorphism in D(Y)®.

Proof. The claim is local on Y, so we may assume that G is isomorphic to a bounded complex of
finite free Oy-modules. Then an easy argument with stupid filtrations reduce the question to the
case § = Oy.. This case is essentially obvious. ([l
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4. ALMOST COHERENT SHEAVES ON SCHEMES AND FORMAL SCHEMES

4.1. Schemes. The Category of Almost Coherent O%-modules. In this Section we discuss
the notion of almost quasi-coherent, almost finite type, almost finitely presented and almost coher-
ent sheaves on an arbitrary scheme. The main content of this Section is to make sure that almost
coherent sheaves form a Weak Serre subcategory in O x-modules. Another important statement is
the “approximation” Corollary 4.3.5 that is the key fact to reduce many statements about almost
finitely presented O x-modules to the “classical” case of finitely presented Ox-modules. In partic-
ular, we follow this approach in our proof of the Almost Proper Mapping Theorem in Section 5.1.

As always, we fix a ring R with an ideal m such that m = m? and m = m ®z m is R-flat. We
always do almost mathematics with respect to this ideal. In what follows X will always denote an
R-scheme. Note that this implies that X is a locally spectral, ringed R-site, so the results of the
previous sections apply.

We begin with some definitions:

Definition 4.1.1. We say that an O%-module F is almost quasi-coherent if I ~ m ® F is a
quasi-coherent O x-module.

We say that an Ox-module J is almost quasi-coherent if ¢ is an almost quasi-coherent O%-
module.

Remark 4.1.2. Any quasi-coherent O x-module is almost quasi-coherent.

Remark 4.1.3. We denote by Mod%; C Mod x. the full subcategory consisting of almost quasi-
coherent O%-modules. It is straightforward?’ to see that the “almostification” functor induces an
equivalence

Mod5: ~ Mod% /(2x N ModY,),
i.e. Mod%Y is equivalent to the quotient category of quasi-coherent O x-modules by the full sub-
category of almost zero, quasi-coherent O x-modules.

Definition 4.1.4. We say that an O%-module F° is of almost finite type (resp. almost finitely
presented) if F* is almost quasi-coherent, and there is a covering of X by open affines {U; };cr such
that F¢(U;) is an almost finitely generated (resp. almost finitely presented) 0% (U;)-module.

We say that an O x-module F is of almost finite type (resp. almost finitely presented) if so is F*.

Remark 4.1.5. We denote by Mod X" (resp. Mod%*?) the full subcategory of Modx consist-
ing of almost finite type (resp. almost finitely presented) quasi-coherent Ox-modules. Similarly,
we denote by Mod}fﬁ (resp. Mod%ﬁ) the full subcategory of Moda consisting of almost finite
type (resp. almost finitely presented) O%-modules. Again, it is straightforward to see that the

“almostification” functors induce equivalences

Mod3f, ~ Mod¥™"/(£x N Mod¥™"), Mod3® ~ Mod%*P /(3 x N Mod%*P).

Remark 4.1.6. In the usual theory of O x-modules, finite type O x-modules are usually not required
to be quasi-coherent. However, it is much more convenient for our purposes to put almost quasi-
coherence in the definition of almost finite type modules.

The first thing that we need to check is that these notions do not depend on a choice of an affine
covering.

20The proof is completely similar to the proof of Theorem 3.1.20 or Theorem 3.4.9.
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Lemma 4.1.7. Let 3 be an almost finite type (resp. almost finitely presented) O%-module on
an R-scheme X. Then F%(U) is an almost finitely generated (resp. almost finitely presented)
0% (U)-module for any open affine U C X.

Proof. First of all, Corollary 2.5.12 and Lemma 3.3.2 imply that for any open affine U, F*(U) is
almost finitely generated (resp. almost finitely presented) if and only if so is (m ® F*)(U). Thus
we can replace F% by F' ¥ m ® F to assume that F is an honest quasi-coherent O x-module.

Now Lemma 2.8.1 guarantees that the problem is local on X. So we can assume that X = U is
an affine scheme and we need to show that F(X) is almost finitely generated (resp. almost finitely
presented).

We pick some covering X = U}"_,U; by open affines U; such that F(U;) is almost finitely generated
(resp. almost finitely presented) as an O x(U;)-module. We note that since F is quasi-coherent we
have an isomorphism

?(Ul) >~ ?(X) ®OX(X) OX(Ul)
Now we see that a map Ox(X) — [, Ox(U;) is faithfully flat, and the module

F(X) ®ox(x) <H Ox (Ui)> o~ <H Ox (Ui>> @0y (x) F(X)
i=1 i=1

is almost finitely generated (resp. almost finitely presented) over [[!; Ox(U;). Therefore, Lemma

2.10.5 guarantees that F(X) is almost finitely generated (resp. almost finitely presented) as an

Ox (X)-module. O

Corollary 4.1.8. Let X = Spec A be an affine R-scheme, and let F* be an almost quasi-coherent
0%-module. Then F* is almost finite type (resp. almost finitely presented) if and only if I'(X, F%)
is almost finitely generated (resp. almost finitely presented) A-module.

Now we check that almost finite type and almost finitely presented O% behave nicely in short
exact sequences.

Lemma 4.1.9. Let 0 — 5@ & go % 570 _ 0 he an exact sequence of O%-modules. Then

(1) If F* is almost of finite type and F’* is almost quasi-coherent, then F’* is almost finite
type.
(2) If F7* and F"* are of almost finite type (resp. finitely presented), then so is F°.

(8) If 3% is of almost finite type and F”® is almost finitely presented, then F'* is of almost finite
type.

(4) If F* is almost finitely presented and F'* is of almost finite type, then F7* is almost finitely
presented.

Proof. First of all, we apply the exact functor (—); to all O%-modules in question to assume the
short sequence is an exact sequence of O x-modules and all O x-modules in this sequence are quasi-
coherent. Note that we implicitly use here that quasi-coherent modules form a Serre subcategory of
all Ox-modules by [Sta2l, Tag 01IE]. Then we check the statement on the level of global sections
on all open affine subschemes U C X using that quasi-coherent sheaves have vanishing higher
cohomology on affine schemes. And that is done in Lemma 2.5.15. O

Definition 4.1.10. We say that an O%-module J* is almost coherent if F is almost finite type,
and for any open set U any almost finite type Of-submodule §* C (F*|yy) is an almost finitely
presented Of;-module.


https://stacks.math.columbia.edu/tag/01IE
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We say that an Ox-module J is almost coherent if F* is an almost coherent O%-module.

Lemma 4.1.11. Let X be an R-scheme, and let F* be an O%-module. Then the following are
equivalent:

(1) F* is almost coherent.

(2) ¢ is almost quasi-coherent, and the 0% (U)-module F*(U) is almost coherent for any open
affine subscheme U C X.

(3) F*is almost quasi-coherent, and there is a covering of X by open affine subschemes (U;);cr
such that F¢(U;) is almost coherent for each 1.

In particular, if X = Spec A is an affine R-scheme and J° is an almost quasi-coherent O%-module.
Then F* is almost coherent if and only if F%(X) is almost coherent as an A-module.

Proof. We start the proof by noting that we can replace F* by J{ to assume that JF is a quasi-
coherent O x-module.

Firstly, we check that (1) implies (2). Given any affine open U C X and any almost finitely
generated almost submodule M®* C F(U)?, we define an almost subsheaf (M®), C (F|r)*. We see

that (M¢); must be an almost finitely presented Oy-module, so Lemma 4.1.7 guarantees that M
is almost finitely presented Ox (U)-module. Therefore, any almost finitely generated submodule
M® C F(U)* is almost finitely presented. This shows that F(U) is almost coherent.

Now we show that (2) implies (1). Suppose that F is almost quasi-coherent and F(U) is almost
coherent for any open affine U C X. First of all, it shows that F is of almost finite type, since this
notion is local by definition. Now suppose that we have an almost finite type almost O x-submodule
G C (F|y)® for some open U. It is represented by a homomorphism

m®g ST
with G being an O x-module of almost finite type, and m ® ker g ~ 0. We want to show that G is

almost finitely presented as O x-module. This is a local question, so we can assume that U is affine.
Then Lemma 3.3.2 implies that the natural morphism

g(U) :mepr5(U) — F(U)
defines an almost submodule of F(U). We conclude that m @ G(U) is almost finitely presented by

the assumption on F(U). Since the notion of almost finitely presented O x-module is local, we see
that G is almost finitely presented.

Clearly, (2) implies (3). And it is easy to see that Lemma 2.10.6 guarantees that (3) implies
(2). O
Corollary 4.1.12. Let X be an R-scheme, then:

(1) Any almost finite type O%-submodule of an almost coherent O%-module is almost coherent.

(2) Let ¢: F* — G be a homomorphism from an almost finite type O%-module to an almost
coherent O%-module, then ker(y) is an almost finite type O%-module.

(3) Let p: F* — G* be a homomorphism of almost coherent O%-modules, then ker(y) and
Coker(yp) are almost coherent O%-modules.

(4) Given a short exact sequence of O%-modules
0—F*—=JF* = 3F" 50

if two out of three are almost coherent so is the third.
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Proof. The proofs (1), (2) and (3) are quite straightforward. As usually, we apply (—); to assume
that all sheaves in the question are quasi-coherent O x-modules. Then the question is local and it
is sufficient to work on global sections over all affine open subschemes U C X. So the problem is
reduced to Lemma 2.6.8.

The proof of part (4) is similar, but we only need to invoke that given a short exact sequence of
O x-modules

0—F*—=F = F*—=0

if two of these sheaves are quasi-coherent, so is the third one. This is proven in the affine case
in [Sta2l, Tag 01IE], the general case reduces to the affine one. The rest of the argument is the
same. 0

Definition 4.1.13. We define the categories Mod¥*" (resp. Mod2*" resp. Mod3") as the
full subcategory of Mod x (resp. Modx, resp. Modxa) consisting of almost coherent O x-modules
(resp. quasi-coherent almost coherent modules, resp. almost coherent almost Ox-modules). As
always, it is straightforward to see that the “almostification” functor induces the equivalence

Mod}cfl’h ~ Mod%’aCOh/(ZX N Mod(}f’amh).

Moreover, Corollary 4.1.12 ensures that Mod3°" ¢ Mody, Modgg’awh C Mody, and Mod3S" ¢
Mod xa are weak Serre subcategories.

The last thing that we discuss here is the notion of almost coherent schemes.

Definition 4.1.14. We say that an R-scheme X is almost coherent if the sheaf Ox is an almost
coherent O x-module.

Lemma 4.1.15. Let X be a coherent R-scheme. Then X is also almost coherent.

Proof. The structure sheaf Ox is quasi-coherent by definition. Lemma 4.1.11 says that it suffices
to show that Ox(U) is an almost coherent O x(U)-module for any open affine U C X. Since X is
coherent, we conclude that Ox (U) is coherent as an Ox(U)-module. Then Lemma 2.6.7 implies
that it is actually almost coherent. ([l

Lemma 4.1.16. Let X be an almost coherent R-scheme. Then an O%-module 3¢ is almost
coherent if and only if it is of almost finite presentation.

Proof. The “only if” part is easy since any almost coherent O%-module is of almost finite presen-
tation by the definition. The “if” part is a local question, so we can assume that X is affine, then
the claim follows from Lemma 2.6.14. O

4.2. Schemes. Basic Functors on Almost Coherent O%-modules. This section is devoted
to study how certain functors defined in Section 3.2 interact with the notions of almost (quasi-)
coherent O%-modules defined in the previous section.

As always, we fix a ring R with an ideal m such that m = m? and m = m ®p m is R-flat. We
always do almost mathematics with respect to this ideal.

We start with the affine situation, i.e. X = Spec A. In this case, we note that the functor

(=): Mod4 — Modf sends almost zero A-modules to almost zero O x-modules. Thus it induces
the functor

(—=): Mod s — Mod%:.


https://stacks.math.columbia.edu/tag/01IE
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Lemma 4.2.1. Let X = Spec A be an affine R-scheme. Then the functor (—): Mods4 — ModS/

induces equivalences (—): Mod¥ — Mod%"™ for any = € {7, aft,afp,acoh}. The quasi-inverse
functor is given by I'(X, —).

Proof. We note that the functor (—): Mods — Mod¥ is an equivalence with the quasi-inverse
I'(X,—). Now we note Lemma 4.1.8 and Lemma 4.1.11 guarantee that a quasi-coherent O x-module
F is almost finite type (resp. almost finitely presented, resp. almost coherent) if T'(X, F) is almost
finitely generated (resp. almost finitely presented, resp. almost coherent) as an A-module. O

Lemma 4.2.2. Let X = Spec A be an affine R-scheme. Then the functors (—): Mod odas — Mod %

induces an equivalence ( ) Mod 4« — Mod )?a and restricts to the equivalences ( ) Mod’. —
Mod¥. for any * € {aft, afp,acoh}. The quasi-inverse functor is given by I'(X, —).

Proof. We note that (—): Mods — Modf; induces an equivalence between almost zero A-modules
and almost zero, quasi-coherent Ox-modules. Thus the claim follows from Lemma 4.2.1, Re-
mark 4.1.3, Remark 4.1.5, Definition 4.1.13 and the analogous presentations of Mlod’;. as quotients
of Mod 4. for any x € {aft, afp, acoh}. O

Now we show that the pullback functor preserves almost finite type and almost finitely presented
O%-modules.

Lemma 4.2.3. Let f: X — Y be a morphism of R-scheme.
(1) Suppose that X = Spec B, Y = Spec A are affine R-schemes. Then f *(M\E) is functorially
isomorphic to M? ® 4o B® for any M* € Mod.

(2) The functor f* preserves almost quasi-coherence (resp. almost finite type, resp. almost
finitely presented) for O-modules.

(3) The functor f* preserves almost quasi-coherence (resp. almost finite type, resp. almost
finitely presented) for O*-modules.

Proof. (1) follows from Proposition 3.2.19 and the analogous result for quasi-coherent Oy-modules.
More precisely, Proposition 3.2.19 provides with the functorial isomorphism

I (W) ~ (f*(M)) ~ <M®A B) ~ M ®pa B .
(2) and (3) are local on X and Y, so we may and do assume that X = Spec B, Y = Spec A are

affine R-schemes. In this case, Lemma 4.2.2 guarantees that any almost quasi-coherent O%-module

is isomorphic to M@ for some A%module M?. Now (1) ensures that f*(M®) ~ M “6;3“ as
almost quasi-coherent O%-modules. The other claims from (2) and (3) are proven similarly using
Lemma 4.2.2 and Lemma 2.8.1. t

The next thing we discuss is how the finiteness properties interact with tensor products.

Lemma 4.2.4. Let X be an R-scheme.
(1) Suppose that X = Spec A is an affine R-scheme. Then Mea ®02 N is functorially isomorphic
to M“@Z:N“ for any M® N* € Mod$.

(2) Let 3, 9% be two almost finite type (resp. almost finitely presented) O%-modules. Then the
O%-module F*®pe G is almost finite type (resp. almost finitely presented). The analogous
result holds for O x-modules F, G.
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(3) Let J* be an almost coherent O%-module, and §* be an almost finitely presented O%-
module. Then F*®gq¢ 5% is an almost coherent O%-module. The analogous result holds for
Ox-modules F, G.

Proof. The proof is similar to the proof of Lemma 4.2.3. The only difference is that one needs
to use Proposition 3.2.12 in place of Proposition 3.2.19 to prove Part (1). Part (2) follows from
Lemma 2.5.17, and Part (3) follows from Corollary 2.6.9. O

We show f, preserves almost quasi-coherence of O%*modules for a quasi-compact and quasi-
separated morphism f. Later on, we will be able to show that f, also preserves almost coherence
of O%modules for certain proper morphisms.

Lemma 4.2.5. Let f: X — Y be a quasi-compact and quasi-separated morphism of R-schemes.
Then

(1) The Oy-module f.(F) is almost quasi-coherent for any almost quasi-coherent O x-module
J.

(2) The Of-module f,(JF?) is almost quasi-coherent for any almost quasi-coherent O%-module
Fe.

Proof. Since JF is almost quasi-coherent, we conclude that m ® F is a quasi-coherent O x-module.
Thus f.(m ® F) is a quasi-coherent Oy-module by [Sta21, Tag 01LC]. Recall that the projection
formula (Lemma 3.3.5) ensures that

fimeF) ~me f,.F.

Thus, we see that m ® f.F ~ f.(F*), is a quasi-coherent Oy-module. This shows that both f.(F)
and f,(F?) are almost quasi-coherent over Oy and Of respectively. This finishes the proof of the
both parts. O

Finally, we deal with the fHomog{(—, —) functor. This is probably the most subtle functor
considered in this section. We start with the following preparatory lemma:

Lemma 4.2.6. Let X be an R-scheme.
(1) Suppose X = Spec A is an affine R-scheme. Then the canonical map

Hom (M, N) — Homg (M, N) (4.1)

is an almost isomorphism of Ox-modules for any almost finitely presented A-module M
and any A-module V.

(2) Suppose X = Spec A is an affine R-scheme. Then there is a functorial isomorphism

alHom ga (M, N®) ~ alHoms (Mea, N@) (4.2)

of O%-modules for any almost finitely presented A“-module M“, and any A“-module N¢.
We also get a functorial almost isomorphism

Homa(M, N) ~* Homys (M¢, N%) (4.3)

of Ox-modules for any almost finitely presented A-module M, and any A-module N.

(3) Suppose ¥ is an almost finitely presented Ox-module and § an almost quasi-coherent O x-
module, then Hom X(EF ,§) is an almost quasi-coherent O xy-module.
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(4) Suppose F* is an almost finitely presented O%-module and §* an almost quasi-coherent
O%-module, then }com%(&m,ga) (resp. al%omogi(ffa,Sa)) is an almost quasi-coherent
Ox-module (resp. 0%-module).

Proof. (1): We note that we have a canonical isomorphism Hom (M, N) — Homg X(]Tf ,N) for
any A-modules M, N. This induces a morphism

Hom (M, N) — Homg (M, N) .

In order to show that it is an almost isomorphism for an almost finitely presented M, it suffices to
show that the natural map

HOHIA(M, N) XA Af — HomAf(M XA Af,N XA Af)
is an almost isomorphism for any f € A. This follows from Lemma 2.9.11.
(2) follows easily from (1). Indeed, we apply the functorial isomorphism
Homy  (F,9)* ~ alFHomgs (F*,5)

from Proposition 3.2.10(2) to the almost isomorphism in Part (1) to get the functorial isomorphism

Homy (M, N)e ~ alﬂfomog((m, Kﬁl) .
Now we use Proposition 2.2.1(3) to get the functorial isomorphism
alHom ga (M®, N*) ~ Hom 4 (M, N )“.

Applying the functor (—) to it and composing with the isomorphism above, we get the functorial
isomorphism

alHom ga (M@, N@) ~ alFHom e (M\E, ]/\\f/“) .
The construction of the isomorphism (4.3) is similar and even easier.
(3) is a local question, so we can assume that X = Spec A. We note that
Homg, (F,9) ~* Homy, (Mm@ F,m® 9)
by Proposition 3.2.10(2). Thus, we can assume that both ¥ and G are quasi-coherent. Then the
claim follows from (1) and Lemma 4.2.1.
(4) is similarly just a consequence of (2) and Lemma 4.2.2. O
Corollary 4.2.7. Let X be an R-scheme.
(1) Let F be an almost finitely presented Ox-module, and let § be an almost coherent O x-
module. Then Homg, (F,9) is an almost coherent O y-module.
(2) Let F* be an almost finitely presented O%-module, and let §* be an almost coherent O%-
module. Then Homs (5, 5%) (resp. alHomye (F*,5%)) is an almost coherent O x-module
(resp. O%-module).
Proof. We start the proof by observing that Homg (7, 5) ~* Homy, (m® F,m ® G) by Proposi-
tion 3.2.10(2). Thus we can assume that both ¥ and G are actually quasi-coherent. In that case
we use Lemma 4.2.6(1) and Lemma 4.1.11 to reduce the question to showing that Hom 4 (M, N)

is almost coherent for any almost finitely presented M and almost coherent N. However, this has
already been done in Corollary 2.6.9.

Part (2) follows from Part (1) as ﬂfomog((?a,Sa) ~ Homy (7, 9) and alFom s (F*,G%)
Homyg . (F,9)".

O R
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4.3. Schemes. Approximation of Almost Finitely Presented O%-modules. One of the
defects of our definition of almost finitely presented Ox-modules is that we get an approximation
by finitely presented Ox-modules only (Zariski)-locally on X. So it is not quite well adapted to
proving global statements such as the Almost Proper Mapping Theorem. We resolve this issue by
show that (on a quasi-compact quasi-separated scheme) any almost finitely presented O%-module
can be globally approximated by finitely presented O x-modules.

As always, we fix a ring R with an ideal m such that m = m? and m = m @z m is R-flat. We
always do almost mathematics with respect to this ideal.

Lemma 4.3.1. Let X be an R-scheme, and {9¢};c; a filtered diagram of almost quasi-coherent
O%-modules.

(1) The natural morphism
4% colimy al¥omgy, (F%,G7) — alHomy (T, colimy G)
is injective for an almost finitely generated O%-module F%;

(2) The natural morphism

73 colimy alFomy  (F°, G7) — alFHomgy, (F*, colim; G7)

is an almost isomorphism for an almost finitely presented O%-module .

Proof. The statement is local, so we can assume that X = Spec A is an affine scheme. Then
Lemma 4.2.2 implies that F* ~ M® and §¢ ~ N? for an almost finitely generated (resp. almost
finitely presented) A-module M. Then [Sta2l, Tag 009F] and Lemma 4.2.6 imply that it suffices
to show that

A8+ colim; alHom 4a (M?, N&) — alHom e (M?, colim Nf)

is injective (resp. an isomorphism) in Mod$%. But this is exactly Corollary 2.5.11. O

Corollary 4.3.2. Let X be an R-scheme, and {G¢}; a filtered diagram of almost quasi-coherent
O%-modules.

(1) The natural morphism

a
7

7%: colim; alHomg (5%, §7) — alHomg, (F%, colims G¢)

is injective for an almost finitely generated O%-module J¢;

(2) The natural morphism

a
2

7% colimy alHomg (5%, G7) — alHomg, (F%, colims G¢)

is an almost isomorphism for an almost finitely presented O%-module F¢.

Proof. Tt formally follows from Lemma 3.2.25, Lemma 4.3.1, and [Sta21, Tag 009F] (and Corol-
lary 3.1.18). O

Definition 4.3.3. An Ox-module JF is globally almost finitely generated (resp. globally almost
finitely presented) if, for every finitely generated ideal my C m, there is a quasi-coherent finitely
generated (resp. finitely presented) O x-module § and a morphism f: § — F such that mg(ker f) =
0, mp(Coker f) = 0.

Lemma 4.3.4. Let X be a quasi-compact quasi-separated R-scheme, and F an almost adically
quasi-coherent O x-module.
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(1) If, for any filtered diagram of adically quasi-coherent Ox-modules {9;};cs, the natural
morphism
colim; Homg , (&, ;) — Homg (&, colim; G;)
is almost injective, then F is globally almost finitely generated.

(2) If, for any filtered system of adically quasi-coherent O x-modules {G;};cs, the natural mor-
phism
colim; Homg , (&, 9;) = Homg  (F, colimy G;)

is an almost isomorphism, then F is globally almost finitely presented.

Proof. Lemma 3.2.25 and Corollary 3.1.18 ensure that we can replace J with J7" without loss of
generality. So we may and do assume that F is are quasi-coherent. Then the proof of Lemma 2.5.10
works essentially verbatim. We repeat it for the reader’s convenience.

(1) : Note that F ~ colim; F; is a filtered colimit of its finitely generated O x-submodules (see
[Sta2l, Tag 01PG]). Therefore, we see that

colim; Homg, (¥, F/F;) ~* Homg, (F, colim;(F/F;)) ~ 0.

Consider an element « of the colimit that has a representative the quotient morphism ¥ — F/F;
(for some choice of 7). Then, for every ¢ € m, ea = 0 in colim; Homg, (F,F/F;). Explicitly this
means that there is j > 4 such that ¢F C J;. Now note that this property is preserved by choose
any j' > j. Therefore, for any mg = (£1,...,&,), we can find a finitely generated O x-submodule
F; C F such that mgF C F;. Therefore, F is almost finitely generated.

(2) : Fix any finitely generated sub-ideal mp = (e1,...,&,) C m. We use [Sta2l, Tag 01PJ] to
write F ~ colimp Fy as a filtered colimit of finitely presented Ox-modules. By assumption, the
natural morphism

colimy Homg , (F,Fy) — Homg, (F, colimp Fy) = Homg  (F,F)

is an almost isomorphism. In particular, e;Ids is in the image of this map for every i = 1,...,n.
This means that, for every ¢;, thereis \; € A and a morphism g;: § — JF), such that the composition
f; 0 gi = &ldyg,
where fy,: F\, = J is the morphism to the colimit. Note that existence of such g; is preserved by
replacing \; by any A, > \;. Therefore, using that {F,} is a filtered diagram, we can find one index

A with maps
g;: F—-F A
such that fy o g; = ¢;1dy. Now we consider a morphism
G; = g; © f)\ — Eildg)\: Fy — Fy.
Note that Im(G;) C ker(fy\) because
Irnogiofa— fredds, =eifx —eifn =0.
We also have that ¢; ker(fy) C Im(G;) because Gilyer(r,) = €:1d. Therefore, }, Im(G;) is a quasi-
coherent finitely generated Ox-module such that

mg(ker f)) C ZIm(Gi) C ker(fr)-
i
Therefore, f: F = Fy/(>_, Im(G;)) — Fis a morphism such that F is finitely presented, mo(ker f) =
0, and my(Coker f) = 0. Since my C m was an arbitrary finitely generated sub-ideal, we conclude
that F is globally almost finitely presented. ([l
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Corollary 4.3.5. Let X be a quasi-compact and quasi-separated R-scheme, and let F be an almost
quasi-coherent O x-module. Then F is almost finitely presented (resp. almost finitely generated)
if and only if for any finitely generated ideal mg C m there is a morphism f: § — J such that
G is a quasi-coherent finitely presented (resp. finitely generated) Ox-module , mp(ker f) = 0 and
mg(Coker f) = 0.

Proof. Corollary 4.3.2 ensures that F satisfies the conditions of Lemma 4.3.4. Lemma 4.3.4 now
gives the desired result. O

Corollary 4.3.6. Let X be a quasi-compact, quasi-separated R-schme, and F* an almost quasi-
coherent O%-module. Then

(1) F* is almost finitely generated if and only if, for every filtered diagram {G¢};c; of almost
quasi-coherent O%-modules, the natural morphism

colimy alHomge (5%, §i') — alHomgys (I, colimy G7')
is injective in Mod¥%;

(2) F* is almost finitely presented if and only if, for every filtered diagram {SG¢} of almost
quasi-coherent O%-modules, the natural morphism

colimy alHompe (5%, §i') — alHomye (¢, colimy G7)
is an isomorphism in Mod$%;

4.4. Schemes. Derived Category of Almost Coherent O%-modules. The goal of this section
is to define different categories that can be called “derived category of almost coherent shaves”.
Namely, we define the categories Dgcon(X), Dyc acon (X ), and Dgeon(X)®. Then we show that many
derived functors of interest preserve almost coherence in an appropriate sense.

Definition 4.4.1. We define Dg4¢(X) (resp. Dgge(X)?) to be the full triangulated subcategory of
D(X) (resp. D(X)%) consisting of complexes with almost quasi-coherent cohomology sheaves.

Definition 4.4.2. We define Dgcop(X) (resp. Dye acon(X), resp. Dgeon(X)®) to be the full tri-
angulated subcategory of D(X) (resp. D(X), resp. D(X)%) consisting of complexes with almost
coherent (resp. quasi-coherent and almost coherent, resp. almost coherent) cohomology sheaves.

Remark 4.4.3. The definition above makes sense as the categories Modgg(’h, Mod()lf’amh, and
Mod‘}(cé’h are weak Serre subcategories of Modx, Modyx, and Mod% respectively.

Now suppose that X = Spec A is an affine R-scheme. Then we note that the functor

(—): Modys — Modx

is additive and exact, thus can be easily derived to the functor
(—): D(A) = D(X) .

Lemma 4.4.4. Let X = Spec A be an affine R-scheme. Then the functor
(—): D(4) = Dye(X)

is a t-exact equivalence of triangulated categories’' with quasi-inverse given by RI'(X, —). More-
over, these two functors induce the equivalence

(_): DZcoh(A) <:> DZc,acoh(X): RF(X’ _)

2lwith their standard t-structures
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for any x € {“ 7,4, —, b}.

Proof. The first part is just [Sta2l, Tag 06Z0]. In particular, it shows that H(RI(X,F)) ~
HO(X, H!(F)) for any F € Dye(X). Now Lemma 4.1.11 implies that H*(F) is almost coherent if
and only if so is HY(X, 3*()). So the functor RT'(X, —) sends D* (X) to D!, (A).

qc,acoh acoh
We also observe that the functor (—) clearly sends Dgeon(A) to Dy geon(X). Thus we conclude

that (A—/) and RI'(X, —) induce an equivalence of Dyeon(A) and Dge gcon(X). The bounded versions
follow from t-exactness of both functors. O

Lemma 4.4.5. Let X = Spec A be an affine R-scheme. Then the almostification functor
(=) Dge(X) = Dge(X)*

aqce

induces an equivalence Dy, (X)/Dy, v (X) — D (X)® for any * € {“ 7,4, —,b}. Similarly, the
induced functor

Zc,acoh(X)/DZc,EX (X) l> DZcoh (X)a
is an equivalence for any * € {“”, 4+, — b}.

Proof. The functor (—): D} .(X)* — D;.(X) gives the left adjoint to (—)* such that Id — (=)o
(—)® is an isomorphism and the kernel of (—)? consists exactly of the morphisms f such that
cone(f) € Dyeyy(X). Thus the dual version of [GZ67, Proposition 1.3] finishes the proof of the
first claim. The proof of the second claim is similar once one notices that M¢ is almost coherent

for any almost coherent A%-module M®. The latter fact follows from Lemma 4.1.11. O

Lemma 4.1.11 ensures that D(A)* ~ D(A)/Dsy, (A). As (A—/) clearly sends Dy, (4) into Dy . .
we conclude that it induces the functor

(=): D*(A)* - D?, (X)* .

aqc

Theorem 4.4.6. Let X = Spec A be an affine R-scheme. Then the functor
(=): D(A)" = Dagge(X)*

is a t-exact equivalence of triangulated categories with quasi-inverse given by RI'(X, —). Moreover,
these two functors induce equivalences

(X),

(=) D;

acoh(A>a —_— D;

acoh

(X)*: RI'(X, -)
for any x € {“”7,+,—,b}.

Proof. We note that Lemma 4.4.4 ensures that (/:/): D’ (X) - Dz

qc,acoh acoh
lence with quasi-inverse RI'(X, —). Moreover, (—)* induces an equivalence between Dy, (A) and

(X)® is an equiva-

Dy, (X); we leave the verification to the interested reader. Thus, Lemma 4.4.5 ensures that (—)
gives an equivalence

D(A)" ~ D(A)/Ds,,(A) = Dge(X)/Dge iy (X) ~ Dage(X)" .

Its inverse is given by the functor Dgq.(X)* — D(A)? induced by RI'(X, —) on D, (X) that exactly
coincides with RI'(X, —): Dgge(X)* — D(A)® by Proposition 3.5.23.

The version with almost coherent cohomology sheaves is similar to the analogous statement from
Lemma 4.4.4. 0

Lemma 4.4.7. Let f: X — Y be a morphism of R-schemes.
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(1) Suppose that X = Spec B, Y = Spec A are affine R-schemes. Then L f* (]\Aﬁl) is functorially
isomorphic to M @k, Be for any M € D(A)".

(2) The functor Lf* carries an object of D} .(Y') to an object of Dy .(X) for x € {*”, —}.

(3) The functor Lf* carries an object of D7 .(Y)® to an object of Dy .(X)* for x € {7, —}.

(4) Suppose that X and Y are almost coherent R-schemes. Then the functor Lf* carries an
object of D_, ., (Y) (resp. D, ;,(Y)) to an object of D . X) (resp. D, (X)).

(5) Suppose that X and Y are almost coherent R-schemes. Then the functor Lf* carries an
object of D__ ,(Y)* to an object of D__ , (X)“.

qc, acoh(

Proof. We start with (1). We use Proposition 3.5.20 to see that Lf*(M¢) ~ (Lf*(M))®. Thus it
suffices to show that Lf*(]Tj) ~ M ®% B as (M ®@% B)* ~ M* @%, B® by Proposition 2.4.16. But
the result for quasi-coherent complexes is classical.

Now we show (2). We note that Lemma 3.2.17 implies that Lf*(m ® F) ~ m @ Lf*(F) for any
F € D(Y). Thus we can replace F with m @ F to assume that it is quasi-coherent. Then it is a
standard fact that Lf* sends Dy.(Y) to D} (X) for x € {“ 7", —}.

(3) follows from (2) by noting that Lf*(F*) ~ (Lf* ()" according to Proposition 3.5.20.
To prove (4), we again use the isomorphism Lf*(m ® F) ~ m @ Lf*(F) to assume that F is in
D (X). Lemma 4.4.4 guarantees that there is M € D_, (A) such that M ~ JF. Thus Part (1)

qc,acoh
and Lemma 4.1.11 ensure that it is sufficient to show that M® ®%, B* ~ (M ®% B)* has almost
finitely presented cohomology modules. This is exactly the content of Corollary 2.8.2.

(5) follows from (4) as Lf*(F*) ~ (Lf* (7). O
Lemma 4.4.8. Let X be an R-scheme.
(1) Suppose that X = Spec A is an affine R-scheme. Then Ma ®é§( N is functorially isomorphic

to Mo @k, Ne for any M N® € D(A)".

(2) Let 3,5 € D, .(X), then .’f®éx G € Dgge(X) for x € {7, —}.

(3) Let 3,9% € D;,.(X)?, then F¢ ®Lu G% € Dyge(X)® for x € {«7, —}.

(4) Suppose that X is an almost coherent R-scheme, andlet ¥, € D__ .., (X) (resp. D, (X)).
Then 97®L Ge chacoh(X) (resp. D, ,(X)).

(5) Suppose that X is an almost coherent R-scheme, and let F,G% € D
% € Dgeon(X)*-

(X)®. Then F*®f,

acoh

Proof. The proof is basically identical to that of Lemma 4.4.7 and left to the reader. We only
mention that one has to use Proposition 2.6.18 in place of Corollary 2.8.2. [l

Lemma 4.4.9. Let f: X — Y be a quasi-compact and quasi-separated morphism of R-schemes.
Suppose that Y is quasi-compact. Then

(1) The functor R f, carries D} .(X) to D} .(Y) for any € {“”, —, +,b}.
(2) The functor Rf, carries D} .(X)* to D; .(Y)? for any * € {“”, —, +,b}.
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Proof. Proposition 3.5.23 guarantees that (Rf.F)* ~ Rf.F*. Since (m ® F)* ~ F* we see that it
suffices to show that the functor

Rf.(m® —)
carries D .(X) to D .(Y) for any * € {“”, —, +,b}. Since m ® JF is in D.(X), we conclude that
it is enough to show that Rf.(—) carries D;.(X) to D;.(Y) for any * € {“”,—, +,b}. This is
proven in [Sta2l, Tag 08D5]. O

Before going to the case of the derived Hom-functors, we recall the construction of the functorial
map

: RHom (M, N) — Romg, (M, N)

for any M € D~ (A), N € D*(A) on an affine scheme X = Spec A. Indeed, the functor (—) is
left adjoint to the global section functor I'(X, —) on the abelian level. Thus after deriving these
functors, we get that — is left adjoint to RI'(X,—). Therefore, for any F € D(X), there is a
canonical morphism RI'(X,JF) — F. We apply it to F = RIHomy, (]\7 ,N) to get the desired
morphism

¢: RHomu (M, N) — RHomy (M, N) .
Lemma 4.4.10. Let X be an almost coherent R-scheme.

(1) Suppose X = Spec A is an affine R-scheme. The canonical map

: RHomu (M, N) — RHomy (M, N)
is an almost isomorphism for M € D, (A), N € D*(A).

acoh

(2) Suppose X = Spec A is an affine R-scheme. There is a functorial isomorphism

RalHom 4« (M, N) ~ RalHoma (KZ&, ]%)

for M* € D, ,(A)% N% e D'(A)% We also get a functorial almost isomorphism

RHom pe (M®, N¢) ~* RHomga (]\7‘;, ]%)
for M e D, ,(A), N € DT(A).

(3) Suppose F € D, (X) and § € D .(X). Then RIomg  (F,9) € D .(X).
(4) Suppose F* € D, ,(X)* and §* € D{,.(X)* Then R} omy. (F%,5%) € D{,.(X) and
RalHomg, (F?,5%) € Dy (X)*.

Proof. We start with (1). We use the convergent compatible spectral sequences

~——

ESY = Ext) (H-4(M), N) = Ext!,"(M, N)
BT = Eath (H*Q(M), Kf) = et (JTZ Kf)

to see that we may assume that M € Modi{x’h is just a module in degree 0. Similarly, we use the
compatible spectral sequences

EYY = Ext (M, HP(N)) = Ext?, (M, N)

BT = extl (M,HP(N)) = Exth' (M, N)
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to also assume that N € Mod 4. So the claim boils down to showing that the natural maps

Ext?) (M, N) — &xtl) (M,N)

are almost isomorphisms for any M € Modi‘c"h7 N € Mody, and p > 0. Lemma 3.1.5 says that
it is sufficient to say that kernel and cokernel are annihilated by any finitely generated sub-ideal
mo C m.

Recall that, for any O x-modules F, G, the sheaf Extgx (F,9) is canonically isomorphic to sheafi-
fication of the presheaf

U +— EthU (?‘U, 9’(]) .

Thus, in order to show that the map Ext) (M, N) — Ext%X(M N ) is an almost isomorphism, it
suffices to show that

Ext}) (M, N) @4 Ay — Exty, (M, Ny)
is an almost isomorphism. Now we use canonical isomorphisms
Exth, (M, Ny) = Hompx,)(My, Ny[p])
~ Homp 4,y (M, N¢[p])
~ Extif(Mf, Ny),
where the second isomorphism uses that (—) induces a t-exact equivalence (—): D(A) — Dgy.(Spec A;).
Thus, the question boils down to showing that the natural map
Extf) (M, N) @4 Ay — BExtf) (M, Ny)
is an almost isomorphism. This follows from Proposition 2.9.12.
(2) formally follows from (1) by using Proposition 3.5.8(1).

(3) is also a basic consequence of (2). Indeed, the claim is local, so we can assume that X =
Spec A is an affine R-scheme. In that case we use Theorem 4.4.6 to say that ¥ ~ M, § ~ N for

—_——

some M € D__,(A), N € D¥(A). Then RHomy, (F,5) ~ RHom4 (M, N) by (2), and the latter

acoh
complex has almost quasi-coherent cohomology sheaves by design.

(4) easily follows from (3) and the isomorphisms
R} ompa (7,5 ~ RHomg, (97, 9)
RalHomga (7%, 5%) ~ RHomg  (F7, §)*
that come from Lemma (1) and Definition 3.5.6. O

Corollary 4.4.11. Let X be an almost coherent R-scheme.

(1) Let F € D;qc,acoh(X)7 Je Di_qc,acoh<X)' Then Rij{omox (9:’ 9) = D:qc’aCOh(X)'
(2) Let 3* € D_,,(X)% §* € D,;,(X)* Then Ral¥omg. (I, G%) € D, (X)".

Proof. The question is local on X, so we can suppose that X = Spec A is affine. Then Lemma 4.4.10,

Theorem 4.4.6, and Lemma 4.1.11 reduce both question to showing that RHom (M, N) € D, (A)
for M € D, _,(A) and N € D, (A). This is the content of Proposition 2.6.19. O
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Proposition 4.4.12. Let f: X — Y be a quasi-compact quasi-separated morphism of R-schemes,
T4 € Dgge(X)?, and § € Dgge(Y)® Then the projection morphism (see the discussion before
Proposition 3.5.27)

p: RE(FY) @F, §* = RE(F* @6 Lf(5Y))
is an isomorphism in D(Y")%.

Proof. Proposition 3.5.14, Proposition 3.5.20, and Proposition 3.5.23 imply that we can replace F¢
(resp. G%) with Ff € Dge(X)® (resp. Gf € Dge(Y)?). So it suffices to show the analogous result for
modules with quasi-coherent cohomology sheaves. This is proven in [Sta2l, Tag 08EU]. O

4.5. Formal Schemes. The Category of Almost Coherent O%-modules. In this Section
we discuss the notion of almost coherent sheaves on “good” formal schemes. One of the main
complications is that there is no good notion of a “quasi-coherent” sheaf on a formal scheme.
Namely, even though there is a notion of adically quasi-coherent sheaves on a big class of formal
schemes due to [FIX18, §1.3], this notion does not really behave well. For example, the category
of adically quasi-coherent sheaves usually is not abelian. One of the main difficulties in working
with adically quasi-coherent sheaves is the lack of the Artin-Rees lemma beyond the case of finitely
generated modules. More precisely, many operations with adically quasi-coherent sheaves require
taking completions, but it is difficult to control the effect of it without the use of the Artin-Rees
lemma.

The way we deal with this problem is to use a version of the Artin-Rees lemma (Lemma 2.12.6)
for almost finitely generated modules over “good” rings. The presence of the Artin-Rees lemma
suggests that it is reasonable to expect that we might have a good notion of adically quasi-coherent,
almost coherent Ox-modules on some “good” class of formal schemes.

We start by giving the Setup in which we can develop the theory of almost coherent sheaves

Set-up 4.5.1. We fix a ring R with a finitely generated ideal I such that R is [-adically complete,
I-adically topologically universally adhesive®?, and I-torsion free with an ideal m such that I C m,
m?2 =m and m = m ®p m is R-flat.

The basic example of such a ring is a complete microbial®® valuation ring R with algebraically
closed fraction field K. We pick a pseudo-uniformizer @ and define I := (w), m == UL, (/")
for some compatible choice of roots of . We note that R is topologically universally adhesive by
[FGK11, Theorem 7.3.2].

We note that the assumptions in Setup 4.5.1 imply that any finitely presented algebra over a
topologically finitely presented R-algebra is coherent and [I-adically adhesive. Coherence follows
from [FGK11, Proposition 7.2.2] and adhesiveness basically follows from the definition. In what
follows, we will use those facts without saying.

In what follows, X will always mean a topologically finitely presented formal R-scheme. We will
denote by Xj = X Xgpr g Spec R/I k41 the “reduction” schemes. They come together with the
closed immersion ig: X — X. Also, given any Ox-module F, we will always denote its “reduction”
iz F by Fy.

22This means that the algebra R(X1,...,Xn)[T1,...,Tm] is I-adically adhesive for any n and m
237 valuation ring R is microbial if there is a non-zero topologically nilpotent element o € R. Any such element
is called a pseudo-uniformizer.
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Definition 4.5.2. ['K18, Definition 1.3.1.3] An Ox-module F on a formal scheme X of finite ideal
type is called adically quasi-coherent if F — lim, F,, is an isomorphism and, for any open formal
subscheme 4 C F and any ideal of definition J of finite type, the sheaf F/JF is a quasi-coherent
sheaf on the scheme (L, Oy /7).

We denote by Modgec the full subcategory of Modyx consisting of adically quasi-coherent Ox-
modules.

Definition 4.5.3. We say that an 0%-module F* is almost adically quasi-coherent if F{ ~ m @ F
is an adically quasi-coherent Ox-module. We denote by Modjys the full subcategory of Modxa
consisting of almost adically quasi-coherent Ox-modules.

We say that an Ox-module F is almost adically quasi-coherent if F* is an almost quasi-coherent
0%-module. We denote by 1\/Iod§€qC the full subcategory of Modyx consisting of adically quasi-
coherent Ox-modules.

Remark 4.5.4. In general, we can not say that an adically quasi-coherent Ox-module & is almost
adically quasi-coherent. The problem is that the sheaf m ® F might not be complete, i.e. the map
m®F — limgm ® F, is a priori only an almost isomorphism.

Lemma 4.5.5. Let X be a topologically finitely presented formal R-scheme for R as in the
Setup 4.5.1, and let F* be an almost adically quasi-coherent O%-module. Then F7 is almost quasi-
coherent for all k. Moreover, if an O%-module §* is annihilated by some I n+1 Then G% is almost
adically quasi-coherent if and only if so is G2.

Proof. In order to prove the first claim, it is sufficient to show that m® Fy, is quasi-coherent provided
that m ® F is adically quasi-coherent. We use Corollary 3.2.18 to say that m ® F ~ (m ® F); and
the reduction of an adically quasi-coherent module is quasi-coherent. Therefore, each J7 is almost
adically quasi-coherent.

Now if G is annihilated by I"t! then § = in+9n. We use the Projection Formula (Corollary 3.3.6)
to say that m®G =~ 4,, (G, ®m). Clearly, i, . sends quasi-coherent sheaves to adically quasi-coherent
sheaves. So G is almost adically quasi-coherent if so is G%. O

Definition 4.5.6. We say that an 0%-module F is of almost finite type (resp. almost finitely
presented) if F* is almost adically quasi-coherent, and there is a covering of X by open affines

{4;}ier such that F¢(&L;) is an almost finitely generated (resp. almost finitely presented) 0% (&h;)-

module. We denote these categories by Mod;fﬁ and Modg?zD respectively.

We say that an Ox-module JF is of almost finite type (resp. almost finitely presented) if so is F*.
aft

We denote these categories by Mod%" and Mod?efp respectively.

Definition 4.5.7. We say that an Oyx-module F is adically quasi-coherent of almost finite type
(resp. adically quasi-coherent almost finitely presented) if it is adically quasi-coherent and there
is a covering of X by open affines {i;};c; such that F(L;) is an almost finitely generated (resp.
almost finitely presented) Ox(4l;)-module. We denote these categories by 1\/Iod(31€C"erft and Modglgj’&Lle
respectively.

Remark 4.5.8. If ¢ is a finite type (resp. finitely presented) O%-module, then (F¢), is adically
quasi-coherent of almost finite type (resp. almost finite presentation).

Remark 4.5.9. We note that, a priori, it is not clear if F* is an almost finite type (resp. almost
finitely presented) O%-module for an adically quasi-coherent almost finite type (resp. almost finitely
presented) Ox-module F. The problem is that our definition of adically quasi-coherent almost finite
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type (resp. almost finitely presented) module does not require m ® F to be adically quasi-coherent.
However, we will show in Lemma 4.5.10 that it is automatic in this case.

Lemma 4.5.10. Let X be a topologically finitely presented formal R-scheme for R as in the
Setup 4.5.1, and let F be an adically quasi-coherent of almost finite type (resp. almost finitely
presented) Ox-module. Then m ® JF is adically quasi-coherent. In particular, J is almost of finite
type (resp. almost finitely presented).

Proof. Corollary 2.5.12 and Lemma 3.3.2 imply that the only condition we really need to check
is that m ® F is adically quasi-coherent. Therefore, it suffices to prove the result for an adically
quasi-coherent almost finite type Ox-module JF.

Since the question is local on X, we can assume that X = Spf A is affine and M = F(X) is
almost finitely generated over A. Then we use [FK18, Theorem 1.3.2.8] to say that F is isomorphic
to M2. We claim that m ® F is isomorphic to (m ®4 M)? as that would imply that m ® F is
adically quasi-coherent by [F'K18, Proposition 1.3.2.2]. In order to show that m ® ¥ is isomorphic
to (M ®r M)® we need to check two things: for any open affine Spf B = {{ C X the B-module
(m ® F)(Y) is I-adically complete, and then the natural map (m ®r M)@4B — (m ® F)(4) is an
isomorphism.

We start with the first claim. Lemma 3.3.2 says that (m®F)(4l) is isomorphic to m@ g F(U). Since
F is adically quasi-coherent, F(U) ~ M@ 4B, so (m@F) (L) ~ m@r(M4B). Lemma 2.8.1 says that
M® 4B is almost finitely generated over B, so it is already I-adically complete by Lemma 2.12.7.
Therefore, we see that m@pz F(U) ~ mRpr (M®4B), and the latter is almost finitely generated over
B by Corollary 2.5.12. Thus we use Lemma 2.12.7 once more to show its completeness.

Now we show that the natural morphism (m@zM)®4B — (m@F)(4) is an isomorphism. Again,
using the same results as above we can get rid of any completions and identify this map with the
“identity” map

(MRr M)®@4B - m®p (M®sB)
This finishes the proof. O

Lemma 4.5.11. Let X be a topologically finitely presented formal R-scheme for R as in the
Setup 4.5.1, and let I be an almost finite type (resp. almost finitely presented) O%-module. Then
the 0%, -module F} is almost finite type (resp. almost finitely presented) for any integer k.

Proof. Lemma 4.5.5 implies that each Fj, is an almost quasi-coherent O x, -module. So it is sufficient
to find a covering of Xj by open affines 4l; , such that F7(&l; ;) is almost finitely generated (resp.
almost finitely presented) over 0%, (i ). We note that underlying topological spaces of X and X,
are the same, so we can choose some covering of X by open affines {I; such that F%(4l;) are almost
finitely generated (resp. almost finitely presented) over 0%(4;), and define §; ;, as the “reductions”
of ;. Then using the vanishing result for higher cohomology groups of adically quas-coherent
sheaves on affine formal schemes of finite type [FK18, Theorem 1.7.1.1] and Lemma 3.3.2, we
deduce that

Fh(thix) = (2 1) ()" =~ (R@ T (W) /1)
is almost finitely generated (resp. almost finitely presented) over Ox, (L6 k). O

Lemma 4.5.12. Let X be a locally topologically finitely presented formal R-scheme for R as in
the Setup 4.5.1, and let F* be an almost finite type (resp. almost finitely presented) O%-module.
Then F*(4) is an almost finitely generated (resp. almost finitely presented) 0% (4)-module for any
open affine  C X.
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Proof. Corollary 2.5.12 and Lemma 3.3.2 guarantee that we can replace ¥ with m ® F for the
purpose of the proof. Thus we may and do assume that F is an adically quasi-coherent almost
finitely generated (resp. almost finitely presented) Ox-module. Then using Lemma 2.8.1 and
Lemma 2.12.7 we can use the argument as in the proof of Lemma 4.5.10 show that the restriction
of F to any open formal subscheme is still adically quasi-coherent of almost finite type (resp. finitely
presented), so we may and do assume that X = Spf A is an affine formal R-scheme. Since now X is
quasi-compact, we can choose a finite refinement of the covering X = ULl; such that F(Ll;) is almost
finitely generated (resp. almost finitely presented) over O(Ll;). Thus we may and do assume that a
covering (4l;) is finite.

Now we have an affine topologically finitely presented formal R-scheme X = Spf A, a finite
covering of X by affines 4l; = Spf A;, and an adically quasi-coherent Ox-module F such that F(Ll;)
is almost finitely generated (resp. almost finitely presented) A;-module. We want to show that
F(X) is an almost finitely generated (resp. almost finitely presented) A-module.

We firstly deal with the almost finitely generated case. We note that Lemma 4.1.7, Lemma 4.5.11,
and [FK18, Theorem 1.7.1.1] imply that F(X)/I is almost finitely generated. We know that F is adi-
cally quasi-coherent so F(X) must be an I-adically complete A-module. Therefore, Corollary 2.5.20
guarantees that F(X) is an almost finitely generated A-module.

Now we move to the almost finitely presented case. We already now that F(X) is almost finitely
generated over A. Thus the standard argument with Lemma 2.12.7 implies that F(L;) = F(X)®@4 A4;
for any i. Recall that [FI{18, Proposition 1.4.8.1] implies®® that each A — A; is flat. Since Spf A;
form a covering of Spf A, we conclude that A — []""_; A4; is faithfully flat. Now the result follows
from faithfully flat descent for almost finitely presented modules that is proven in Lemma 2.10.5. [

Corollary 4.5.13. Let X = Spf A be a topologically finitely presented affine formal R-scheme for
R as in the Setup 4.5.1, and let 3¢ be an almost adically quasi-coherent O%-module. Then F¢ is
almost finite type (resp. almost finitely presented) if and only if F%(X) is almost finitely generated
(resp. almost finitely presented) A*-module.

Similarly, an adically quasi-coherent Ox-module JF is is almost finite type (resp. almost finitely
presented) if and only if F(X) is almost finitely generated (resp. almost finitely presented) A-
module.

Lemma 4.5.14. Let X = Spf A be a topologically finitely presented affine formal R-scheme for R
as in the Setup 4.5.1, let ¢: N — M be a homomorphism of almost finitely generated A-modules.
Then the following sequence

A
0 — (ker¢)® — N £ M2 — (Coker ¢)* — 0

is exact. Moreover, Im(p)? ~ Im(¢?).

Proof. We denote the kernel ker ¢ by K, the image Im(y) by M’, and the cokernel Coker ¢ by Q.
We start with ker ¢®: We note that (ker p®)(X) = K, this induces a natural morphism a: K2 —
ker ¢¥. We show that it is an isomorphism, it suffices to check that it induces an isomorphism on
values over a basis of principal open subsets. Now recall that for any A-module L, we have an
equality L (Spf Aq f}) = I/L} where the completion is taken with respect to the I-adic topology.
Thus in order to check that « is an isomorphism it suffices to show that I/(\f is naturally identified
with (ker )(Spf Agpy) = ker(]/\f} — M\f) Using the Artin-Rees Lemma 2.12.6 over the adhesive

24T0pologically universally adhesive rings are by definition “t. u. rigid-Noetherian”
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ring Ay, we conclude that the induced topologies on Ky and M ]’c coincide with the I-adic ones.
This implies that

I/(\f =limK;/I"Ky =lim K¢/(I"N;y N Ky) and /M\J’c = lim M} /T" M} = lim M} /(1" My 0 M)
This guarantees that we have two exact sequences:
0— I/(\f — ]\//f; — J\//[\} — 0,
0— M\} — ]/V\f
In particular, we get that the natural map I/(\f — ker(@ — ]/\f\f) is an isomorphism. That shows
that K2 ~ ker(p?).

We prove the claim for Im¢®: We note that since the category of Ox-modules is abelian, we
can identify Im ¢® ~ Coker(K® — N?). We observe that [FK18, Theorem 1.7.1.1] and the estab-
lished fact above that ker ¢ is adically quasi-coherent imply that the natural map F(Ll)/ K2 () —
(Im ¢?)(41) is an isomorphism for any affine open formal subscheme . In particular, we have
(Im ¢?)(X) = M/K = M'. Therefore, we have a natural map (M’")® — Im¢® and we show that
it is an isomorphism. Again it suffices to show that this map is an isomorphism on values over a
basis of principal open subsets. Then we use the identification F(L)/K2(4) ~ (Im ¢)(4) and the
short exact sequence

0— I/(\f — M\f — M\J’c — 0,
to finish the proof.

We show the claim for Coker p®: The argument is identical to the argument for Im ¢ once we
proved that Im ¢ = ker(§ — Coker ) is adically quasi-coherent. O

Corollary 4.5.15. Let X = Spf A be a topologically finitely presented affine formal R-scheme for R
as in the Setup 4.5.1, let M an almost finitely generated A-module, and let N be any A-submodule
of M. Then the following sequence

A
0— N* 25 M2 - (M/N)* =0
is exact.

Proof. We just apply Lemma 4.5.14 to the homomorphism M — M /N of almost finitely generated
A-modules. O

Corollary 4.5.16. Let X be a topologically finitely presented formal R-scheme for R as in the
Setup 4.5.1, and let ¢: F — G be a morphism of adically quasi-coherent, almost finite type Ox-
modules. Then ker ¢ is an adically quasi-coherent Ox-module, Coker ¢y and Im ¢ are adically
quasi-coherent Ox-modules of almost finite type.

Corollary 4.5.17. Let X be a topologically finitely presented formal R-scheme for R as in the
Setup 4.5.1, and let ¢: F* — G% be a morphism of almost almost finite type O%-modules. Then
ker ¢ is an almost adically quasi-coherent O%-module, Coker ¢ and Im ¢ are O%-modules of almost
finite type.

Proof. We apply the exact functor (—); to the map ¢ and reduce the claim to Corollary 4.5.16.
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Now we are ready to show that almost finite type and almost finitely presented Ox-modules share
many good properties we would expect. The only subtle thing is that we do not know whether
an adically quasi-coherent quotient of an adically quasi-coherent, almost finite type Ox-module is
of almost finite type. The main extra complication here is that we need to be very careful with
the adically quasi-coherent condition in the definition of almost finite type (resp. almost finitely
presented) modules since that condition does not behave well in general.

Lemma 4.5.18. Let 0 —» F 5 F ﬁ F" — 0 be an exact sequence of Ox-modules, then

(1) If F is adically quasi-coherent of almost finite type, and 3’ is adically quasi-coherent then
F" is adically quasi-coherent of almost finite type.

(2) If F" and F” are adically quasi-coherent of almost finite type (resp. almost finitely presented)
then so is F.

(3) If F is adically quasi-coherent of almost finite type and F” is adically quasi-coherent almost
finitely presented then F' is adically quasi-coherent of almost finite type.

(4) If F is adically quasi-coherent of almost finitely presented and F is adically quasi-coherent
of almost finite type then F” is adically quasi-coherent, almost finitely presented.

Proof. (1): Without loss of generality, we can assume that X = Spf A is an affine formal scheme.
Then F =2 M* for some almost finitely generated A-module M, and 3’ = N2 for some A-submodule
N C M. Then Corollary 4.5.15 ensures that 3 ~ (M/N)?. In particular, it is adically quasi-
coherent. Then the claim is an easy consequence of the vanishing theorem [FK18, Theorem 1.7.1.1]
and Lemma 2.5.15(1).

(2): The difficult part is to show that F is adically quasi-coherent. In fact once we know that F
is adically quasi-coherent, it is automatically of almost finite type (resp. almost finitely presented)
by [FIK18, Theorem 1.7.1.1] and Lemma 2.5.15(2).

In order to show that F is adically quasi-coherent, we may and do assume that X = Spf A
is an affine formal R-scheme for some adhesive ring A. Then let us introduce A-modules M’ =
F'(%X), M = F(%), and M" := F"(X). We have the natural morphism M* — F and we show that
it is an isomorphism. The vanishing theorem [FKX18, Theorem 1.7.1.1] implies that we have a short

exact sequence:
0—-M —-M—M' -0

Thus M is almost finitely generated (resp. almost finitely presented) by Lemma 2.5.15(2). Then
Corollary 4.5.14 gives that we have a short exact sequence

0— M2 — M> = M"™ =0

Using the vanishing theorem [ 18, Theorem 1.7.1.1] once again we get a commutative diagram

0 — s A s MA s pA s 0
0 > F > F > F > 0

where the rows are exact, and left and right vertical arrows are isomorphisms. That implies that
the map M2 — 7 is an isomorphism.

(3): This easily follows from Lemma 2.5.15(3), Lemma 4.5.16 and [FK18, Theorem 1.7.1.1].
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(4): This also easily follows from Lemma 2.5.15(4), Lemma 4.5.16 and [FIX18, Theorem 1.7.1.1].
U

We also give the almost version of this Lemma:

Corollary 4.5.19. Let 0 — @ %, go Yy g0, be an exact sequence of O%-modules, then

(1) If 3¢ is of almost finite type, and F* is almost adically quasi-coherent then F”* is of almost
finite type.

(2) If F* and F"* are of almost finite type (resp. almost finitely presented) then so is F*.

(3) If T is of almost finite type and F”* is almost finitely presented then F'* is of almost finite
type.

(4) If 32 is of almost finitely presented and F* is of almost finite type then F’* is almost finitely
presented.

Definition 4.5.20. We say that an O%-module F is almost coherent if 3¢ is almost finite type
and for any open set { any finite type O%-submodule §* C (F|y)® is an almost finitely presented
Og-module.

We say that F is (adically quasi-coherent) almost coherent Ox-module if F almost coherent (and
F is adically quasi-coherent).

Remark 4.5.21. Lemma 4.5.10 ensures that any adically quasi-coherent almost coherent O x-
module & is almost coherent.

Lemma 4.5.22. Let 3 be an O%-module on a topologically finitely presented formal R-scheme
X. Then the following are equivalent:

(1) F* is almost coherent.

(2) J* is almost quasi-coherent and the 0% ()-module F¢(4l) is almost coherent for any open
affine formal subscheme Ll C X.

(3) F* is almost quasi-coherent and there is a covering of X by open affine subschemes (&;);cr
such that F¢(4l;) is almost coherent for each i.

In particular, an O%-module F is almost coherent if and only if it almost finitely presented.

Proof. The proof that these three notions are equivalent is identical to the proof of Lemma 4.5.22
modulo facts that we have already established in this chapter, especially Corollary 4.5.14.

As for the last claim, we recall that X is topologically finitely presented over a topologically
universally adhesive ring, so Ox(4l) is coherent for any open affine 4 [FX18, Prop. 0.8.5.23, Lemma
1.1.7.4, Prop. 1.2.3.3]. Then Lemma 2.6.13 and Lemma 2.6.15 prove the equivalence. (|

Even though Lemma 4.5.22 says that the notion of almost coherence coincides with the notion
of almost finite presentation, it shows that almost coherence is morally “the correct” definition. In
what follows, we prefer to use the terminology of almost coherent sheaves as it is shorter and gives
a better intuition from our point of view.

Lemma 4.5.23. (1) Any almost finite type O%-submodule of an almost coherent O%-module
is almost coherent.

(2) Let ¢: F* — G be a homomorphism from an almost finite type O%-module to an almost
coherent O%-module. Then ker ¢ is an almost finite type O%-module.
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(3) Let ¢: J* — G% be a homomorphism of almost coherent O%-modules. Then ker ¢ and
Coker ¢ are almost coherent Ox-modules.

(4) Given a short exact sequence of O%-modules
0—F* = JF* 5 F" 50,

if two out of three are almost coherent so is the third one.

Remark 4.5.24. There is also an evident version of this corollary for adically quasi-coherent almost
coherent Ox-modules.

Proof. The proof is identical to Corollary 4.1.12 once we have Lemma 4.5.16 and equivalence of
almost coherent and almost finitely presented Ox-modules from Lemma 4.5.22. [l

Corollary 4.5.25. Let X be topologically finitely presented formal R-scheme for R as in the
Setup 4.5.1. Then the category Mod?eCOh (resp. Modgec’amh, Mod;%‘)h) of almost coherent Ox-
modules (resp. adically quasi-coherent, almost coherent Ox-modules, resp. almost coherent 0%-
modules) is a Weak Serre subcategory of Mody (resp. Mody, resp. Mod%).

4.6. Formal Schemes. Basic Functors on Almost Coherent O%-modules. This section is
devoted to study how certain functors defined in Section 3.2 interact with the notions of almost
(quasi-)coherent O%-modules. The exposition follows Section 4.2 very closely.

We start with the affine situation, i.e. X = Spf A. In this case, we note that the functor
(—)2: Mody — Mod§’ sends almost zero A-modules to almost zero Ox-modules. Thus, it induces

a functor
(=)*: Mod e — Modya.

Lemma 4.6.1. Let X = Spf A be an affine formal R-scheme for R as in the Setup 4.5.1. Then
the functor (—)*: Mods — Mod{ induces an equivalence (—)*: Mod¥ — Mod}™™ for any
« € {aft,acoh}. The quasi-inverse functor is given by I'(X, —).

Proof. We note that the functor (—)*: Moda — Mod{ induces an equivalence between the cate-
gory of I-adically complete A-modules and adically quasi-coherent Ox-modules by [FKX18, Theorem
1.3.2.8]. Recall that all almost finite type modules are complete by Lemma 2.12.7. Thus it suf-
fices to show that an adically quasi-coherent Ox-module is almost finitely generated (resp. almost
coherent) if and only if so is I'(X, F). Now this follows from Lemma 4.5.13 and Lemma 4.5.22. [

Lemma 4.6.2. Let X = Spf A be an affine formal R-scheme for R as in the Setup 4.5.1. Then
the functor (—)*: Mods — Mod{ induces equivalences (—)*: Mod’. — Mod}. for any * €
{aft,acoh}. The quasi-inverse functor is given by I'(X, —).

Proof. The proof is analogous to Lemma 4.2.2 once Lemma 4.6.1 is verified. O

Now recall that for any R-scheme X, we can define the [-adic completion of X as a colimit
colim(Xy, Ox, ) of the reductions Xy, := X x g Spec R/I**! in the category of formal schemes. We
refer to [FK18, §1.4(c)] for more details. This completion comes with a map of locally ringed spaces

X 5 X .

One important example of a completion is Sm = Spf A for any R-algebra A%°. We study the
properties of the completion map in the case of a finitely presented R-scheme or an affine scheme
Spec A for a topologically finitely presented R-algebra A.

25We note that A is I -adically complete by [Sta21, Tag 05GG] since [ is finitely generated.
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Lemma 4.6.3. Let X = Spec A be an affine R-scheme for R as in the Setup 4.5.1. Suppose
that A is either finitely presented or topologically finitely presented over R. Then the morphism
¢: X — X is flat and there is a functorial isomorphism M4 = = (M ) for any almost finitely
generated A-module M.

Proof. The flatness assertion is just [FIX18, Proposition 1.1.4.7 (2)]. The natural map
M — HO(X, ¢*(M))

induces the map M2 — ¢* (M ). In order to show that it is an isomorphism, it is enough to show
that the map

]\/4; — My ®a; ;1}
is an isomorphism for any f € A. This follows from Lemma 2.12.7, as each such Ay is I-adically
adhesive. g

Corollary 4.6.4. Let X be a locally finitely presented R-scheme for R as in the Setup 4.5.1. Then
the morphism ¢: X — X is flat and ¢* sends almost finite type O%-modules (resp. almost coherent
0%-modules) to almost finite type O%-modules (resp. almost coherent O%-modules).

Similarly, ¢* sends quasi-coherent almost finite type Ox-modules (resp. quasi-coherent almost
coherent O x-modules) to adically quasi-coherent almost finite type Ox-modules (resp. adically
quasi-coherent almost coherent Ox-modules)

Proof. The statement is local, so we can assume that X = Spec A. Then the claim follows from
Lemma 4.6.3. O

Now we show that the pullback functor preserves almost finite type and almost coherent O%-
modules.

Lemma 4.6.5. Let f: X — Q) be a morphism of locally finitely presented formal R-scheme for R
as in the Setup 4.5.1.

(1) Suppose that X = Spf B, 9 = Spf A are affine formal R-schemes. Then *(M?) is functo-
rially isomorphic to (M ®4 B)* for any M € Mod?%.

(2) Suppose that X = Spf B, 9 = Spf A are affine formal R-schemes. Then *(M%%) is
functorially isomorphic to (M® ® g« B*)? for any M® € Mo da’aft.

(3) The functor §* sends ModqC soft (resp. 1\/IodqC acohy 4 Mod4" (resp. Modqc’amh).
(4) The functor f* sends Modaft (resp. Modawh) to Mod4 (resp. Mod3h).

Proof. We prove (1), the proofs of other parts follow from it similarly to the proof Lemma 4.2.3.
We consider a commutative diagram

Spf B —2— Spec B
| |
Spf A —2 Spec A

where the map f: Spec B — Spec A is the map induced by f#: A — B. Then we have that
M2 ~ ¢4 M by Lemma 4.6.3. Therefore,

M) & e (f*M) ~ ¢(M ©4 B) ~ (M ®4 B)*

where the last isomorphism follows from Lemma 4.6.3 again. g
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The next thing we discuss is how the finiteness properties interact with tensor products.
Lemma 4.6.6. Let X be a topologically finitely presented formal R-scheme for R as in the
Setup 4.5.1.

(1) Suppose that X = Spf A is affine. Then M A®o36 N2 is functorially isomorphic to (M ® 4 N)»
for any M, N € Mod¥®.

(2) Suppose that X = Spf A is affine. Then M®* ®og N%A is functorially isomorphic to
(M® @ g0 N*)A for any M® N* € Mod?t.

(3) Let F, G be two adically quasi-coherent almost finite type (resp. almost finitely presented)
Ox-modules. Then the Ox-module F ®¢, G is adically quasi-coherent of almost finite type
(resp. almost finitely presented).

(4) Let 3%,5% be two almost finite type (resp. almost coherent) O%-modules. Then the O%-
module F¢ ®og G* is of almost finite type (resp. almost coherent). The analogous result
holds for O x-modules &, G.

Proof. Again, we only show (1) as the other parts follow from this similarly to the proof of
Lemma 4.2.4 with the simplification that almost coherent and almost finitely presented modules
coincide by our assumption on X and R.

The proof of (1) is, in turn, similar to that of Lemma 4.6.5 (1). We consider the completion
morphism c¢: Spf A — Spec A. Then we have a sequence of isomorphisms

M @o, N® =~ ¢*(M) @0 ¢"(N) = (M ®og,.. , N) ~ (M @4 N) =~ (M @4 N)~.
0

Finally, we deal with the functor J'Comog((—, —). This is probably the most subtle functor
considered in this section. We start with the following preparatory lemma:

Lemma 4.6.7. Let X be a locally topologically finitely presented formal R-scheme for R as in the
Setup 4.5.1.

(1) Suppose X = Spf A is affine. Then the canonical map
Hom (M, N)* — Homg (M*, N*) (4.4)
is an almost isomorphism for any almost coherent A-modules M and N.

(2) Suppose X = Spf A is affine. Then there is a functorial isomorphism
alHom 4a(M®, N*)® =~ al¥omeq (M**, N“*) (4.5)

for any almost coherent A%module M?® and N® We also get a functorial almost isomor-
phism

Hom o (M®, N = Homgq (M4, N“) (4.6)
for any almost coherent A*-module M* and N®.

(3) Suppose I and G are almost coherent Ox-modules. Then Hom  (F,G) is an almost coherent
Ox-module.

(4) Suppose F* and G* are almost coherent O%-modules. Then
fHomOa36 (F*,G%) (resp. aliHomoa36 (F*,5%)

is an almost coherent Ox-module (resp. O%-module).
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Proof. Again, the proof is absolutely analogous to Lemma 4.2.6 and Corollary 4.2.7 once (1) is
proven. So we only give a proof of (1) here.

We note that both M and N are I-adically complete by Lemma 2.12.7. Now we use [FK18] to
say that the natural map Homy(M,N) — Homg, (M A N#) is an isomorphism. This induces a
morphism

Hom (M, N)* — Hom (M* N?) .
In order to prove that it is an almost isomorphism, it suffices to show that the natural map
HOInA(M, N)@AA{f} — HOInA{f} (M@AA{f},N@AA{f})

is an almost isomorphism for any f € A. Now we note that Hom 4 (M, N) is almost coherent by
Corollary 2.6.9. Thus, Hom4 (M, N)®4 Ayyy is already complete, so the completed tensor product
coincides with the usual one. Similarly, M@AA{f} ~ M ®4 Agpy and N@AA{f} ~ N ®a Ay
Therefore, the question boils down to showing that the natural map

HOInA(M, N) XA A{f} — HOInA{f} (M XA A{f},N XA A{f})
is an almost isomorphism. This, in turn, follows from Lemma 2.9.11. U

4.7. Formal Schemes. Approximation of Almost Coherent O%-modules. The main goal
of this section is to establish an analogue of Corollary 4.3.5 in the context of formal schemes. More
precisely, we show that, for any “nice” formal scheme X, an almost coherent Ox-module F can
be “approximated” by a coherent Ox-module Gy, up to mp C m torsion. It turns out that this
result is more subtle than its algebraic counterpart because, in general, we do not know if we can
present an adically quasi-coherent Ox-module as a filtered colimit of finitely presented Ox-modules.
Also colimits are much more subtle in the formal set-up due to the presence of topology. This
seems unlikely that the method used in the proof Corollary 4.3.5 can be used in the formal set-up.
Instead, we take another route and, instead, we first approximate ¥ up to bounded torsion and
then reduce to the algebraic case.

For the rest of the section, we fix a ring R as in the Set-up 4.5.1, and X a topologically finitely
presented formal R-scheme.

Definition 4.7.1. A map of Ox-modules ¢: § — F is an FP-approximation if G is a finitely
presented Ox-module, and I"(Ker ¢) = 0, I"(Coker ¢) = 0 for some n > 0.

If mg C m is a finitely generated sub-ideal of mg, a map of Ox-modules ¢: § — F is an FP-my-
approzimation if it is an FP-approximation and mg(Coker ¢) = 0.

Lemma 4.7.2. Let X = Spf A be an affine topologically finitely presented formal R-scheme, and
F an adically quasi-coherent Ox-module of almost finite type. Then, for any finitely generated ideal
mg C m, F admits an FP-mgp-approximation.

Proof. Lemma 4.6.2 guarantees that F = M* for some almost finitely generated A-module M.
Then, by definition, there is a submodule N C M such that my(M/N). By assumption, U =
Spec A \ V(I) is noetherian, so N|y is a finitely presented Oy-module. Then [FK18, Lemma
0.8.1.6(2)] guarantees that there is a finitely presented A-module N’ with a surjective map N’ — N
such that its kernel K is I°°-torsion. In particular, K C N’[I*°]. But since A is I-adically
complete and noetherian outside I, [FGK11, Theorem 5.1.2 and Definition 4.3.1] guarantees that
N'[I?°] = N'[I"] for some n > 0. In particular, K is an I"-torsion module.

Therefore, we have an exact sequence

0K N —+M-—=Q—0,
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where N’ is finitely presented, M is almost finitely generated, mpQ = 0, and I"K = 0 for some
n > 1. Now Lemma 4.5.14 says that the following sequence is exact:

0> KA N2 M2~ Q% =0
In particular, N4 is a finitely presented Ox-module, mg(Q*) = 0, and I"(K?). O

Lemma 4.7.3. [FK18, Exercise 1.3.4] Let X be a finitely presented formal R-scheme, F an adically
quasi-coherent Ox-module of finite type, and § C F an adically quasi-coherent Ox-submodule.
Then § is a filtered colimit § = colimycp Gx of adically quasi-coherent Ox-submodules of finite
type such that, for all A € A, /G, is annihilated by I"™ for some fixed n > 0.

Lemma 4.7.4. Let X be a finitely presented formal R-scheme, F an adically quasi-coherent, almost
finitely generated Ox-module, and ¢;: §; — F for i = 1,2 two FP-mg-approximations of F for some
finitely generated sub-ideal mg C m. Then there is a commutative diagram

91
%i Y‘
¢
H—7T
QQT /
$2
9o
where ¢ and ¢; are FP-mg-approximations for ¢ = 1, 2.

Proof. By the assumption, there is an integer ¢ > 0 such that ker(¢;) and Coker(¢;) are annihilated
by I€ for i = 0, 1. Therefore, we may replace mg by mg 4+ I¢ to assume that mg contains I°¢.

Now we define X to be the kernel of the natural morphism G; & Go — F. Note that it is an
adically quasi-coherent Ox-submodule by Lemma 4.5.14. Therefore, Lemma 4.7.3 applies to the
inclusion X C G1 & Ga, so we can write K = colimyecp Ky as a filtered colimit of adically quasi-
coherent, finite type Ox-submodules of §1 ® Go with I (K /K,) = 0 for some fixed m > 0 and every
A€ A. We define Ky = (G1 @ G2)/K, it comes with the natural morphisms

¢)\:g‘f)\—>?,

gix: Gi — Hy
for i = 1,2. We claim that these morphisms satisfy the claim of lemma for some A € A, i.e. ¢y,
and ¢; » are FP-mg-approximations.

Since X is topologically finitely presented (in particular, it is quasi-compact and quasi-separated),
these claims can be checked locally. So we may and do assume that X = Spf A is affine. Then we
use Lemma 4.6.2, [FIK18, Theorem 1.3.2.8, Proposition 1.3.5.4] to reduce to the situation X = Spf A,
F=M~" G = NP, Gy = NQA for some almost finitely generated A-module M, and finitely presented
A-modules N7, Ny with maps of sheaves induced by homomorphisms N1y — M and No — M. Then
Lemma 4.5.14 guarantees that X = K2 for K = ker(N; @ Ny — M), and K = colimyecp K for
finitely generated A-submodules®® Ky with I™(K/K)) = 0 for some fixed m > 0 and all A € A.
So one can use Lemma 4.5.14 once again to conclude that it suffices (due to the assumption
that I¢ C mgp) to show that, for some A € A, the natural morphisms (N; & Na)/K) — M,
N; — (N1 ® N3)/ K have kernels annihilated by some power of I, and cokernels annihilated by my.

26Here, Ky = I'(X, Xx), so the equality follows from [Sta21, Tag 009F].
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The kernels of N; — (N7 @ N2)/K) (for i = 1,2) embed into the respective kernels for the
morphisms Ny — M, so they are automatically annihilated by some power of I for any A € A.
Also, clearly, the morphism (N7 & N3)/ Ky — M has kernel K/K) that is annihilated by I™ by the
choice of K.

Therefore, it suffices to show that we can choose A € A such that ¢;x: N; — (N1 @ Na)/K)
(for i = 1,2) and ¢y: (N1 @ Na2)/K) — M have cokernels annihilated by my. The latter case is
automatic and actually holds for any A € A. So the only non-trivial thing we need to check is that
mo(Coker g; ) = 0 for some A € A.

Let (my,...,mq) € mg be a finite set of generators, and {y; j};cs, a finite set of generators of N;
for i = 1,2. Denote by ¥;; the image of y; ; in M. Define x; ; , € No_; to be a lift of my;; € M
in No_; for k=1,...,d,i=1,2 and j € J;. Note that elements (myy1;,21,r) € N1 ® N2 and
(@2,5,k, Miry2,j) € N1 @ Ny lie in K. So for some A € A, K contains the elements (myy1;, 1)
and (x2 j k, miY2,;). Then it is easy to see that the cokernels of N; — (N1 @® Na)/K) are annihilated
by mg. This finishes the proof. (|

Lemma 4.7.5. Let X be a finitely presented formal R-scheme, F an adically quasi-coherent, almost
finitely type Ox-module. Then, for any finitely generated ideal mg C m, & is FP-mg-approximated.

Proof. Firstly, we note that Lemma 4.7.2 guarantees that the claim holds if X is affine. Now choose
a covering of X by open affines X = (J;_; U;, we know that claim on each ;. So it suffices to
show that, if X = 4; U 4y is union of two finitely presented open formal subschemes and JF is
FP-mg-approximated on both 4 and iy, then F is FP-mgp-approximated on X.

Suppose that §; — F|y, are FP-mp-approximations on {; for ¢ = 1,2. Then the intersection
i 9 = 43Ny is again topologically finitely presented formal R-schene because X is so (in particular,
it is assumed to be quasi-compact and quasi-separated). Therefore, Lemma 4.7.4 guarantees that
we can find another FP-mg-approximation H — Fly, , that is dominated by both G;ly, , — Fly ,
for i = 1,2. Consider the Oy, ,-modules

Ki = ker(Gilgy, , — H) for i =1,2.

Lemma 4.5.14 guarantees that both X; are adically quasi-coherent Ox-modules of finite type?’.
The fact that G;y, , — I are FP-mg-approximations ensures that both X; are killed by some I
for m > 1. In particular, we see that K; C G;[I™][y, ,, so they are naturally quasi-coherent sheaves
on X,,—1 = X Xgpf g Spec R/I™. Therefore, one can use [Sta2l, Tag 01PF] (applied to X,,—1) to
extend X; to
KiCGilI™ C G

where X; adically quasi-coherent Ox-modules of finite type. Then G; /JNCZ — Fly, are FP-mp-
approximations of F|y, that are isomorphic on the intersection. Therefore, they glue to a global
FP-mg-approximation § — F. U

Theorem 4.7.6. Let X be a finitely presented formal R-scheme, F an almost finitely generated
(resp. almost finitely presented) Ox-module. Then, for any finitely generated ideal my C m, there
is an adically quasi-coherent, finitely generated (resp. finitely presented) Ox-module § and a map
¢: G — F such that my(Coker ¢) = 0 and mg(ker ¢) = 0.

Proof. Without loss of generality, we can replace F by m ® F, so we may and do assume that F is
adically quasi-coherent.

27Since they are kernels of morphisms between coherent Ox-modules
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The case of almost adically quasi-coherent, almost finite type Ox-module F follows from Lemma 4.7.5.
Indeed, there is an FP-mg-approximation ¢': §' — F, so we define ¢: § — F to be the natural
inclusion § = Im(¢’) — F. This gives the desired morphism as G is an adically quasi-coherent
Ox-module of almost finite type by Corollary 4.5.16.

Now suppose F is an adically quasi-coherent, almost finitely presented Ox-module. Then we use
Lemma 4.7.5 to find an FP-mg-approximation ¢': § — F. Now we note that any almost finitely
presented Ox-module is almost coherent by Lemma 4.5.22. Therefore, ker ¢ is again adically quasi-
coherent, almost finitely presented. Therefore, we can find an FP-mg-approximation ¢”: G’ —
ker(¢') by Lemma 4.7.5. Denote by ¢": §” — G’ the composition of ¢" with the natural inclusion
ker(¢') — §'. Now it is easy to check that ¢: Coker(¢”) — F gives the desired “approximation”.

]

4.8. Formal Schemes. Derived Category of Almost Coherent O%-modules. We discuss
the notion of the derived category of almost coherent sheaves on a formal scheme X. One major
issue is that there the derived category of Ox-modules with adically quasi-coherent cohomology
sheaves is not well-defined, as adically quasi-coherent sheaves is not a Weak Serre subcategory of
Mody, so it is not even an abelian category. However, it would be useful for certain technical
reasons to be able to work with that category.

In order to overcome this issue, we follow the strategy used in [Lurl8] and define “Dgy.(%)”
completely on the derived level without really defining a good abelian notion of (adically) quasi-
coherent sheaves. For the rest of the section, we fix a base ring R as in the Setup 4.5.1.

Definition 4.8.1. Let X be a locally topologically finitely presented R-scheme. Then we define
the derived category of adically quasi-coherent sheaves “D.(X)” as a full subcategory of D(X) with
elements F such that

e For every open affine { C X, RI['(U, F) € D(Ox(Y)) is derived I-adically complete.
e For every inclusion 4 C U of affine formal subschemes of X, the natural morphism

~L
is an isomorphism, where the completion is understood in the derived sense.

Remark 4.8.2. We refer to [Sta2l, Tag 091N] and [Sta21, Tag 0995] for a self-contained discussion
of the derived completion of modules and sheaves of modules respectively.

We want to give an interpretation of “Dy.(X)” in terms of A-modules for an affine formal scheme
X = Spf A. We recall that in the case of schemes, we have a natural equivalence D.(Spec A) ~
D(A) and the map is induced by RI'(Spec A, —). In the case of formal schemes, it is not literally
true. We need to impose certain completeness conditions.

Definition 4.8.3. Let A be a ring with a finitely generated ideal I. We define the Dcomp(A, I) C
D(A) as a full triangulated subcategory consisting of I-adically derived complete objects.

Suppose now that X = Spf A be an affine scheme, topologically finitely presented over R. We
note that the natural functor RI'(X, —): D(X) — D(A) induces a functor

RI(X, —): “Dye(X)” — Deomp(A, I) .

The main claim is that this functor is an equivalence. This is the main content of [Lur18, Corollary
8.2.4.15]. We need to prove one technical result to ensure that our definitions are consistent with
the definitions in Lurie’s book.
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Lemma 4.8.4. Let A be a topologically finitely presented R-algebra for R as in the Setup 4.5.1, let
f € A be any element, and let (z1,...,24) = I be a choice of generators for the ideal of definition
of R. Denote by K(Ays;a7,...,x)) the Koszul complexes for the sequence (z7,...,2]). Then the
pro-systems {K(As; a7, ..., x})} and {Ay/I"} are isomorphic in Pro(D(Ay)).

Proof. The proof is the same [Sta21, Tag 0921]. The only difference that one needs to use [FGK11,
Theorem 4.2.2(2)(b)] in place of the usual the Artin-Rees lemma. O

Lemma 4.8.5. Let A be a topologically finitely presented R-algebra for R as in the Setup 4.5.1,
let f € A be any element. Then the completed localization Ajs coincides with the I-adic derived
completion of Ay.

Proof. Choose some generators I = (z1,...,24). Then we know that the derived completion com-
pletion of Ay is given by Rlim, K(As;x7,...,z}}) where K(Ay;27,...,2])) is the Koszul complex
for the sequence (z7,...,2}}). Lemma 4.8.4 implies that the pro-systems {K(As;z7,...,z]))} and
{A;/I"™} are naturally pro-isomorphic. Thus we have an isomorphism

RliTran(Af;:c?, ceTh) = RligLnAf/I" ~ Agpy -
The last isomorphism uses the Mittag-Leffler criterion to ensure vanishing of lim?. O

Theorem 4.8.6. [Lurl8, Corollary 8.2.4.15] Let X = Spf A be an affine, finitely presented formal
scheme over R as in the Setup 4.5.1. Then the functor RI'(X, —): “Dgc(X)” = Deomp(A, 1) is an
equivalence of categories.

Proof. The statement can be deduced from [Lurl&, Corollary 8.2.4.15] by passing to the homotopy
categories. We note that even though [LLurl8&, Corollary 8.2.4.15] uses oco-categories, the cited proof
can be rephrased in our situation without using any derived geometry. However, it would require
quite a big digression, so instead we explain why our definitions are compatible with definitions in
[Lurls].

Lemma 4.8.5 implies that the definition of Spf A in [Lurl8] is compatible with the classical
one. Now [Lurl8, Proposition 8.2.4.18] ensures that our definition of “Dg.(X)” is equivalent to
h(Qcoh(X)) in the sense of [Lurl8]. O

Definition 4.8.7. We denote by
()" Deomp(A,T) = “Dge(X)”

the pseudo-inverse to RI'(X, —): “Dge(X)” — Deomp(A, I). We note that clearly
RT(Spf Agpy, M™) ~ M@ Agp

for any M € Deomp(A4, I).

Remark 4.8.8. The functor (—)’? is not compatible with the “abelian” functor (—)* used the
previous sections.

Our real goal is to show that there is an equivalence between Dgeop(A) and Dy geon(X). The-
orem 4.8.6 will be a useful tool to prove this equivalence. We now give a precise definition of

ch,acoh (%)

Definition 4.8.9. We define Dy 4con(X) (resp. Dgeon(X)*) to be the full triangulated subcategory
of D(X) (resp. D(X)%) consisting of complexes with adically quasi-coherent, almost coherent (resp.
almost coherent) cohomology sheaves (resp. almost sheaves).
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Remark 4.8.10. An argument similar to one in the proof of Lemma 4.4.5 shows that D gcon(X)*
is equivalent to the Verdier quotient Dy geon(X)/Dye, s, (X).

In order to show an equivalence Dy qeon(X) ~ Dgeon(A), our first goal is to show that Dgyc gcon
lies inside “Dg.(X)”. Even though it looks very plausible, it requires a proof that is not entirely
trivial.

Lemma 4.8.11. Let X = Spf A be an affine topologically finitely presented formal R-scheme for
R as in the Setup 4.5.1. Then the functor RI'(X, —): Dgc qcon(X) — D(A) is t-exact (with respect
to the evident ¢-structures on both sides) and factors through Do, (A). More precisely, there is
an isomorphism

H' (RT (X,9)) ~ H® (X, 5" (F)) € Mod¥™"
for any object F € D e geon(X).

Proof. We note that the vanishing theorem [FK18, Theorem I1.7.1.1] implies that we can use [Sta2l,
Tag 0D6U] with N = 0. Thus we see that the map H/(RI'(X,J)) — H{(RI(X,72F)) is an
isomorphism for any integer ¢, and that RI'(X,F) € Dyeon(A) for any F € Dyc geon(X). Combining
it with the canonical isomorphism H!(RI'(X,72'F)) ~ HO(X, 3*(F)) we get the desired result. [

Lemma 4.8.12. Let X be an locally topologically finitely presented formal R-scheme for R as in

”

the Setup 4.5.1. Then Dyc qcon(X) is naturally a full triangulated subcategory of “Dg.(X)”.

Proof. Both D¢ gcon(X) and “Dy.(X)” are full triangulated subcategories of D(X). Thus, it suffices
to show that any F € Dy geon(X) lies in “Dge(X)”.

Lemma 4.8.11 and Corollary 2.12.8 imply that RI'(4, F) € Deomp(A, I) for any open affine 4 C X.
Now suppose U C U is an inclusion of open affine formal subschemes in X. We consider the natural
morphism

RI(T, )&, ) Ox(L) — RI(SL, F)
We note that Ox (L) is flat over Ox(U) by [FK18, Proposition 1.4.8.1]. Thus, the complex
RF(%, 97) ®éx(m) Ox(u)

lies in Dgeon (Ox (L)) by Lemma 2.8.1. Therefore, it also lies in Deomp(A, I) by Corollary 2.12.8. So
we conclude that .
RI(T, F) B, ()0 (1) = RI(V, F) @6 (o) O (41) -
Using Ox(¥)-flatness of Ox(Ll), we conclude that the question boils down to show that
H' (D, F) @0, (w) Oxwy — H (L F)

is an isomorphism for all . Now Lemma 4.8.11 implies that this, in turn, reduces to showing that
the natural map ' '

(0, H'(F)) @0, w) Oxy — T'(ELH(F))
is an isomorphism. Without loss of generality, we may assume that X = U = Spf A. Then H*(F)
is an adically quasi-coherent, almost coherent Ox-module, so it is isomorphic to M? for some
M € Mod%*°® by Lemma 4.6.1. So the desired claim follows from [FK18, Lemma 3.6.4] and the
observation that M ®¢ (y) Ox(4) is already [-adically complete by Lemma 2.12.7. O

Now we show that the (—)** functor sends Deon(A) to Dyc.acon(Spf A). This is also not entirely
obvious as this derived version of (—)%* a priori has nothing to do with the classical version of
(—)A-functor defined on classically I-adically complete modules. The key is to show that these
functors coincide on Mod°".
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Lemma 4.8.13. Let X = Spf A be an affine topologically finitely presented formal R-scheme for R
as in the Setup 4.5.1. Then the functor (—)“?: Dyeon(A) — “Dgc(X)” factors through Dyc geon(X).
Moreover, for any M € Dgeon(A), there are functorial isomorphisms

HY (M)A ~ H (M),

Proof. We note that H* (X, M1?) ~ H'(M) by its very construction. Since H*(M%L%) is canonically
isomorphic to the sheafification of the presheaf

U Hi(8L, ML),

we get that there is a canonical map H (M) — I'(X,H?(M#)). By the universal property of the
classical (—)? functor, we get a functorial morphism

HY(M)A — HE(MED).

Since H(M) is almost coherent, we only need to show that this map is an isomorphism for any 1.
This boils down (using almost coherence of H'(M)) to show that

HZ(M) XA A{f} — HZ(Spf A{f},MLA) .

for all f € A. Now recall that RI'(Spf A{f},MLA) ~ M@ﬁA{f} for any f € A. Using that
M € Dgyeon(A), Agyy is flat over A, and that almost coherent complexes are derived complete by
Lemma 2.12.8, we conclude that the natural map

is an isomorphism finishing the proof. ([l

Corollary 4.8.14. Let X = Spf A be an affine topologically finitely presented formal R-scheme
for R as in the Setup 4.5.1. Suppose that M € D(A) has almost zero cohomology modules. Then
HI(MPTA) is an almost zero, adically quasi-coherent Ox-module for all integer i. In particular,
(=)FA induces a functor (=) : Dgeon(A)® = Daeon (X).

Proof. This follows directly from the observation that any almost zero A-modules is almost coherent
and the formula H!(M)? ~ H(M%?) established in Lemma 4.8.13. O

Theorem 4.8.15. Let X = Spf A be an affine topologically finitely presented formal R-scheme for
R as in the Setup 4.5.1. Then the functor RI'(X, —): Dyc acon(X) = Dacon(A) is t-exact equivalence
of triangulated categories with the pseudo-inverse (—)4

Proof. Lemma 4.8.11 implies that RI'(X, —) induces the functor D qeon(X) = Dgcon(A) and that
this functor is t-exact. Lemma 4.8.12 and Theorem 4.8.6 ensures that it is sufficient to show that
(—)FA sends Dgeon(A) to Dyc.acon(X), this follows from Lemma 4.8.13. d

Now we can pass to the almost categories using Remark 4.8.10 to get the almost version of
Theorem 4.8.15.

Corollary 4.8.16. Let X = Spf A be an affine topologically finitely presented formal R-scheme
for R as in the Setup 4.5.1. Then the functor RI'(X, —): Dgcon(X)® — Dyeon(A)? is a t-exact
equivalence of triangulated categories with the pseudo-inverse (—)4
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4.9. Formal Schemes. Basic Functors on the Derived Categories of 0%-modules. We
discuss the derived analogue of the results in Section 4.6. We show that the derived completion,
derived tensor product, derived pullback, and derived almost Hom functors preserve complexes
with almost coherent cohomology sheaves under certain conditions. For the rest of the section, we
fix a ring R as in the Setup 4.5.1.

We start with the completion functor. We recall that we have defined the morphism of locally
ringed spaces ¢: X — X for any R-scheme X. If X islocally finitely presented over R or X = Spec A

for a topologically finitely presented R-algebra A, then c¢ is a flat morphism as was shown in
Lemma 4.6.3 and Corollary 4.6.4.

Lemma 4.9.1. Let X = Spec A be an affine R-scheme for R as in the Setup 4.5.1. Suppose that
A is either finitely presented or topologically finitely presented over R. Suppose M € Dgeop(A).
Then M ~ Le*(M).

— o~

Proof. First of all, we show that Le* (M) € Dge qcon(X). Indeed, the functor ¢* is exact as c is flat.
Thus, Lemma 4.6.3 guarantees that we have a sequence of isomorphisms

3¢ (Le* (M) ) = (1 (M) == (1 (20)
In particular, Theorem 4.8.6 ensures that the natural morphism

M ~ RI(X, M) — RI(X,Lc* (M))

A

induces the morphism M4 — Lc*(M ). As c¢* is exact, Lemma 4.8.13 implies that it is sufficient
to show that the natural map

HI(M)® - ¢* (i (M)
is an isomorphism for all 4. This follows from Lemma 4.6.3. ]

Corollary 4.9.2. Let X be a locally finitely presented R-scheme for R as in the Setup 4.5.1. Then

Lc® induces functors Le*: Dy, ., (X) = Dy, o (X) (resp. Le*: Dy, (X)* — Dy, (X)?) for
any * € {“”, — b, +}.

Proof. The claim is local, so it suffices to assume that X = Spec A. Then it follows from exactness
of ¢* and Lemma 4.9.1. O

Lemma 4.9.3. Let §: X — 2) be a morphism of locally finitely presented formal R-scheme for R
as in the Setup 4.5.1.

(1) Suppose that X = Spf B, Q) = Spf A are affine formal R-schemes. Then there is a functorial
isomorphism

for any M € Dgeon(A).

(2) Suppose that X = Spf B, Q) = Spf A are affine formal R-schemes. Then there is a functorial
isomorphism
Lf* (Ma,LA) ~ (M® ® 4a Ba)LA
for any M? € Dgeon(A).
(3) The functor Lf* carries D_, .., (9) to D, .., (X).

(4) The functor L§* carries D__,(9)* to D__, (%)

acoh
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Proof. The proof is similar to Lemma 4.6.5. We use Lemma 4.9.1 and Lemma 4.8.13 to reduce to
the analogous algebraic fact that was already proven in Lemma 4.2.3. (|

Lemma 4.9.4. Let X be a locally topologically finitely presented formal R-scheme for R as in the
Setup 4.5.1.

(1) Suppose that X = Spf A is affine. Then there is a functorial isomorphism
MLA ®éx NLA ~ (M ®£4/ N)LA
for any M, N € Dgcon(A).
(2) Suppose that X = Spf A is affine. Then there is a functorial isomorphism

Ma,LA ®é% Na7LA ~ (Ma ®ﬁa Na)LA
for any M, N® € Dgeon(A)*.
(3) Let F, G€ D, .u(X). Then F®F G e D, ,(%).

qc,acoh qc,acoh
(4) Let J%, G* € D,,,;,(X)*. Then T @5, §* € D, (X)7.
Proof. Similarly to Lemma 4.9.3, we use Lemma 4.9.1 and Lemma 4.8.13 to reduce to the analogous
algebraic fact that was already proven in Lemma 4.2.4. O

Now we discuss the Raldomy, (—,—) functor. Our strategy of showing that RalHom(—,—)
preserves almost coherent complexes will be slightly different from the schematic case. The main
technical problem is to define the map RalHom 4o (M®, N®)%4 — RalHoms (M®EA NLAY in the
affine case.

The main issue is that we do not know if (—)“? is a left adjoint to the functor of global section
on the whole category D(X); we only know that it becomes a pseudo-inverse to RI'(X, —) after
restriction to “Dg.(X)”. However, the complex RHomgq (M LA NLAY itself does not usually lie
inside “Dy.(X)”. To overcome this issue, we will show that

m @ RHomy, (MLA NLA)
(4).

Since “Dg.(X)” was defined in a bit abstract way, it is probably the easiest way to show that
m @ RHom, (MLA NLAY actually lies in Dye geon(X). That is sufficient by Lemma 4.8.12.

does lie in “Dg.(X)” for M € D_

acoh

(A) and N € D

acoh

Lemma 4.9.5. Let X = Spf A be a topologically finitely presented formal R-scheme for R as in
the Setup 4.5.1. Let M, N € Modf’if(’h there are natural almost isomorphisms

Ext?y (M, N)* & &zt (M®, N*)
for all integer p.

Proof. We recall that 8$tgx(M AN A) is canonically isomorphic to sheafification of the presheaf
p A A
U EXtOu(M lo, N2 |y) -

In particular, there is a canonical map Ext’f936 (M2, N2) — T(X, Sxt%x(MA,NA)). It induces the
morphism

Extpy (M®, N*)* — &t} (M* N%) . (4.7)
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Now we note that the classical (—)? functor and the derived version coincide on almost coherent
modules by Lemma 4.8.13. Hence, the equivalence “Dg.(¥X)” ~ D¢omp(A,I) coming from Theo-
rem 4.8.6 and Lemma 4.8.13 ensure that Extg (M2, N%) ~ Ext?, (M, N). So the map (4.7) becomes
the map

Extly (M, N)* — Eatly (M* N*) .
We note that Exti(M , N) is an almost coherent A-module by Proposition 2.6.19. Using that almost
coherent modules are complete, we conclude that it suffices to show that

Extl) (M, N) ®a Ay = Extlpe o (M%lspe gy Nlspr agj)

is an almost isomorphism. Using Lemma 4.6.5 and the equivalence “Dgc(X)” =~ Deomp(A, ) as
above, we see that the map above becomes the canonical map

EXtQ(M, N) XA A{f} — Exti{f} (M XA A{f}, N ®4 A{f}) .
Finally, this map is an almost isomorphism by Proposition 2.9.12. ]

Corollary 4.9.6. Let X be a locally topologically finitely presented formal R-scheme for R as in
the Setup 4.5.1. Then

m® Rj{ﬂ(‘)x (95’ 9) € D;::,acoh(%)
(X),and G € D} . (X).

qc,acoh

for Fe D

qc,acoh

Proof. The claim is local, so we can assume that X = Spf A. Using the Ext-spectral sequence
and Lemma 4.5.18 to reduce to the case Fand JF in Modqxc’awh. Then Theorem 4.6.2 ensures that
F = M" and § = N2 for some M, N € Mod%*". Then Lemma 4.9.5 guarantees that

H? (RHomg (F,G)) ~* Exth (M, N)~.
In other words,
m @ H? (RHomy (¥, 9)) ~ m @ Extl) (M, N)* .

Now Exti(M ,N)? is an adically quasi-coherent, almost coherent ©x-module by Proposition 2.6.19
and Lemma 4.6.1. So Lemma 4.5.10 guarantees that mQExt?) (M, N )2 is also adically quasi-coherent
and almost coherent. Therefore, m @ RHom (F,9) € D, (%). O

qc,acoh

Lemma 4.9.7. Let X be a locally topologically finitely presented formal R-scheme for R as in the
Setup 4.5.1.

(1) Suppose X = Spf A is affine. Then there is a functorial isomorphism
RalHom 40 (M®, N)** — RalHomqq (M“F4, NF2)
for M € D

acoh

(A)* and N € D

acoh(A)a'
(2) Suppose F* € D} ,(X)* and §* € D, ,(X) are almost coherent O%-modules. Then

Ralﬂfomoax(’f’l, G e D . (X)*.

acoh

Proof. We start with (1). Proposition 3.5.8 implies the map
(m © RHomg, (M?, N*))* — RalHomp, (M**, N*2)
is an isomorphism in D(X)®. Similarly, the map

(m ® RHomy (M, N)*)® — RalHom 4 (M?, N®)4
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is an isomorphism by Lemma 4.9.5. Thus it suffices to construct a functorial isomorphism
m @ RHomyu (M, N)** — m @ RHomy, (M"*, N*) .
Now Lemma 4.8.13 and Corollary 4.9.6 guarantee that
m @ RHomg  (M", N**) € Dy geon(X).
Proposition 2.6.19, Lemma 4.6.1, and Lemma 4.5.10 also guarantee that
m ® RHom (M, N)* € Dye aeon(X).

Thus, Theorem 4.8.6 ensures that in order to construct the desired isomorphism it suffices to do
it after applying RI'(X, —). Projection Formula (Theorem 3.3.6) and the definition of the (—)¥A-
functor provide us with functorial isomorphisms

RT (35 # ® RHom (M, N)LA> ~ f © RHoma (M, N)

R <3€ @ RHomgy, (M4, NLA)> ~ @ RD (35 RHom, (M2, NLA))
~ m ® RHomg, (ML4, NL4)
~m ® RHomy4 (M, N)
where the last isomorphism uses equivalence from Theorem 4.8.6. Thus, we see
RD (3€ 1 © RHom (M, N)LA> ~ RT (36  ® Romg (M2, NLA)) .
As a consequence, we have a functorial isomorhism
M ® RHom (M, N)* = @ @ RHom (MLA, NLA> .
This induces the desired isomorphism
RalHom 40 (M, N)** % RalHomq, (M“’LA, N“’LA) .
(2) is an easy consequence of (1), Proposition 2.6.19, and Corollary 4.8.14. O

5. COHOMOLOGICAL PROPERTIES OF ALMOST COHERENT SHEAVES

5.1. Almost Proper Mapping Theorem. The main goal of this section is to prove the “Almost
Proper Mapping Theorem” both in setup of both “nice” schemes and “nice” formal schemes. The
theorem roughly says the derived pushforward of an almost coherent O x-module along a (topolog-
ically) finitely presented proper map is almost coherent.

The idea of the proof is rather easy: we “approximate” an almost finitely presented Ox-module
by finitely presented using Corollary 4.3.5 and then the usual Proper Mapping Theorem. However,
there is a subtlety that the usual Proper Mapping Theorem is usually proven only for a (locally)
noetherian base, and we are really interested in non-noetherian situation. So we use a more general
version (in so-called “universally coherent” case) of the Proper Mapping Theorem from the book
[FK18].

Definition 5.1.1. We say that a scheme Y is universally coherent if any scheme X that is locally
of finite presentation over Y is coherent (i.e. the structure sheaf Ox is coherent).

Theorem 5.1.2 (Proper Mapping Theorem). [FKK18, Theorem 1.8.1.3] Let Y be a universally
coherent quasi-compact scheme, and f : X — Y a proper morphism of finite presentation. Then
the functor Rf, sends D’ , (X) to D, (Y) for any * € {7, +, —,b}.

coh
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We want to generalize this theorem to the “almost world”. So we pick a ring R and a fixed ideal
m C R such that m> = m and m = m ®p m is R-flat. In this section, we always consider almost
mathematics with respect to this ideal.

Theorem 5.1.3 (Almost Proper Mapping Theorem). Let Y be a universally coherent quasi-
compact R-scheme, and let f: X — Y be a proper, finitely presented morphism. Then

e The functor Rf, sends D (X) to D (Y) for any * € {“ 7, +, —, b}

qc,acoh qc,acoh

e The functor Rf, sends D* , (X)® to D* ,(Y)* for any x € {“”,+, —, b}.

acoh acoh
e The functor Rf, sends D}, (X) to D}, (Y).
o IfY has finite Krull dimension, then R f, sends D*_, (X)toD? . (Y) forany * € {“”, 4+, —,b}.

Lemma 5.1.4. Let Y be a quasi-compact scheme of finite Krull dimension, and let f : X — Y
be a finite type, quasi-separated morphism. Then X has finite Krull dimension, and f, is of finite
cohomological dimension on Mod .

Proof. First of all, we show that X has finite Krull dimension. Indeed, the morphism f: X — Y
is quasi-compact, therefore X is quasi-compact. Then it suffices to show that locally X has finite
Krull dimension. So we can assume that X = Spec B, Y = Spec A, and the map is given by a finite
type morphism A — B. In that situation we have dimY = dim A and dim X = dim B. Thus,
it is enough to show that the Krull dimension of a finite type A-algebra is finite. This readily
reduces the question to the case of a polynomial algebra dim A[X}, ..., X,]. Now [AMG9, Chapter
11, Exercise 6] implies that dim A[X7, ..., X,] < dim A + 2n.

Now we prove that f, has finite cohomological dimension. We note that it suffices to show that
there is an integer N such that for any open affine U C Y the cohomology groups H' (X, F) vanish
for ¢ > N and any Ox,,-module J. We recall that f is quasi-separated, so Xy is quasi-compact,
quasi-separated and dim Xy < dim X for any open U C X. Therefore, it is sufficient to show that
on any spectral space X we have HY(X,F) = 0 for i > dim X and F € Ab(X). This is proven in
[Sch92, Corollary 4.6] (another reference is [Sta2l, Tag 0A3G]). Thus we see that N = dim X does
the job. O

Proof of Theorem 5.1.5. Step 0. Reduction to the case of bounded below derived categories: We
note that f, always has bounded cohomological dimension on ModS;. Indeed, for any F € ModS;
on a separated scheme X, we can compute H'(X, F) by the alternating Cech complex for some finite
covering of X by affines. Therefore, if X can be covered by N affines, the functor f, restricted to
Mod(j(C has cohomological dimension at most V.

Now we use [Sta2l, Tag 0D6U] (alternatively, one can use [Lim19, Lemma 3.4]) to reduce the
question of proving the claim for any F € D qcon(X) to the question of proving the claim for all its
truncations 72¢F. In particular, we can assume that F € D;awh(X). The case 3 € D}, (X)*
can be shown similarly. Actually, Proposition 3.5.23 and the observation that I € Dy gcon(X)
imply that the results for D}, .., (X) and D7, (X)® are equivalent.

acoh
The same argument also works for D:COh(X ) provided that X, Y and f, has finite cohomological
dimension. Lemma 5.1.4 and [Sta2l, Tag 0A3G] say that it holds whenever Y has finite Krull

dimension.

Step 1. Reduction to the case quasi-coherent almost coherent sheaves: Using the Projection For-
mula (Lemma 3.3.6) (resp. Proposition 3.5.23), we see that in order to show R f, sends DT (X)

acoh
to Df . (Y) (resp. DI  (X)® to D} ,(Y)%) it is sufficient to show the analogous result for


https://stacks.math.columbia.edu/tag/0A3G
https://stacks.math.columbia.edu/tag/0D6U
https://stacks.math.columbia.edu/tag/0A3G
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+

qe.acon(X)- Moreover, we can use the spectral sequence
K

EL7 = RP£.309(F) = RV, (9)

to reduce the claim to the fact that higher derived pushforwards of a quasi-coherent, almost coher-
ent sheaf are quasi-coherent, almost coherent.

Step 2. The case of a quasi-coherent, almost coherent Ox-module F: We show that R'f,F is
a quasi-coherent, almost coherent Oy-module for any quasi-coherent, almost coherent O x-module
F and any i. First of all, we note that R'f.JF is quasi-coherent as higher pushforwards along
quasi-compact, quasi-separated morphisms preserve quasi-coherence.

Now we show almost coherence of R’ f,J. Note that it is sufficient to show that R’f,J is almost
finitely presented as Y is a coherent scheme (this follows from Lemma 4.1.15 and Lemma 4.1.16).
We choose some finitely generated ideal mg C m and another finitely generated ideal m; C m
such that my C m?. Then we use Corollary 4.3.5 to find a finitely presented O x-module § and a
morphism

p:9—=>F
such that ker(y) and Coker(y) are annihilated by m;. We define O x-modules
K :=kerp, M :=1Imep and Q := Coker ¢,
so we have two short exact sequences

0-K—-G->M—=0
0O M—-F—=9—0

with sheaves KX and Q killed by m;. This easily shows that the natural homomorphisms

have kernels and cokernels annihilated by m?. Since mg C m? we see that mg(ker R'f.(¢)) = 0

and mo(Coker R'f,(¢)) = 0. Moreover, we know that R’f.§G is a finitely presented Oy-module
by Theorem 5.1.2 (G is a coherent Ox-module since X is a coherent scheme). Therefore we use
Corollary 4.3.5 to conclude that R?f,J is an almost finitely presented Oy-module for any i > 0.
And this implies the almost coherence of R’ f,J as explained above. g

Before we go to the formal version of this result, we need to establish a slightly more precise
version of the usual Proper Mapping Theorem for formal schemes than the one in [FK18].

Theorem 5.1.5 (Proper Mapping Theorem). Let R be as in Set-up 4.5.1, A a topologically finitely
presented R-algebra, f: X — Spf A a topologically finitely presented, proper morphism, and F a
coherent Ox-module. Then H*(X, F) are coherent A-modules for all i > 0, and the natural morphism

H'(X,9)% = R'f. ()
is an isomorphism for any ¢ > 0.

Proof. Firstly, we use [FKK18, Theorem 1.11.1.2] to conclude that Rf.F € D},
Theorem 4.8.15 implies that M = RI'(Spf A4, Rf. ) lies in D], (A), and
M ~ R§, 7.

(Spf A). Therefore,

Moreover, Lemma 4.8.13 implies that the natural map

H'(X,5)% ~ H(M)? = R'}.F
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is an isomorphism. Finally, we conclude that
(X, F) ~ H° (36 (X, &")A) ~ HO(%, R'f,7)
must be coherent because Rif*.’f is coherent. O

Theorem 5.1.6 (Almost Proper Mapping Theorem). Let 2) be a topologically finitely presented
formal R-scheme for R as in the Setup 4.5.1. And let f : X — ) be a proper, topologically finitely
presented morphism. Then

e The functor R, sends Dy ,..;,(X) to D, .., () for any x € {* 7,4+, —,b}.

e The functor Rf. sends D’ _, (X)* to D_, () for any * € {“ 7,4+, —, b}.

acoh acoh

e The functor Rf, sends D}, (X) to D, ().

o If Yy := 9 Xgpr r (Spec R/w) has finite Krull dimension, then Rf, sends D} .
D* () for any x € {7, +, —,b}.
Moreover, if 8) = Spf A is an affine scheme and JF is an adically quasi-coherent, almost coherent
Ox-module, then H*(X, F) is almost coherent over A, and the natural map H"(%X,F)* — R, T is
an isomorphism of Og-modules for n > 0.

(%) to

Lemma 5.1.7. Let ) be a quasi-compact adic formal R-scheme, and let f: X — %) be a topologi-
cally finite type, quasi-separated morphism. Suppose that the reduction Yy = 2) xspf r (Spec R/w)
(or equivalently the “special fiber” %) = ) Xgspr g Spec R/Rad(w)) is of finite Krull dimension.
Then X has finite Krull dimension, and f, is of finite cohomological dimension on Mody.

Proof. The proof is identical to Lemma 5.1.4 once we notice that the underlying topological spaces
of 9, Yy and ) are canonically identified. g

Also, before going to the proof of Theorem 5.1.6 we need to establish one preliminary lemma.

Lemma 5.1.8. Let f: X — ) = Spf A be a morphism as in Theorem 5.1.6 with affine ), and
let ¥ € Mody be an adically quasi-coherent, almost coherent sheaf. Then R%f,F is an adically
quasi-coherent, almost coherent Og-module if

(1) the A-module HY(X,F) is almost coherent for any g > 0,
(2) for any g € A, the canonical map
HY(X,F) @4 Agy = HY(Xy, ),
where 4 = Spf A;sy — 2 = Spf A, is an isomorphism for any ¢ > 0.
Proof. Consider an A-module M := HY(X,J) that is almost coherent by hypothesis ((1)). So

Lemma 2.12.7 guarantees that M is I-adically complete, and so M? is an adically quasi-coherent,
almost coherent Ox-module. Now note that R?f,F is the sheafification of the presheaf

U= HU(Xy, F)
Thus there is a canonical map M — H°(Q), R%}.F) that induces the morphism
M2 — RY.F
The second hypothesis together with Lemma 2.8.1 and Lemma 2.12.7 ensures this map is an iso-
morphism on stalks (as the sheafification process preserves stalks). Therefore, M A 5 RI,T is

an isomorphism of Ox-modules. In particular, R?f,F is adically quasi-coherent and almost coher-
ent. ([l
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Proof of Theorem 5.1.6. We use the same reduction as in the proof of Theorem 5.1.3 to reduce to
the situation of an adically quasi-coherent, almost coherent Ox-module F. Moreover, the statement
is local on ¥), so we can assume that ) = Spf A is affine.

Now we show that both conditions in Lemma 5.1.8 are satisfied in our situation.

Step 1: HY(X,F) is almost coherent for every ¢ > 0. Fix a finitely generated ideal myp C m and

another finitely generated ideal m; C m such that my C m?.

Theorem 4.7.6 guarantees that there is a coherent Ox-module Gy, and a morphism ¢n, : Gm, = F
such that its kernel and cokernel are annihilated by m;. Then it is easy to see that the natural
morphism

HY(X, Gm,) — HY(X,F)

has kernel annihilated by m? and cokernel annihilated by m;. In particular, both kernel and cokernel
are annihilated by mg. Since my was an arbitrary finitely generated sub-ideal of m, it suffices to
show that HY(X, G, ) are coherent A-modules for any ¢ > 0. This follows from Theorem 5.1.5.

Step 2: canonical maps HY(X,F) @4 Ayyy — HI(Xy,F) are isomorphism for any g € A, ¢ > 0,
and 4l = Spf Aggy. Lemma 4.7.5 guarantees that F admits an FP-approximation ¢: § — . Using
Lemma 4.5.14, we get short exact sequences of adically quasi-coherent sheaves

0->XK—=>G—->M=—=0,

0—-M—->F—=9—0,
where K and Q are annihilated by I™*! for some n > 0. So X and Q can be identified with
quasi-coherent sheaves on X, := X Xgpt 4 Spec A/I n+1 Therefore, the natural morphisms

HI(X,K) @4 Aggy = HI(X0, K) @4 o (A/T") g — HY Xy, K,

HY(X,0Q) @4 Aggy ~ HY(X,Q) @ /pner (A/ Ty — HI(Xyn, Q)
are isomorphisms for ¢ > 0. The morphism
Hq(%, 9) & A A{g} — Hq(%u, 9) (51)

is an isomorphism by Theorem 5.1.5. In particular, the map (5.1) must be an isomorphism.

Finally, the five-lemma implies that the morphisms
Hq(}:, M) &A A{g} — Hq(:fu, M)

must be isomorphisms for all ¢ > 0 because analogous maps for X and § are isomorphisms (and
Aygy is flat over A). Applying the five-lemma again, we conclude that the morphisms

HY(X,F) ®4 A{g} — HY(Xy, )

must be isomorphisms for all ¢ > 0 because analogous maps for M and G are isomorphisms (and
Aygy is flat over A). O

5.2. Characterization of Quasi-Coherent, Almost Coherent Complexes. The main goal of
this Section is to show an almost analogue of [Sta21, Tag 0CSI]. This gives a useful characterization
of objects in DZC wcon(X) on a separated, finitely presented R-scheme for a universally coherent R.
This will be crucially used in our proof of the almost version of the Formal GAGA Theorem 5.3.2.

Our proof is very close to the proof of [Sta21, Tag 0CSI], but we need to make certain adjustments

to make the arguments work in the almost coherent setting.


https://stacks.math.columbia.edu/tag/0CSI
https://stacks.math.columbia.edu/tag/0CSI
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Theorem 5.2.1. Let R be an universally coherent ring with an ideal m such that m? = m and
m :=m®@pm is flat. Suppose that F € Dy.(PY) an element such that RHompn (P, F) € D, (R)
for P =&Y ,0(i). Then FeD__ . (PY).

qc,acoh

Proof. We follow the ideas of [Sta2l, Tag 0CSG]|. Denote the dg algebra RHomx (P, P) by S.
A computation of cohomology groups of line bundles on P% implies that S is a “discrete” non-
commutative algebra that is finite and flat over R. [Sta2l, Tag 0BQU]*® guarantees that the
functor
—®@%P: D(S) — Dy (PY)
is an equivalence of categories, and the map in the other direction is given by
RHom(P, —): Dy (PY) — D(S)

So if we define M := RHom(P,F) € D(S), our assumptions imply that that the image of M in
D(R) lands inside D, (R). We need to show that this assumption guarantees that F ~ M ®% P

acoh

. . i N .
lives in D qe.ac Oh(P ). Moreover, using the convergence spectral sequence

EY? = HP(HI(M) ®% P) = HPTI(M ®F P)

shows that it is sufficient to assume that M is just an S-module. Then Lemma 2.8.4 implies that
for any finitely generated ideal mg C m, there is a finitely presented right S-module N with a
morphism f: N — M such that ker f and Coker f are annihilated by mg. The universal coherence

of R and [Sta21, Tag 0CSF] imply that N ®% P € D, won(PY). Now we note that the functor

— @5 P: D(S) = Dy (PV)
is R-linear, so the standard argument shows that the cone of the morphism
fREP NRYP - MLP

has cohomology sheaves anihillated by mgOx. Finally, Lemma 2.5.7 says that M ®gﬁ P is in
D (PY). O

gc,acoh

Lemma 5.2.2. Let R be a universally coherent ring, and let X be a scheme separated and of finite
presentation over R. Let K € Dy (X). f RI'(X, E ®(I5X K)isin D__,(R) for every £ € D_ , (X),
then K € D_ (X).

qc,acoh

Proof. We follow the proof of [Sta2l, Tag 0CSL]. The condition that K € D__ (X) is local on

qc,acoh
X as X is quasi-compact. Therefore, we can prove it locally around each point . We use [Sta2l,

Tag 0CSJ] to find
e An open subset U C X containing .

e An open subset V C P’%.

A closed subset Z C X x g P% with a point z € Z lying over x
e An object E € D_, (X xgPp).

with a lot of properties listed in the cited lemma. Even though the notations are pretty heavy, the
only real properties of these object that we will use are that x € U and

Re.(Lp'K & B)|y = R(U - V).(K]y)

28Note that they have slightly different notations for R and S
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The last formula is proven in [Sta2l, Tag 0CSK] and we refer to this lemma for a discussion of the
morphism U — V that turns out to be a finitely presented closed immersion.

That being said, we note that the argument above shows that it is sufficient to show that K| is
almost coherent for each such U. Moreover, the formula Rg.(Lp*K @ E)|y = R(U — V).(K]|v),
the fact that U — V is a finitely presented closed immersion and Lemma 2.8.4 imply that it is
sufficient to show that R(U — V).(K|y) = Rg.(Lp*K @Y E)|y lies in D (V). In particular,

qc,acoh
it is enough to show that Rq,(Lp*K @Y E) € D ucon(PR). The key is that we can check that
condition using Theorem 5.2.1.

We define a sheaf P := @ ; Opn (i) and we compute
RHompn (P, Rg. (Lp*K ®" E)) = RT(P",Rq.(Lp*K @" E) g, V)
= RI(P",R¢. (Lp*K @Y E @ Lg*PV))
=RI(X xg P}, Lp*K @Y E @Y Lg*PY)
= RI(X,Rp.(Lp*K @ E @Y Lg*PV))
=RI(X, K @§  Rp.(E @ Lg*PY))

where the second and fifth equality come from the projection formula [Sta21, Tag 08EU]. Finally,
we note that the Proper Mapping Theorem 5.1.2 implies that Rp,(E @ Lg*PY) € D_ , (X), so the

assumption says that
RHompr (P, Rg, (Lp*K @" E)) = RI'(X, K ®§, Rp.(E®"L¢*P")) € D, (R)

Now Theorem 5.2.1 finishes the proof. ([l

—~ —~ —~

Theorem 5.2.3. Let R be a universally coherent ring, and let X be a separated, finitely presented
R-scheme. Let & € D_.(X) be an object such that RHomx (P, F) € D ,,(R) for any P € Perf(X),

acoh

then ¥ € D_ (X). Analogously, if RHomy (P,F) € D® (R) for any P € Perf(X), then

qc,acoh acoh

FeDb (X).

qc,acoh

Proof. Once we have have Lemma 5.2.2 and the equality RHomy (P, F) = RI'(X, PV ®(19‘X F), the
first part of the Theorem is absolutely analogous to [Sta21, Tag 0CSH]. The second part now follows
directly from [Sta2l, Tag 09IS] and [BZNP17, Lemma 3.0.14]. O

5.3. The GAGA Theorem. The main goal of this section is to prove the formal GAGA Theorem
for almost coherent sheaves. It roughly says that any adically quasi-coherent, almost coherent sheaf
on a completion of a proper, finitely presented scheme admits an essentially unique algebraization,
and the same holds for morphisms of those sheaves.

We start by recalling the statement of the classical formal GAGA Theorem. We start with a
proper A-scheme for some complete adic noetherian ring A with the ideal of definition m. Then
we consider the m-adic completion X as a formal scheme over Spf A. It comes with the natural
morphism c¢: X — X of locally ringed spaces that induces a functor

c¢*: Cohy — Cohy

The GAGA Theorem says that it is an equivalence of categories. Let us say few words about the
“classical” proof of this theorem. There are essentially three independent steps in the proof: the
first one is to show that the morphism c is flat; the second one is to show that the functor ¢* induces
an isomorphism

¢ H(X,F) — H(%, c'F)
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for any any F € Cohx and any integer i. And the last one is to prove that any coherent sheaf
G € Cohpny admits a surjection of the form @, O(n;)"™* — §. Though the first two steps generalizes
to our Setup, there is no chance to have any analogue of the last statement. The reason is easy:
existence of such a surjection would automatically imply that the sheaf G is of finite type, however
almost coherent sheaves are usually not of finite type.

This issue suggests that we should take another approach to GAGA Theorems recently developed
by J.Hall in his paper [[all8]. The main advantage of this approach is that it firstly constructs a
candidate for the algebraization, and only then he proves that this candidate works.

We start with the discussion of the GAGA functor. In what follows, we assume that R is a
ring from the Setup 4.5.1. We pick a finitely presented R-scheme X, and we consider its I-adic
completion X that is a topologically finitely presented formal R-scheme. The formal scheme X
comes equipped with the canonical morphism of locally ringed spaces

c: (%7 O.‘f) - (Xa OX)
that induces the functor
L : D(X) — D(X)
We now want to check that this functor “preserves” quasi-coherent, almost coherent objects.
That is necessarily even to formulate the GAGA statement.

Lemma 5.3.1. Let R be a ring as in the Setup 4.5.1, A a topologically finitely presented R-algebra,
and X a finitely presented A-scheme. Then the morphism c is flat, and the funtor ¢*: Modx —
Mody sends (quasi-coherent and) almost coherent sheaves to (adically quasi-coherent and) almost
coherent sheaves. In particular, it induces functors

Lc*: X) o Do (%)

*
: qc,acoh( qc,acoh

for any x € {“”7,+,—,b}.

Proof. The flatness assertion is just [FIK18, Proposition 1.1.4.7 (2)]. Flatness of ¢ implies that

it suffices to show that ¢*(G) is adically quasi-coherent, almost coherent Ox-module for a quasi-
coherent, almost coherent Ox-module G. This claim is Zariski-local on X. Thus we can assume

that X = Spec A is affine, so G ~ M for some almost finitely presented A-module M. This case is
done in Lemma 4.6.3. (|

Theorem 5.3.2. Let R be a ring as in the Setup 4.5.1, A a topologically finitely presented R-
algebra, and X a finitely presented, proper A-scheme. Then the functor

Lc*: D, oon(X) = DF, o (%)

: qc,acoh qc,acoh

induces an equivalence of categories for x € {“” +, — b}.

Corollary 5.3.3. Let R, A and X be as in Theorem 5.3.2. Then the functor
L™t Dy (X)* = Doy (X)°

acoh
induces an equivalence of categories for x € {“” +, — b}.
Corollary 5.3.4. Let R, A, and X be as in Theorem 5.3.2, and let K € Dy qcon(X). Then the
natural map
fr: RIN(X,K) — RI'(X, LK)

is an isomorphism. Moreover, the map Sk is an almost isomorphism for K € D geon(X).
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Proof. Note that the case of K € Dgeon(X) follows from the case of K € Dgycgeon(X) due to
Lemma 3.2.17 and Proposition 3.5.23. So it suffices to prove for K € Dgc geon(X).

Now since we are allowed to replace K with K[i] for any integer i, it suffices to show that
H°(RT(X, K)) ~ Homx (Ox, K) — Homy(Ox, Lc* K) ~ HO(RT(%, L' K)).
This follows from Theorem 5.3.2 and the observation that Oy ~ Lc*Ox. O

We follow Jack Hall’s proof of the GAGA Theorem very closely with according simplifications
due to the flatness of the functor ¢*. As he works entirely in the setting of the pseudo-coherent
objects, and almost coherent sheaves may not be pseudo-coherent, we repeat some arguments in
our setting.

Before going to the proof, we need to define the functor in the other direction. Recall that we
always have a functor

Re.: D(X) —» D(X)

This functor is t-exact as ¢: X — X is topologically just a closed immersion. In particular, it
preserves boundedness of complexes (in any direction). However, that functor usually does not
preserve (almost) coherent objects as can be seen in the example of Re,Ox = ¢,0%. A way to fix
it is to use a “so-called” quasi-coherator functor

RQx: D(X) — Dy (X)
that is defined as the right adjoint to the inclusion ¢: Dy (X) — D(X). It exists by [Sta2l, Tag
O0CROJ. So this allows us to define a functor

Rege: D(X) = Dye(X)
as the composition Rcg. := RQx o Re,.

Combining the adjunctions (Lc*,Re,) and (1, RQx), we conclude that we have a pair of the
adjoint functors:

Lc™: Dyge(X) = D(X) :Rege
That gives us the unit and counit morphisms

n: Id = RegeLe” and €: Le*Rege — 1Id

For future reference, we also note that the adjuntion and the monoidal property of the functor Lc¢*
define a projection morphism

65 G oG, (Reged) = Rege(Le*G @5, F)

for any G € Dy(X) and any F € D(X). Before discussing the actual proof of Theorem 5.3.2, we
need to establish some formal properties of these functors. In particular, we need to verify that the
unit and counit morphisms are isomorphisms in some easy special cases.

Lemma 5.3.5. Let R be a ring as in the Setup 4.5.1, A a topologically finitely presented R-algebra,

and X a finitely presented A-scheme. Then there is an integer N = N(X) such that Rcg. carries
DqgcT,Lacoh(%) to D5V (X) (resp. Dglc’z}coh(%) to Dgcé’n+N} (X)) for any integer n. In particular, the
natural map

TZ‘IRCQCEF — TZ‘I(chCTZQ_NEF)

is an isomorphism for any F € Dy 4con(X) and any integer a.


https://stacks.math.columbia.edu/tag/0CR0
https://stacks.math.columbia.edu/tag/0CR0

124 BOGDAN ZAVYALOV

Proof. We explain the proof that Rey. carries Dqgcna con(X) to DqSC"JrN (X); the case of Dgacz]c op(X) is
similar.

We start the proof by verifying the assumptions of [Sta2l, Tag 0CSA] in our setting. Namely,
we fix an object F € D=" (%) and show that H/(RI'(U, ¢,F)) = 0 for any open affine U ¢ X and

qc,acoh
any ¢ > n. Indeed, we know that the functor c,: Modp, — Mody, is exact as c is topologically

just a closed immersion. Therefore, we see that
H'(RD(U, ¢,5)) = H(RI(U, F)) = H/(U, F|;)

Lemma 4.8.11 implies that Hi (U, F|z) = 0 for any i > n. Moreover, we know that Re.F € D="(X)

as ¢, is exact on Mody and F € DS"(X).
Now we apply [Sta2l, Tag 0CSA] for K = Re, F, a = —oo and b = n to finish the proof of the
first claim in the Lemma. One can check that the proof of that Lemma works well for a = —oo0.

The second claim of the lemma follows from the first claim and the distinguished triangle
TRONTF o F s 720 NG o pRem Nl
Namely, we apply the exact functor Rcgy. to this distinguished triangle to get that
Rege (15N 71F) = RegeF = Rege (1747 NF) — Rege (7547 V1F1))

is a distinguished triangle in Dg.(X) and that Reg.(r=*"V1F) € D5*!(X). This implies that
the map
T7RegeF — 77 Rege (r7°NVT)

is an isomorphism. [l

Lemma 5.3.6. Let X be as in Theorem 5.3.2, F € D__ ., (X) and G € D, (X). Suppose that for

each i there is n; such that I"H*(F) = 0 and I"*H*(G) = 0. Then the natural morphisms 7¢ and
eF are isomorphisms.

Proof. We prove the claim only for F as the other claim is similar.

Reduction to the case I € ngacoh(%): First of all, we note that it suffices to show that the
natural maps

77F = 77Lc" Reg I
.

is an isomorphism for any a. Moreover, we note that t-exactness of L¢* and Lemma 5.3.5 imply
that there is an integer N such that the natural map TZ“LC*chCTf — TZ“LC*chCTZ“_NCF is an
isomorphism for any integer a. In particular, we have a commutative diagram

rze-Ng Lc*chc(TZ“_NH’)

| |

720F —— 129Lc" Reged ~ 72°Le Reger >N T

where the vertical maps induce isomorphisms in degree > a. Therefore, it suffices to prove the
claim for 72%"NF. So we may and do assume that JF is bounded.

Proof for a bounded F: The case of a bounded F easily reduces to the case of an adically quasi-
coherent, almost coherent Ox-module concentrated in degree 0. In that situation we have an adically
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quasi-coherent module F such that I¥"1F = 0 for some k. That implies that F = ik« T = Rig Ty
for the closed immersion ix: X — X. Now it is straightforward to see that the canonical map

Rik7*3rk — LC*chc(Rik7*?]€)
is an isomorphism. The key is flatness of ¢ and the observation that Re.(Riy . JF}) is already

quasi-coherent, so the quasi-coherator does nothing in this case. O

The other thing we need to check is that the map 7 g is an isomorphism for § € Perf(X). As
this statement is proven in [Hall8] without any pseudo-coherence assumption on F € D(X), we
just cite it here.

Lemma 5.3.7. If G € Dy(X) and F € D(X), then the natural projection morphism
ngg: G ®(I5X RcyeF — Rege(LG ®(19‘3€ F)
is an isomorphism if G is perfect.
Proof. [Hall8, Lemma 4.3] O

Now we come to the key input ingredient. Even though Recg. is quite abstract and difficult to
compute in practice, it turns out that the Almost Proper Mapping Theorem allows us to check that
this functor sends D_ (X)toD_ (X). That would give us a candidate for the algebraization.

qc,acoh qc,acoh
Lemma 5.3.8. Let R be a ring as in the Setup 4.5.1, A a topologically finitely presented R-
algebra, and X a finitely presented, proper A-scheme. Then Reg. sends DZc,acoh(‘%) to DZc,acoh(X)
for x € {—, b}.

Proof. We prove only the bounded above case as the other one follows from this using Lemma 5.3.5.
We pick any 3 € D_ (X) and we use Theorem 5.2.3 to say that it is sufficient to show that

qc,acoh

RHomy (P,Re,J) € D, , (R) for any perfect complex P € Perf(X). That turns out to be a formal

consequence of the Almost Propper Mapping Theorem 5.1.6. Indeed, we have
RHomy (P, ReyF) = RHomy (Lc*P, F)
= RHomx(Ox, (Lc*P)Y @F, F)
= RI(X,(Lc"P)Y &, F) € D, (R),

where the last formula comes from the fact that derived pullback and derived dual operations

preserve perfect complexes, and for any P € Perf(X) we have P ®é‘x FeD,ae on(X). 0
Finally, we are ready to give a proof of the GAGA Theorem.
Proof of Theorem 5.3.2. Claim 0: It suffices to show the theorem for x = —, i.e. for bounded above

derived categories. Indeed, flatness of ¢* implies that L¢* preserve boundedness (resp. boundedness
above, resp. boundedness below), so it suffices to show that the natural morphisms

ng: G = Reg L™ G
e5: L'ReyeF — F
are isomorphisms for any G € Dyc qcon(X) and F € D geon(X).
We fix N as in Lemma 5.3.5. Then flatness of ¢* and Lemma 5.3.5 guarantee that

Re, L 729G € Dol (X)
L Reg 720 € DIol(x).
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Therefore, we see that 7 is an isomorphism on 3’ for i < a if and only if the same holds for
N,<a—1g. Oince a was arbitrary, we conclude that it suffices to show that ng is an isomorphism for
GeD, (X). Similar argument shows that it suffices to show that 5 is an isomorphism for

qc,acoh
FeD_

Before we formulate the next claim, we need to use the so-called “approximation by perfect

complexes” [Sta21, Tag 08EL] to find some P € Perf(X) such that 72P ~ Ox /I ~ O, and whose

support is equal to Xo. We note that it implies that all cohomology sheaves H!(P) are killed by
some power of I. We also denote its (derived) pullback by P := Lc*P.

qe.acoh (X). So it suffices to prove the theorem for » = —.

Claim 1: 1f G € D ., (X) such that G ®F P ~ 0, then G =~ 0. Similarly, if ¥ € D,
such that ?@é‘x P ~0, then F ~ 0.

qc,acoh (%)

We choose the maximal m (assuming that G % 0)such that H™(G) # 0 Then we see that
H™(G ®I(5X P) >~ H™(G) ®oy Ox, = H™(G)/I. We have (H"™(G)/I)(U) = H™(G)(U)/I ~ 0 on
any open affine U. So Nakayama’s Lemma 2.5.19 implies that H™(G)(U) ~ 0 for any such U.

This contradicts the choice of m. The proof in the formal setup is the same once we notice that
HO(P) = Ox/1.

Claim 2: The map 1 : G — RcgeLic"G is an isomorphism for any G € D, wcoh (X))

Claim 1 implies that it is sufficient to show that the map
eq ®, P: G®E, P — RegLc"G ®g, P (5.2)

is an isomorphism. Recall that the cohomology sheaves of P are killed by some power of . This
property passes to G ®(19‘X P, so we can use Lemma 5.3.6 to get that the map

caer_pi GOF, P = Rege (Le* (G 0, P))
X

is an isomorphism. Now comes the key: we fit the morphism €agk P into the following commutative
X

triangle:

ee®L P
Gk P X RegeLe" G @F, P

€aml
G®OXP\L lﬂP,Lc*G

Reyo(Le* (G ®BX P)) ——— Rege(Le*G ®I(5x Lc*P)

where the bottom horizontal arrow is the isomorphism map induced by the monoidal structure on
Lc*. Moreover, we have already established that the left vertical arrow is an isomorphism, and
right vertical arrow is an isomorphism due to Lemma 5.3.7. That shows that the top horizontal
must be also an isomorphism.

Claim 3: The map e5: Lc*ReygJ — JF is an isomorphism for any F € ch acon(X)-

We use Claim 1 again to say that it is sufficient to show that the map
EF ®Bx Lc™P: Le*Reg T ®(19‘x Lc'P — 9’@{53€ Lc*P

is an isomorphism. But that map fits into the commutative diagram:
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eg@L Le*P
Lc*Rey T ®16% Lop —* ?@é‘x Lc'P

l W;?@B Le*P
x

Lc*(m
Lc* (ReqeF ®F, P) (e7) L Reqe(F @F, Le'P)

where the left vertical morphism is the canonical isomorphism induced by the monoidal structure on
Lc¢*, the bottom morphism is an isomorphism by Lemma 5.3.7, and the right vertical morphism is
an isomorphism by Lemma 5.3.6. This implies that the top horizontal morphism is an isomorphism
and that finishes the proof. O

5.4. The Formal Function Theorem. We derive the Formal Function Theorem for almost co-
herent sheaves from the Formal GAGA theorem in this Section. As an intermediate step, we
compare the natural I-topology (see Definition 5.4.2) on cohomology groups of proper schemes to
the I-adic topology. They turn out to coincide for proper schemes and almost coherent coefficient
sheaves.

For the rest of the section, we fix a ring R as in the Setup 4.5.1 and a finitely presented or
topologically finitely presented R-algebra A.

Remark 5.4.1. Both A and A are also topologically universally adhesive by [FIK18, Proposition
0.8.5.19], and they are (topologically universally) coherent by [FK18, Proposition 0.8.5.23].

For the next definition, we fix a finitely presented A-scheme X and an Ox-module J.
Definition 5.4.2. The natural I-filtration F*H* (X, ) is
F'HY(X,J) == Im (H'(X, I"F) - H'(X, 7))
The natural I-topology on H' (X, F) is the topology induced by the filtration F*H! (X, F).

Lemma 5.4.3. Let X be a finitely presented A-scheme, F an quasi-coherent almost finitely gen-
erated Ox-module, and § C F be a quasi-coherent O x-submodule of F. Then, for any n, there is
m such that I"FNG cC I"G.

Proof. 1t suffices to assume that X is affine, in which case it follows from Lemma 2.12.6. O

Lemma 5.4.4. Let X be a finitely presented A-scheme, F and § quasi-coherent almost finitely
generated O x-modules, and ¢: § — F an O x-linear homomorphism such that ker(¢) and Coker(yp)
are annihilated by I¢ for some integer c. Then, for every i > 0, the natural I-topology on H!(X, F)
coincides with the topology induced by the filtration

FilgH' (X, ¥) = Im(H'(X, I"9) — H'(X, F)).
Proof. Consider the short exact sequences
0-K—=>9—>H—0,
0—-H—-F—=9—0,

where X and Q are annihilated by I¢. The first short exact sequence induced the short exact
sequence
0->XKNI"G—->I"G—>I"H—0
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for any m > 0. Lemma 5.4.3 implies that X N IS C I°K = 0 for large enough m. Therefore, the
natural map I"™G — I"™H is an isomorphism for large enough m. Note that H is almost finitely
generated and quasi-coherent, so we can replace § with J to assume that ¢ is injective.

Now clearly Fil’éHi(X, F) c FFHY(X, ) for every k. So it suffices to show that, for any k, there
m such that F"H (X, ) C FilgHi(X ,F). We consider the short exact sequence

0=6NI"F = I"F - 1"Q = 0.

If m > ¢ we get that GNI™F = [T because 1°Q ~ 0. Now we use Lemma 5.4.3 to conclude there
is m > ¢ such that

I"F =gnI"F CI*G
Therefore, F"H!(X, ) C Fil§H'(X, F). O

Lemma 5.4.5. Let X be a finitely presented A-scheme, F and G quasi-coherent almost finitely
generated O x-modules, and ¢: § — F an O x-linear homomorphism such that ker(¢) and Coker(yp)
are annihilated by I¢ for some integer c. Suppose that the natural I-topology on H'(X,§) is the
I-adic topology. Then the same holds for H!(X, ).

Proof. Clearly, I"H!(X,J) c F*H!(X,J). So it suffices to show that, for every n, there is an m
such that F"H! (X, F) C I"H! (X, F).

The assumption that the natural I-topology on H'(X,G) coincides with the I-adic topology
guarantees that FFHY(X,G) C I"HY(X,§) for large enough k. Pick such k. Lemma 5.4.4 implies
that

F™H!(X,7) C Im(H' (X, I*9) — H (X, T))

for large enough m. So we get, for such m, that
FMH (X, ) C Im (HZ’(X, 1%6) = H (X, :T")) C Im (I"Hi (X, ) — H (X,9)) € I"H (X, )
for a large enough m. O

Theorem 5.4.6. Let X a proper, finitely presented A-scheme, and J a quasi-coherent, almost
coherent O x-module. Then the natural I-topology on H'(X,F) coincides with the I-adic topology
for any ¢ > 0.

Proof. Lemma 4.7.3 guarantees that there is a finitely presented Ox-module § and a morphism
w: § — F such that I°(ker ) = 0 and I¢(Coker ¢) = 0. Lemma 5.4.5 then ensures that it suffices
to prove the claim for §. In this case, the claim follows [FI{18, Proposition 1.8.5.2 and Lemma
0.7.4.3] and Remark 5.4.1. O

We consider a proper, finitely presented A-scheme X, and an almost coherent O x-module F. We
denote the I-adic completion of X by X, so we have a commutative diagram:

¥ — X
lf Jf

Spf (A) —— Spec A

Given this diagram we can consider four different cohomology groups:

—

H'(X,c*F), H(X,F), H(X,F) @4 A, and limH (X, F,).
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All these groups have a natural structure of A\—module, and it is straightforward to construct
functorial in F homomorphisms

—

HI(X,F) 04 A —2 5 HI(X,F)
|2 |+ (5.3)

i

Hi(X,¢*F) —2— lim, H (X, F)
We show that all these morphisms are (almost) isomorphisms.

Theorem 5.4.7. In the notation as above, all the maps ozgr, Bg, 'y};, (bg are almost isomorphisms
for any almost coherent Ox-module F. If F is quasi-coherent, almost coherent, then these maps
are isomorphisms.

Proof. Step 0. Reduction to the case of a quasi-coherent, almost coherent sheaf F: We observe that
Lemma 3.3.2, Lemma 3.2.17 and the fact that limits of two almost isomorphic direct systems are
almost the same allow us to replace ¥ with m ® F to assume that JF is quasi-coherent and almost
coherent.

Step 1. ozg is an isomorphism: This is just a consequence of Lemma 2.12.7 as we established in
Theorem 5.1.3 that H(X,J) is an almost coherent A-module.

Step 2. Bg} is an isomorphism: We note that the assumptions on A imply that the map A — A
is flat by [FK18, Proposition 0.8.218]. Thus the flat base change for quasi-coherent cohomology
groups implies that H (X, J) ®4 A~ HY(X 1 F7). Therefore, we may and do assume that A is
w-adically complete. Then the map H'(X,JF) — H'(X, ¢*F) is an isomorphism by Theorem 5.3.2.

Step 3. aé s an injective: Theorem 5.4.6 and Corollary 5.3.4 imply that the I-adic topology of
H'(X,J) coincides with the natural I-topology. Therefore,
— H{(X,T)

Hi (X, ) ~ i | | .
(X, F) = i L % i) (X, )

Clearly, we have an inclusion
H'(X, )
Im (HY (X, I"t1F) — H{(X, F))

Therefore, we conclude that aig is injective by left exactness of the limit functor.

— HY(Xy, Tn).

Step 4. ’yér 1s surjective: Recall that F ~ limy F because F is adically quasi-coherent. Therefore,
[FK18, Corollary 0.3.2.16] implies that it is sufficient to show that there is a basis of opens B such
that, for every i € B,

H (8, F) =0 for i > 1, and

HO(YU, Fppq) — HO(YU, Fy) is surjective for any k > 0.

Vanishing of the higher cohomology groups of adically quasi-coherent sheaves on affine formal
schemes (see [['I{18, Theorem 1.7.1.1]) implies that one can take B to be the basis consisting of
open affine formal subschemes of X. Therefore, we get that 4 is indeed surjective for any i > 0.

Step 5. o and v are isomorphisms: This follows formally from commutativity of Diagram 5.4
and the previous steps. O
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5.5. Almost Version of Grothendieck Duality. For this section, we fix a universally coherent
ring R with an ideal m such that m := m ®z m is R-flat and m®> = m. Since R is universally
coherent, there is a good theory of f' functor for separated morphisms between finitely presented

R-schemes?”.

Proposition 5.5.1. Let f: X — Y be a separated morphism of finitely presented R-schemes.
Then f' sends Dt (Y) to DT (X).

qc,acoh qc,acoh

Proof. The only thing that we need to check here is that f' preserves almost coherence of coho-
mology sheaves. This statement is local, so we can assume that both X and Y are affine. Then
we can choose a closed embedding X — AY. — Y. So, it suffices to prove the claim for a finitely
presented closed immersion and for the morphism A} — Y.

In the case f: X — Y a finitely presented closed immersion, we know that
(F) = R¥omy (f.0x, F)

for any F € D:{C(Y). Since Y is a coherent scheme and f is finitely presented, we conclude that
f+Ox is an almost coherent Oy-module. Therefore, f'(F) = RFHomy (f.O0x,F) € D e acon(X) by
Corollary 4.4.11.

Now we consider the case of a relative affine space f: X = A} — Y. In this case, the formula
for f'is f1(F) ~ Lf*T ®F, Q% y[n]. Then Lf*(F) € DJ, ., (X) by Lemma 4.4.7(4), and so

qc,acoh
Lf*F ®éx Qr /Y[n] € D;qacoh(X ) because '}, Jy s (non-canonically) isomorphic to Ox. O

Now we use Proposition 5.5.1 to define the almost version of the upper shriek functor:

Definition 5.5.2. Let f: X — Y be a separated morphism of finitely presented R-schemes. We
define f.: DI (Y)* = D} (X)% as f1(F) = (f'(F)*

aqc aqce

Remark 5.5.3. In what follows, we will usually denote the functor f(!l simply by f' as it will not
cause any confusion.

Lemma 5.5.4. Let f: X — Y be a separated morphism of finitely presented R-schemes. Then f'
carries DT (V) to Dt (X)%.

acoh acoh

Proof. This follows from Proposition 5.5.1. ([l
Theorem 5.5.5. Let f: X — Y be as above. Suppose that f is proper. Then f': Dz{qc(Y)a —
D/, .(X)% is right adjoint to the functor Rf,: D}, .(Y)* — DI .(X)°.

aqc aqc aqce

We note that the theorem makes sense as R f, carries D/, .(X)? into D/, (Y') by Lemma 4.4.9.

age age
Proof. This follows from a sequence of canonical isomorphisms:

Hompy)a (Rf:T%, §*) =~ Hompy)(m @ Rf.T, 9) Lemma 3.1.13

~ Homp ) (Rfs(m® F), ) Lemma 3.3.6

~ Hompyy(m ® F, f'(9)) Grothendieck Duality

=~ Hompx)a (T, (9 Lemma 3.1.13.

0

29T his theory does not seem to be addressed in the literature in this generality, however we all the arguments
from [Sta21l, Tag 0ODWE] can be adapted to this level generality with little or no extra work.
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Now suppose that f: X — Y be a proper morphism of finitely presented R-schemes, F* €
D/ .(X)% and §* € D, (V). Then we want to construct a canonical morphism

aqe age
Rf.Ral¥omy(F*, £(§")) — RalFomy (Rf.(F), §°).
Lemma 3.5.16 says that such a map is equivalent to a map
Rf.Ralomx (F, f'(§") 5, RL(T) — G
We construct the latter map as the composition

RfRalHomyx (F?, f'(5%) 0§, Rf(F) — Rf. (Ralﬂ-fomx(?a, £1(57) @6, :Tm) —Rff'G — G°

where the first map is induced by the relative cup product ([Sta2l, Tag 0B68]), the second map
comes from Remark 3.5.15, and the last map is the counit of the (R fs, f')-adjunction.
Lemma 5.5.6. Let f: X — Y be a proper morphism of finitely presented R-schemes, F¢ €

D, (X)% and §* € D (V)% Then the map

acoh agc
Rf.RalHom (52, £1(5%)) = RalHomy (Rf.(F%), G%).

is an (almost) isomorphism in D, .(X)?.

Proof. We note that R f,RalFom v (F¢, f'(3%)) lies in D, .(Y) by Lemma 4.4.10 (4) and Lemma 4.4.9.

aqe
Likewise, RalJomy (R f.(F*), %) lies in Df,.(Y)* by Theorem 5.1.3 and Lemma 4.4.10 (4). There-
fore, it suffices to show

RHomy (J—C“,Rf*RalfHomX (:F“, 7 (90))> — RHomy (%%, RalHomy (Rf. (F9),5%))

is an isomorphism for any H* € Df,.
phisms:

RHomy (%“,Rf*RalﬁComX <3"a,f! (9a))> ~ RHomx (Lf*%“,RMX (Tla f (9(1)))

(Y)*. This follows from the following sequence of isomor-

~ RHom (Lf*fHa ®6X F°, f (9a))
~ RHomy (Rf* (Lf*g‘fa ®6X 3”1) 79(1)
~ RHomy (H* @ Rf, (F%),59%)
~ RHomy (J{aa RalHom, (Rf* (:Ta) ) ga)) :
The first isomorphism holds by Corollary 3.5.26. The second isomorphism holds by Corollary 3.5.16.

= =G =4

The third isomorphism holds by Theorem 5.5.5. The fourth isomorphism holds by Proposi-
tion 4.4.12. The fifth equality holds by Corollary 3.5.16. O

Theorem 5.5.7. Let f: X — Y be as above. Suppose that f is smooth of pure dimension d. Then
! *

F(=) =L (=) of, 0l [d

Proof. 1t follows from the corresponding statement in the classical Grothendieck Duality. O

We summarize all the results of this section in the following theorem:

Theorem 5.5.8. Let R be a universally coherent ring with an ideal m such that m == m ® g m is
R-flat and m? = m, and FPSy be the category of finitely presented, separated R-schemes. Then
there is a well-defined functor (—)' from FPSy into the 2-category of categories such that

(1) (X)' =Dg.(X)°,

aqc
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(2) for a smooth morphism f: X — Y of pure relative dimension d, f' ~ Lf*(—) ®é§< Qi{/y[d]'

(3) for a proper morphism f: X — Y, f'is right adjoint to Rf.: D}, (X)* — D (V)

aqc aqc
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6. ALMOST COHERENCE OF “p-ADIC NEARBY CYCLES”

6.1. Introduction. The main goal of this section is to study the “p-adic Nearby Cycles” sheaves
RV*(‘);r(<> and RV*O}<> /p for a rigid-analytic variety X and versions with more general “coefficients”
including O /p vector bundles in the v-topology, and sheaves of the form O}O /p®F for a Zariski-
constructible sheaf F (see Definition 6.1.7). These complexes turn to be very close to complexes of
coherent sheaves that makes it possible to study étale cohomology groups of rigid-analytic varieties
using (almost) coherent methods on the special fiber.

Before giving precise definitions, let us explain the main motivation to study these sheaves
and their relation with étale cohomology of rigid-analytic varieties in the simplest case of the
“nearby cycles” of the sheaf O% , /p. In [Sch13], P.Scholze proved ([Schl3, Theorem 5.1]) that
the étale cohomology groups H(X, F,) are finite for any smooth, proper rigid-analytic variety X
over an algebraically closed p-adic non-archimedean field C. There are two important ingredients:
the almost primitive comparison theorem that says that H*(X, O}ét /p) are almost isomorphic to

H'(X,F),) ® O¢/p, and the almost finiteness of H (X, 0%, . /p).-

The proof of the almost finiteness result in [Sch13] uses properness of the space X in a very
elaborate way; namely, he constructs some “good covering” of X by affinoids and then shows that
there is enough cancelation in the Cech-to-Derived spectral sequence associated with that covering.
We note that the second page of this spectral sequence has all terms being not almost finitely
generated, but mysteriously there is enough cancellations in this spectral sequence so that the
terms on the co-page turn out to be almost finitely generated. We refer to [Schl13, §5] for the
details of this proof.

Our main goal is to give a more geometric way to prove that almost finiteness result. Instead
of constructing some explicit “nice” covering of X, we separate the problem into two different
problems. We choose an admissible formal Oc-model X of X and consider the associated morphism
of ringed topoi

t: (Xét, O;ét) — (%Zah Ox)

that induces the morphism

t: (Xét7 O;—(_Fét/p) - (%Zarv Ox/p) = (XOa OXO)
where Xo = X Xgpt 0, Spec O¢/p is the mod-p fiber of X. Then one can write

RI(X,0%, /p) ~RT (360, Rt.O%, /p)

so one can separately study the “nearby cycles” complex Rt*O}ét /p and its derived global sections
on %0.

The key is that now X is proper over Spf O by [LO0, Lemma 2.6]*" (or [Tem00, Corollary 4.4
and 4.5]). Thus the Almost Proper Mapping Theorem 5.1.3 tells us that, for the purpose of proving
almost finiteness of RI'(X, O}ét /p), it is sufficient only to show that Rt*O}ét /p € D}, (X) has
almost coherent cohomology sheaves.

The main advantage now is that we can study the “nearby cycles” Rt*O}ét /p locally on the
formal model X. So this holds for any admissible formal model and not only for the proper ones.
Moreover, the only place where we use properness of X in our proof is to get properness of the
formal model X to be able to use the Almost Proper Mapping Theorem 5.1.3. This allows us to

3OStrictly speaking, his proof is written under the assumption that Og is discretely valued. However, it can be
easily generalized to the of a general rank-1 complete valuation ring Og.
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avoid all elaborate spectral sequence arguments at the same time making the essential part of the
proof local on X.

Now we discuss how we get almost coherentness of Rt*(f);ét /p. We will actually prove a much
stronger almost coherentness statement that holds for all O /p-vector bundle in the v-topology.
However, we find it instructive to discuss the simplest case first.

The main idea of the proof is similar to the idea behind the proof [Sch13, Lemma 5.6]: we reduce
the general case to the case of an affine X with “nice” coordinates, where everything can be reduced
to almost coherentness of certain continuous group cohomology via perfectoid techniques. In order
to make it work, we have to pass to a finer topology that allows towers of finite étale morphisms.
There are different possible choices, we find the formalims of v-topology on the associated diamond
X of X (in the sense of [Sch17]) to be the most convenient for our purposes (see Appendix C.

The case of a general O;O/ p-vector bundle (see Definition 6.1.1) will cause us more trouble;
we will use the structure results from Section C.4 to handle a general O}o /p-vector bundle. The
main crucial results is that the category of étale O}ét /p-vector bundles is actually equivalent to the
category of O}o /p-vector bundles and that, locally, any O;O /p-vector bundle can be trivialized by
some very particular étale covering (see Corollary C.4.10 for both results).

That being said, we can move to the formulation of the main theorem of this section. We
refer to Appendix C for the definition of the quasi-proétale and v-topologies on X< for a rigid-
analytic variety over a non-archimedean field K. These sites come with their “integral” structure
sheaves OF o OX<> , and O+ Xu (see Definition C.3.1) and a diagram of morphisms of ringed sites

(see Diagram C.1 “and C.2):

(X1§>7O;—(<>) R ( qproet’o ) — (Xétyo}ét) —t (Xzar, Ox) (6.1)

and the mod-p version

(Xz?vo;o/p) % ( qproét? <>/p> % (Xétvo}ét/p) % (%Zaﬁofo) (6'2)

If there is any ambiguity in the meaning of v, we then denote it by vy to explicitly specify the
formal model for these functors.

Recall that for a perfectoid field K, the maximal ideal m C O is an ideal of almost mathematics
with flat m ~ m? = m by by Lemma B.6. For the rest of this section, we fix a p-adic perfectoid
field K, and always do almost mathematics with respect to the ideal m.

We are ready to formulate our first main result. We thank B. Heuer for suggesting this formula-
tion.
Definition 6.1.1. An O}O/p—module € is an O}O/p—vector bundle if, v-locally on X<, it is iso-
morphic to ((f);r(<> /p)" for some integer r.
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An O}O/p—module € is a very small O}O/p—vector bundle if there is a finite étale surjective
morphism V' — U such that &|,,o ~ (O";Q /p)" for some integer r.

An O;Q /p-module € is a small O}Q /p-vector bundle if, for each point x € X, there is an open
affinoid z € U C X such that &|;¢ is very small.

Theorem 6.1.2. Let X an admissible formal O g-scheme with adic generic fiber X of dimension d
and mod-p fiber Xy, and & an O}Q /p-vector bundle. Then

(1) the nearby cycles Rv,.€ € Dt (X0) and (Rw,€)? € Dg)c’f;f] (X0)%

gc,acoh

(2) for an affine admissible X = Spf A with the adic generic fiber X, the natural map

e~

H (Xq?, 8) 5 Riv, (&)
is an isomorphism for every i > 0;

(3) the formation of Riv,(€) commutes with étale base change, i.e., for any étale morphism
f: Y — X with adic generic fiber f: Y — X, the natural morphism

fo (R'vx(€)) = Rivy. (Elyo)
is an isomorphism for any ¢ > 0;
(4) if X has an open affine covering X = (J;¢, 4 such that €|y, ,yo is very small, then
(Ri.€)" € Dy (%)

acoh

(5) if & is small, there is an admissible blow-up X’ — X such that X’ has an open affine covering
X' = U;er i such that €[y, yo is very small.

In particular, if € is small, there is a cofinal family of admissible formal models {X/}icr
of X such that

(Rix,.€)" € DU (7).

acoh

for each 7 € I.

Remark 6.1.3. We refer to Definition 4.4.1 and Definition 4.4.2 for the precise definition of all
derived categories appearing in Theorem 6.1.2. In order to avoid any confusion, we explicitly
mention that the expression (Rv.&)" € Dg)é;i]]z(}:o)a means that it is concentrated in degrees [0, d]
in the derived category of almost sheaves. In particular, this is equivalent that cohomology sheaves

of the complex Ry, &€ are almost zero in degrees larger than d.

Remark 6.1.4. We note that Theorem 6.1.2 (1) implies that the nearby cycles Rv,€ is quasi-
coherent on the nose (as opposed to being almost quasi-coherent). This is quite unexpected to
the author since all previous results on the cohomology groups of O /p were only available in the
almost category.

Remark 6.1.5. If K = C is algebraically closed, the proof gives a non-almost version of cohomo-
logical bound. Namely, we see that

Ry, (€) € DO ().

acoh

However, we do not know if, under the assumption of Part (4), Ru, (&) is concentrated in degrees
[0, d] on the nose.
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Remark 6.1.6. We do not know if an admissible blow-up X’ — X in the formulation of Theo-
rem 6.1.2 is really necessary or just an artefact of the proof. More importantly, we do not know
if, for every (‘);EO /p-vector bundle &, there is an admissible formal model X such that the “nearby

cycles” sheaf Rvyg ,€ lies in D24 (X0)e.

acoh
One can prove a slightly more precise version in case € comes as a tensor product of an F,-

local system and O}O /p. More generally, one can slightly generalize the result to the class of
Zariski-constructible sheaves.

Definition 6.1.7. [Han20] An étale sheaf F of F)-modules is a local system if it is a locally constant
sheaf with finite stalks.

An étale sheaf J of Fp-modules is Zariski-constructible if there is a locally finite stratification
X = | ;e Zi into Zariski locally closed subspaces Z; such that F|z, is a local system.

The category D..(X;F)) is a full subcategory of D(X¢; F;,) consisting of objects with Zariski-
constructible cohomology sheaves.

Remark 6.1.8. Any Zariski-constructible sheaf F is overconvergent, i.e., for any morphism 77 — 3
of geometric points in X, the specialization map F5 — J5 is an isomorphism.

Note that any sheaf of F,-modules on X¢ can be treated as a sheaf on any of the sites X9,
X(?proét, or X6t via the pullback functors along the morphisms in Diagram 6.1. In what follows,
we abuse notation and implicitly treat a sheaf F as a sheaf on any of those sites. We also denote
the tensor product I ®p, O} /p simply by F ® (‘)} /p in what follows.

Now we discuss an integral version of Theorem 6.1.2.

Theorem 6.1.9. Let X be an admissible formal O g-scheme with adic generic fiber X of dimension
d and mod-p fiber Xo, and J € Dl (X;Fp). Then

(1) there is an isomorphism R, (ff ® O}ét /p) ~ Ru, (3"@ O;Q /p);

(2) the nearby cycles Ru, (F ® O}Q /p) € D

qc,acoh

(X0), and Ry, (F ® O;O/p)a € D[r’s+d](%0)“;

acoh

(3) for an affine admissible X = Spf A, the natural map

H (XS,?® O;O/p) — Riv, (F 0%, /p)
is an isomorphism for every i > 0;

(4) the formation of R'v, (F ® O}O /p) commutes with étale base change, i.e., for any étale
morphism §: ) — X with adic generic fiber f: Y — X, the natural morphism

fo (Riljx’* (3"@ O}O/p)) — Riyg),* (f*13“® (‘);Zo/p)
is an isomorphism for any ¢ > 0;

Definition 6.1.10. An O;Q—module € isan O;O -vector bundle if, v-locally on X, it is isomorphic
to (O}O)T for some integer 7.

An (‘);O—vector bundle € is a very small O}O -vector bundle if €/p& is a very small (‘)}O/p—vector
bundle (see Definition 6.1.1).

An O;O—Vector bundle € is a small O;Q -vector bundle if €/p€ is a small O;Q /p-vector bundle

(see Definition 6.1.1).

Theorem 6.1.11. Let X be an admissible formal O g-scheme with adic generic fiber X of dimension
d, and € an O;O—vector bundle. Then
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2
(1) the nearby cycles Rv,.E € D&Z acon(X) and (Rv,E)* € DELOC’O;Z] (X)%;

(2) for an affine admissible X = Spf A with the adic generic fiber X, the natural map
. A .
I (XS, 8) — Riv, (€)
is an isomorphism for every i > 0;

(3) the formation of Riv,(€) commutes with étale base change, i.e., for any étale morphism
f: Y — X with adic generic fiber f: Y — X, the natural morphism

P (R'vx(€)) — Rivy. (Elyo)
is an isomorphism for any ¢ > 0;

(4) if X has an open affine covering X = (J;; 4 such that €[y, )0 is very small, then

(Rv,.€)* € D (x)e,

acoh

(5) if € is small, there is an admissible blow-up X’ — X such that X’ has an open affine covering
X' = U;er i such that €[y, yo is very small.

In particular, if € is small, there is a cofinal family of admissible formal models {X}};cr
of X such that .
07
(Rvg €)% € D9 ().

for each 7 € I.

Remark 6.1.12. We refer to Definition 4.8.9 for the precise definition of all derived categories
appearing in Theorem 6.1.11.

Remark 6.1.13. One can also prove a version of Theorem 6.1.11 for Zariski-constructible Z,-
sheaves in the sense of [BH21, Definition 3.32]. However, we prefer not to do this here as it does
not require new ideas but makes the exposition a heavier in terms of terminology.

For the version of Theorem 6.1.11 with the pro-étale site Xp;q¢ as defined in [Sch13] and [Sch16],
see Theorem 6.13.6

The rest of the paper is devoted to proving Theorem 6.1.9, Theorem 6.1.2, and Theorem 6.1.11
and discussing their applications. We have decided to work entirely in the v-site of X because
it is quite flexible for different types of arguments (e.g. proper descent, torsors under pro-finite
groups, etc.). However, most of the arguments can be carried over in a more classical pro-étale site
defined in [Sch13]. However, it seems difficult to show that Riv.€ are quasi-coherent (as opposed
to almost quasi-coherent) using that version of the pro-étale site (however the quasi-proétale site is
sufficient for these purposes), and it is also crucial to argue on the level of diamonds for the purpose
of getting a cohomological bound on R’v,€ in the small case.

6.2. Digression: Geometric Points. In this section, we discuss some preliminary results that
will be both used in the proof of Theorem 6.1.9 and in deriving applications out of it.

We start the section by recalling some definitions.

Definition 6.2.1. [Tem?21, 2.1.4] An extension of non-archimedean fields®’ K C L is topologically
algebraic if the algebraic closure of K in L is dense in L. Equivalently, K' C L is topologically

algebraic if L is a non-archimedean subfield of K completed algebraic closure of K.

31Recall that non-archimedean fields are complete by our convention.
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Lemma 6.2.2. (1) Let K € L and L C M be two topologically algebraic extensions of non-
archimedean fields. Then K C M is also topologically algebraic.
(2) Let

N +— L

[

M+— K

be a commutative diagram of non-archimedean fields such that LM is dense in N and
K C L is topologically algebraic. Then M C N is also a topologically algebraic extension.

Proof. (1) : We know that L C K and M C L since both extensions are topologically algebraic.
Therefore, M C L C K proving that K C M is topologically algebraic.
(2) : First, we note that

LM c KM c KM ¢ M.
Secondly, we note that since LM C N is dense, the inclusion LM C M uniquely extends to an
inclusion N C M proving that M C N is topologically algebraic. O

Definition 6.2.3. A geometric point above point z € X of an analytic adic space X is a morphism
z: Spa(C(x),C(z)") — X such that C(z) is an algebraically closed non-archimedean field, and

the corresponding extension of completed residue fields k(x) C C(z) is a topologically algebraic
extension.

Remark 6.2.4. If Spa (C(z),C(z)") — X is a geometric point, then C(z) can be identified with

jas—

the completed algebraic closure of k(z) (or, equivalently, of k(z)) and C(z)™ with a valuation

—

+
ring extending k(z) (or, equivalently, k(z)*). Therefore, Definition 6.2.3 is more restrictive than
[Hub96, Definition 2.5.1], but coincides with the subclass of geometric points constructed in [Hub96,
(2.5.2)].

Lemma 6.2.5. Let K be a non-archimedean field with an open and bounded valuation sub-ring
K™ C K and a pseudo-uniformizer w. Let f: X — Y be a morphism of locally of finite type
(K, K*)-adic spaces, and 3: Spa (C(y),C(y)T) — Y be a geometric point above y € Y. Then the
natural morphism

a: i_l((f)}ét/w) — O}yét/w

is an isomorphism where i: Xy — X is the “projection” of the geometric fiber Xy = X Xy
Spa (C(y), C(y)T) back to X.

Proof. [Hub96, Proposition 2.5.5] ensures that it suffices to show that a is an isomorphism on
stalks above geometric points of X3. Now note that Lemma 6.2.2 implies that any geometric point
Z: Spa(C(z),C(x)") — Xy defines a geometric point Z': Spa (C(z),C(z)T) — X of X by taking
the compostition of T with . So it is enough to show that the natural map

(0%, /=) = (iT(0%, /=)= (0%, /=) (6.3)
is an isomorphism. But [Hub96, Proposition 2.6.1] naturally identifies both sides of (6.3) with
C(z)t /wC(z)" finishing the proof. O
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Remark 6.2.6. Lemma 6.2.5 is very specific to the adic geometry (and probably quite counter-
intuitive from algebraic point of view). Its scheme-theoretic version with OF /w replaced with O
is very false. The main feature of analytic adic geometry (implicitly) used in the proof is that the
morphism O}’m — k(z)T becomes an isomorphism after w-adic completion.

Lemma 6.2.7. Let (C,C*") be a Huber pair of an algebraically closed non-archimedean field C,
an open and bounded valuation sub-ring C* C C and a pseudo-uniformizer @ € CT. Suppose that
(C,C*T) — (D,D™) is a finite morphism of complete Huber pairs with a local ring D. Then the
natural morphism

Ct/wCt = DT /wD™
is an isomorphism.

Proof. Firstly, we show that Ct/wC™ — DT /wDT is injective. Suppose, let ¢ € CT /wC™ be an
element in the kernel, lift it to ¢ € C*. The assumption on ¢ implies that ¢ = wd for some d € D™.
But then d = ¢/w € C N D' = C™T. Therefore, ¢ =0 in C*/wC™.

Now we check surjectivity. Since D is a local ring that is finite over an algebraically closed field
C, we conclude that D is an Artin local ring and D/nil(D) ~ C. Therefore, for every d € DT,
we can find ¢ € C and d' € nil(D) such that d = ¢+ d’. Since nil(D) C D°° C D", we conclude
that c = d —d € DY NC = CT. Now note taht d’/w is still a nilpotent element of D, thus
d' /@ € nil(D) C DT. Thus,

d=c+w(d/w)
proving that C* /wC"™ — DT /wD™ is surjective. O

Corollary 6.2.8. Let (K, K™) be a Huber pair of a p-adic non-archimedean field K and an open
and bounded valuation sub-ring K™ C K. Let f: X — Y be a finite morphism of locally finite
type (K, K*)-adic spaces. Then the natural morphism

c: fo (E,) ©0F /p— f.(0%, /p)
is an isomorphim on Y.
Proof. We use [Hub96, Proposition 2.5.5] to ensure that it suffices to show that ¢ is an isomorphism
on stalks at geometric points. Thus [Hub96, Proposition 2.6.1] and Lemma 6.2.5 imply that it
suffices to assume that 3 = Y = Spa (C,C") with an algebraically closed p-adic non-archimedean
field C. In this case, X = Spa (D, D) for some finite morphism of Huber pairs (C,Ct) — (D, DT).
In particular, D is a finite C-algebra, so it is a finite direct product of local artinian C-algebra. By
passing to a direct factor of D (or, geometrically, to a connected component of Spa (D, DT)), we
can assume that D is local. In particular, D does not have any idempotents, and so Spa (D, D)
is connected. Thus [Hub96, Proposition 2.6.1] ensures that
(FE, @ O, /p)_ ~BUX.F,) @ CH/pCT = CF/pC,

where HY(X, F,,) ~ F, by the connectivity assumption on Spa (D, D").

Now we observe that Spa (D, D1).eq >~ Spa (C,C™"), so all étale sheaves on Spa (D, D") do not
have higher cohomology groups. Thus, we have

(£:(0%, /p)) ~H(X,0%, /)~ D*[pD".
In particular, the question boils down to showing that the natural map
C*/pCt — Dt /pD*

is an isomorphism. This was already done in Lemma 6.2.7. g
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Corollary 6.2.9. Let K be a p-adic non-archimedean field, f: X — Y a finite morphism of
rigid-analytic varieties over K, and ¥ € D%, (X;F,). Then the natural morphism

¢ L (F) @ 0F, /p > f. (T 0F, /p)
is an isomorphim on Y.

Proof. We recall that [BH21, Proposition 3.6] says that D, (X;F)) is a thick triangulated subcate-
gory of D(Xg; F),) generated by objects of the form g, (Ep) for finite morphisms g: X’ — X. Since
both claims in the question satisfy the 2-out-of-3 property and are preserved by passing to direct
summands, it suffices to prove the claim only for F = g, (Ep). In this situation, the claim follows
from Corollary 6.2.8 by a sequence of isomorphisms

fe (94 (By)) @05, [p=(fog), (E,) @05, /p
~ (fo9)- (0%, /p)
= . (1%, 1)

=~ f. (g*Ep ® 0%, /p) -
g

6.3. Applications. The main goal of this section is to discuss some applications of Theorem 6.1.9.

For the rest of the section, we fix a p-adic algebraically closed field C with its rank-1 valuation
ring O¢, maximal ideal m C O¢, and a good pseudo-uniformizer w € O¢ (see Definition B.1.6). We
always do almost mathematics with respect to the ideal m in this section. If we need to consider a
more general non-archimedean field, we denote it by K.

One non-trivial consequence of Theorem 6.1.11 is that v cohomology groups of O;O—Vector
bundles have bounded p-torsion.
Lemma 6.3.1. Let K be a p-adic perfectoid field, X = Spf Ag an affine admissible formal Og-
scheme the adic generic fiber X, and € an O;O—vector bundle. Then the cohomology groups
Hl(Xs> , &) are almost finitely presented over Ap. In particular, they are p-adically complete and
have bounded torsion p*°-torsion.

Proof. This is a straightforward consequence of Theorem 6.1.11, Lemma 2.12.5 and Lemma 2.12.7.

O
Remark 6.3.2. Lemma 6.3.1 implies that v cohomology groups of Oj(o behave pretty differently
from analytic cohomology groups of 0% . Indeed, see [Bha, Remark 9.3.4] (that can be easily adapted
to the p-adic situation) for an example of an affinoid with unbounded p-torsion in HL (X, 0%).

Theorem 6.3.3. Let K be a p-adic perfectoid field, X a proper rigid-analytic K-variety of dimen-
sion d, and € an O;Q—Vector bundle (resp. O;O /p-vector bundle). Then

RI(X2,€) € DL (0K)"
Proof. We firstly deal with the case of an O;Q /p-vector bundle €. We choose choosing an admissible
formal model X of the rigid-analytic variety X. It is necessarily proper by [Lg(), Lemma 2.6] (or

[Tem00, Corollary 4.4 and 4.5]). Now Theorem 6.1.2 (and [Sch13, Corollary 3.17(i)]) implies that
Ry, (8)* € D2 (xp)a,

acoh
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Recall that the underlying topological spaces of the mod-p fiber Xy and the special fiber X =
X Xgpt 0 Spec O¢/m are the same. Thus [FIK18, Corollary I1.10.1.11] implies that X¢ has Krull
dimension d. Therefore, Theorem 5.1.3, [Sta21, Tag 0A3G] and Lemma 3.3.6 imply that

RI(X$, €)% ~ RT (X0, Ry, (€)) € D30 /p)e.

acoh

Now we need to get a better cohomological estimate. Lemma 6.7.4 implies (by choosing an affinoid
cover of X) that

RI(XY, €)@ Ok /p — RI(X,, €)

is an isomorphism, where C' is a completed algebraic closure of K. Then Lemma 2.10.5 and faithful
flatness of O /pOx — Oc/pOc¢ implies that it suffices to prove the claim under the additional
assumption that K = C' is algebraically closed. Then we consider

& — Ru R\ * €,

this is an O}ét /p-vector bundle (concentrated in degree 0) by Theorem C.4.8 and Theorem C.4.5.
So it suffices to show that

RI(X{,€) ~ RI(Xe, &)

is concentrated in degrees [0, 2d]. This follows from [Hub96, Corollary 2.8.3] and finishes the proof
for 0% /p-modules.

Now if € is an O;O—vector, we see that

[RI(X?,€)/p] =~ RI(XP, & /p) € DYAN(0c /p)°,

acoh
and
0,2d a
[RI(XS,€)/p) = RD(X?, €/p) € Dl (0c/p)
if € is small. So we conclude the claim by Corollary 2.13.3, and Lemma C.3.5 (3). O

Another application of the results in Section 6 is the finiteness properties of Zariski-constructible
sheaves. We show that cohomology groups of a Zariski-constructible sheaf on a proper space are
finite, and that the “p-adic nearby cycles” commute with proper pushforward establishing a similar
behaviour to the algebraic nearby cycles.

We start with the finiteness properties:
Lemma 6.3.4. Let X be a proper rigid-analytic variety over C' of dimension d, and F a Zariski-
constructible sheaf of F-modules on Xg. Then RT(XY, T ® O}O/p)“ € DL%EZ}(OC/p)“.
Proof. The proof is analogous to the proof of Theorem 6.3.3 using Theorem 6.1.9 in place of
Theorem 6.1.2. 0
Lemma 6.3.5. Let X be a proper rigid-analytic variety over C' of dimension d. Then

RI(X,F,) € D% (F,)

coh
and the natural morphism
RI'(X,Fp) ® Oc/p = RT(XS, 0%, /p)

is an almost isomorphism.


https://stacks.math.columbia.edu/tag/0A3G
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Proof. Step 1. RI'(XY, O?’(Jg)“ € D[O’Qd](obc)a. We consider the tilted integral structure sheaf Oé’(z

acoh
(see Definition C.3.4). Lemma C.3.5 (4) ensures that (‘)i’(O is derived w’-adically complete and
Lemma C.3.5 (5) implies that

(074 /@] ~ (0%, /) = 0%, /p.

Therefore, [Sta2l, Tag 0BLX] guarantees that RI’ (Xzf> ,Ob)’(i;) eD (Obc) is derived w’-adically

complete. Moreover, Lemma 6.3.4 implies

Rr (x9,0%0)" /=] = RO(X, 04, /p)* € DL 00 /p)".

acoh

Thus Corollary 2.13.3 applied to R = C* = 0% implies that RT (X,§>, oi’(z)a e D24 (@b, e,

Step 2. RI(X,F,) € DYPN(F,) and the natural morphism RT(X,F,) © C” — RI(XY,0%,)

coh
is an isomorphism. After inverting w”, Step 1 implies that

RI(X0,0%.) € D2 ().

coh

Now ng is a sheaf of Fj-algebras, so there is a natural Frobenius morphism

b+ [ fP b+

F: 0y, —— 0.

that can be easily seen to be an isomorphism by Lemma C.3.5 (2) (and Remark B.1.3). Now we
use the Artin-Shreier short exact sequence

0—>£p—>0g(oﬂ>ogw—>0

on the v-site Xz? to get the associated long exact sequence’”

H(F)-1
_—

S H(X,F,) - H(XS, 0%s) SHI(XY, 0%s) » HH(X,F,) - ...

We already know that each group HY (X, ng) is a finitely generated C°-vector space, each H*(F)

is a frobenius-linear automorphism, and C” is an algebraically closed field of characteristic p (see
[Sch12, Theorem 3.7]). Thus (the proof of) [Sta2l, Tag 0A3L] ensures that H'(F") — Id is surjective
for each i > 0 (so H'(X,F,) ~ H/(X?, (‘)?XQ)le) and the natural morphism

H(X,Fp) @ C° — H(X?,0%0)

is an isomoprhism. In particular, dimg, H'(X,F,) = dimg» H (X2, Og(o), RI'(X,F),) € D[C?J’sd] (Fp),

and the natural morphism
RI(X,F,) ® C° — RI(X{, 0%s)
is an isomorphism.

Step 3. The natural morphism RT(X,F,)®0¢/p — RI(XY, O}O/p) s an almost isomorphism.
It suffices to show that
RI(X,F,) ® 0% — RI(XJ,0%%)

is an almost isomorphism. The version with O;O /p then would follow by taking the derived mod-zo”
reduction. Therefore, it is enough to show that

H'(X,Fp) @ 04 — H/(X0,0°%)

32We implicitly use that H (X, F,) ~ H (XS, F,) by [Sch17, Proposition 14.7, 14.8, and Lemma, 15.6].
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is an almost isomorphism for each ¢ > 0. Consider a commutative diagram
HY(X,Fp) © 03 —%— H(X$,0%%)

HI(X,F,) © " —2 HI(XQ, ).

By Step 2, we know that 3 is an isomorphism. Since 7 is injective, we conclude that « is injective
as well. So it only suffices to show that « is almost surjective.

Since [ is an isomorphism and HZ(Xé> , Og’;g) is almost coherent by Step 1, it is easy to see that

there is an integer n such that («’)"z € Im(a) for any 2 € H/(X?, Oz’;g). Now we note that both
the source and the target of o have a natural Frobenius action and « respects those actions: the
action on the source comes from the Frobenius action on OE and the Frobenius action on the target

comes from the Frobenius action on Oi’;g. The action on HY (X, F,)® O"C is an isomorphism because
(‘)bc is perfect, and the action on Hz(Xé> , (‘)Z’;g) is an isomorphism because Frobenius is already an
isomorphism on the sheaf Ob)’;g by Lemma C.3.5 (2) (and Remark B.1.3). Therefore, it makes sense
to consider the inverse Frobenius action F~! on both modules and o commutes with this action.

Now we pick any element z € H (X2, OZ’:O). Since F is an isomorphism on H!(X?, OZ’(E), there
is 2/ € H(XY, Oi’gg) such that F™(z') = 2. By the discussion above, there is ' € H (X2, F,)® 0%,
such that a(y') = (@’)Na/. Therefore,

()" e=rm((#) ) =) =a(F ).

Thus (=”)V/?" 2 = a(y) where y = F~™(y') € H(X,F,) ® O%,. Since N/p™ can be made arbitrary
small by increasing m, we conclude that « is almost surjective. ([l

Lemma 6.3.6. Let X be a proper rigid-analytic variety over C of dimension d, and F € D%.(X; F)).
Then
RI(X,F) € Deon(Fp).

Proof. We recall that [BH21, Proposition 3.6] says that D%.(X,F}) is a thick triangulated sub-
category of D(X¢g; F)) generated by objects of the form f.(F,) for finite morphisms f: X’ — X.
Since both claims in the question satisfy the 2-out-of-3 property and are preserved by passing to
direct summands, it suffices to prove the claim only for F = f.(F,). Then the claim follows from
Lemma 6.3.5 since

RI (X, f. (F,)) ~ RI(X',F,) € D22A(F,).

0

Lemma 6.3.7. Let K be a p-adic perfectoid field K, f: X — Y a proper morphism of rigid-analytic
varieties over K, and ¥ € DY, (X;F,). Then the natural morphism

RALF ® 05, /p = Rf(F© 0%, /p)
is an almost isomorphism.

Proof. The claim is local on Y, so we can assume that Y is affinoid. Then a similar trick as in the
proof of Corollary 6.3.6 allows us to reduce to the case F = g, (Ep) for a finite map ¢g: X' — X.
So Corollary 6.2.8 implies that it suffices to prove the claim for the morphism fog: X’ — Y and
F=F,.

=p
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Now [Hub96, Proposition 2.5.5] guarantees that it suffices to show the claim on stalks at geometric
points. Therefore, by Lemma 6.2.5 we reduce the question to showing that, for any proper adic
space X over a geometric point Spa (C,CT), the natural morphism

RI(X,F,) ® C*/p — RI(X, 0%, /p).
is an almost isomorphism. Denote by X° := X Xgp, (¢ c+) Spa(C,C°). We have an isomorphism
RI'(X,F,) ~ RI'(X°, Fp) by [Hub96, Proposition 8.2.3(ii)], an almost isomorphism
Ct/pC* ~* O¢/pOc
by Lemma 2.11.1, and an almost isomorphism RI'(X, O}ét/p) & RF(XO,O}gt/p) by Corol-

lary C.3.12 and Corollary C.3.15. Thus we may replace (C,C") with (C,0¢) and X with X°
to assume that Spa (C,O¢) is a geometric point of rank-1. In this case, the claim was already
proven in Lemma 6.3.6. ]

Corollary 6.3.8. Let X be a proper rigid-analytic variety over C' of dimension d, and F a Zariski-
constructible étale F,-sheaf. Then

RI(X,5) € D2(x,).

coh

Proof. Lemma 6.3.6 already implies that RI'(X,J) € Do, (F;), so we only need to show that this
complex is concentrated in degrees [0,2d]. Now Lemma 6.3.7 (applied to Y = Spa (C,O¢)) and
Lemma 6.3.4 ensure that

(RT (X, ) @ Oc/p)" = R (X,5® 0} /p)" = RI' (X0, 50 0%, /p)" € D200 /)"

acoh

implying that RI'(X, F) must be concentrated in degrees [0, 2d]. O
Now we show that p-adic nearby cycles commute with proper morphisms.

Corollary 6.3.9. Let K be a p-adic perfectoid field K, f: X — ) a proper morphism of admissible
formal Oj-schemes with adic generic fiber f: X — Y, and ¥ € D%.(X;F,). Then the natural
morphism

Ruy . (RAEF® 074 /p) = Rfor (Ruxy (F© 0%, /p))

is an almost isomorphism.

Proof. Firstly, note that Rf.F has overconvergent cohomology sheaves by [Hub96, Proposition
8.2.3(ii)] and Remark 6.1.8. Therefore, Lemma C.5.10 implies that

Ruy . (REF® 0, /p) ~ Riy. (Rf*? Oy, /p) !

where tg: (Yét, O;ét / p) — (Yo, Oy,) is the natural morphism of ringed sites. Similarly, we have

an isomorphism

Rio. (Rvx. (F© 0%, /p)) = Rios (Rex. (F 0, /p)).

Therefore, it suffices to show that the natural morphism

Riy.. (RL.T @07, /p) > Rfo. Rtz (T2 0%, /p))

is an isomorphism.
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For this, we use a commutative diagram of ringed sites

t
(Xétv O}ét/p> *X> (%(b o%o)

lf l 0
(Yer, 0%, /p) —2 (Do, 0n,)
implies that
Rjo. (Rtx. (72 0%, /p)) = Ry (R1. (F2 0L, /p)).

Therefore, the morphism

Riy. (RAT € OF, /p) = Rfo. (Rty. (F© OF, /p)) ~Riy. (Rf. (T2 0% /p))
is an almost isomorphism by Lemma 6.3.7 and Proposition 3.5.23. ]

6.4. Perfectoid Covers of Affinoids. The main goal of this section is to show almost vanishing of
higher v-cohomology groups of a small O;Q /p-vector bundle on an affinoid perfectoid. Later we will
apply it to certain pro-étale coverings of Spa (A4, A™) to reduce the computation of v-cohomology
groups to the computation of Cech cohomology groups.

Set-up 6.4.1. We fix

(1) a p-adic perfectoid field K with its rank-1 open and bounded valuation ring O and a good
pseudo-uniformizer* w € O as in (we always do almost mathematics with respect to the
ideal m = |, w!'/P" O = K°°),

(2) an affine admissible formal scheme X = Spf Ay with an adic generic fiber X = Spa (A, A1),
and an affinoid perfectoid pair (Ao, AL) (see Definition B.1.1) with a morphism (A4, A*) —
(Ao, AL)) such that Spd (Ao, AL ) — Spd (A, AT) is a v-covering (see Definition C.1.1 and
Definition C.1.5);

(3) a very small (‘)J;(O /p-vector bundle & (see Definition 6.1.1).

Definition 6.4.2. We say that a p-torsionfree (equivalently, w-torsionfree) Op-algebra R is inte-
P

grally perfectoid if the Frobenius homomorphism R/wR —— R/wPR = R/pR is an isomorphism.
Remark 6.4.3. This definition coincides with [BMS18, Definition 3.5] for p-torsionfree O i-algebras
by [BMS18, Lemma 3.10]. In particular, AL is an integral perfectoid Og-algebra by [BMSIS,
Lemma 3.20].

Lemma 6.4.4. Under the assumption of Set-up 6.4.1, let f: Spf By — Spf Ay be an étale mor-
phism of admissible affine formal Og-schemes. Then BY, := By®4,AZL is p-torsionfree integrally
perfectoid O-algebra.

Proof. Firstly, we note that Ag — By is a flat morphism by [F'K 18, Proposition 1.4.8.1], so By ® 4,
AT is w-torsion free. Since the w-adic completion of a w-torsionfree algebra is w-torsionfree, we
conclude that BY, = By®a,AZL is w-torsionfree. We see that the only thing we are left to show is
that the Frobenius morphism

Bl /wBf — Bl /w’BL

33See Definition B.1.6
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is an isomorphism. We consider the commutative diagram

X g

ec (B;’o/wp ® A oo A;/w) e Spec BT, /P

l -

Spec AL /@ 2 Spec AL /.

Spec BY, /w

foo /T

We need to show that ®% is an isomorphism. We know that fo /@? and fo /@ are étale morphisms
since f is, and the Frobenious ®% an isomorphism by Remark 6.4.3. Therefore, the morphism

Spec (B:O/wp ® 4t jop A;/w) — Spec AL /w
is étale as a base change of étale fo, /ww?, and the morphism
Spec (B;“o/wp ® 4t jwop A;ro/w> — Spec BL /@

is an isomorphism as a pullback of an isomorphism. Thus, we conclude that F' is an étale morphism
as a morphism between étale A} /ww-schemes. Therefore, ®% is also an étale morphism as a com-
position of an étale morphism and an isomorphism. However, ®% is a bijective radiciel morphism
since it is an absolute Frobenius. Thus we conclude that it must be an isomorphism as any étale,
bijective radiciel morphism is an isomorphism by [Gro63, Théoréeme 5.1]. O

Corollary 6.4.5. Under the assumption of Set-up 6.4.1, let f: Spf By — Spf Ao be an étale
morphism of admissible affine formal Og-schemes. Then

(Boo, BY) = ((Bo®ayAL) [1/p], Bo® 4, A%,)
is a perfectoid pair.
Proof. Lemma 6.4.4 states that BY = By®4, AL is a p-torsionfree integral perfectoid. Now By ® 4,
AL is integrally closed in By ®4, A [1/p] because A* is integrally closed in A and By is étale
over Ag. Therefore, [Bha, Lemma 5.1.2] ensures that the same holds after completion, i.e. BX

is integrally closed in By. Thus [BMS18, Lemma 3.20] guarantees that (B, BL) is a perfectoid
pair. ]

Lemma 6.4.6. Under the assumption of Set-up 6.4.1, let f: Spf By — Spf Ag be an étale morphism
of admissible affine formal O x-schemes with adic generic fiber Spa (B, BT) — Spa (A, AT). Then
the natural morphism

(Bo®a,AL) [1/p], Bo® 4y AL) = (B®aAso, (BRaA)T)
is an isomorphism of Huber-Tate pairs.

Proof. By [Hub93b, Lemma 1.6], B&4 A =~ (By®a,AL) [1/p]. Now (B&aAs)T is defined to be
the integral closure of the image of the map

Bt® 4+ At — B® Ao
By [Hub93b, Lemma 1.6], we also have
B+®A+AO+O ~ (B+ ® 4+ A;ro) ®BO®AOA;FO (BO@)AOA:O) .
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Since Bt @4+ AL is integral over By ®4, AL, we conclude that B*® 4+ AL is integral over
Bo®a,AL. In particular, we see that (B®4As)" is integral over By@a,AL. However, Corol-
lary 6.4.5 implies that BO@\)AOA; is a sub-algebra of B®4 Ao that is integrally closed in B4 Aw.
Thus we must have an equality
Bo<§>A0A; ~ (B@AAOO)JF.
O

Remark 6.4.7. Tt will be crucial for our arguments later that (B®4As)" is equal to Bo®a, AL
and not simply to its integral closure. Taking an integral closure of these “big” non-noetherian
rings may ruin many finiteness properties.

Lemma 6.4.8. Under the assumption of Set-up 6.4.1, let Mg be an A% /pAt -module
Mg ==H" (Spd (Ao, AL)w, €) -
Then Mg is an almost faithfully flat, almost finitely presented A /pAZ -module, and for every
morphism Spa (D, D1) — Spa (A, AL) of affinoid perfectoids, the natural morphism
Me ® 4+ g, DY /p —H" (Spd (D,D%),, €)
is an almost isomorphism®*. Moreover,
H' (Spd (A, AL )0, &) =0
for ¢ > 0.

Proof. Step 1. H° (Spd(Aco, AL )w, €) is almost flat and almost finitely presented: The very small-
ness assumption implies that there is a finite étale surjection Spa (B, B*) — Spa (A, AL) such
that E|spa(p,B+) ~ (O;Q/p)r for some integer 7 > 0. The adic space Spa(B,B™) is affinoid
perfectoid by [Sch13, Theorem 7.9].

The natural morphism AT — B™ is almost finitely presented and almost faithfully flat by [Sch13,
Theorem 7.9] (see also [Bha, Theorem 10.0.9] for the almost faithfully flat part). Since €|gpq (B,5+)
is trivial, Lemma C.3.5 (1) implies that

H (Spd (B, BY),, &) ~* (BT /pB*)".
In particular, it is almost flat and almost finitely presented. We now want to descent these prop-
erties to H? (Spd (Aso, AL )y, €). For this, we use Proposition C.1.6 to recall that diamondification
commutes with fiber products, and so
&
Spd (B, BY) xg,q (4 4t Spd (B, BY) =~ (Spa (B, B") X5y (4t SPA (B,B+)>
~ Spd (B®a, B, (B®a,_B)").

By the proof of [Sch12, Proposition 6.18] (and Lemma B.1.7), we see that B+(§>A;; BT — (B®4._B)"

is an almost isomorphism (while, a priori, the latter group is the integral closure of the former one
inside B® 4, B). In particular,

B /p® 41, BY/p~" (B&a,.B)" /p(B&a.B)".
Thus
2 T
Y (Spd (B8, B, (B4 B)"), ) = (5 /) 5

34We note that € is a sheaf on a (big) v-site of Spd (4, A™), so it makes sense to evaluate & on Spd (D, DF).
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and the natural morphism

2
H” (Spd (B, BT),,€) ®p+ ) (BY /p) 4%/ — H° (Spd (BB 4. B, (BOa.B)T), . ¢)

is an almost isomorphism. We use the sheaf condition and the previous discussion to get an almost
exact sequence

0 — H(Spd (As, AY),,€) — H" (Spd (B, BT),, &) — H® (Spd (B, BY),,€) ®p+, (BT /p)®?) .

Theorem 2.10.3 applied to the almost faithfully flat morphism AX /pAL — BT /pB™ implies
that the natural morphism

H” (Spd (Ae, AL), &) ® 41, BT /p — H° (Spd (B, BY),, €) (6.4)
is an almost isomorphism. By the computation above, we know that H° (Spd (B, BT),, €) is almost
faithfully flat and almost finitely presented over BT /pB™. Thus, the faithfully flat descent for

flatness and almost finitely presented modules (see Lemma 2.10.5 and Lemma 2.10.7) implies that
H° (Spd (As, AL), , €) is almost faithfully flat and almost finitely presented over AL /pAZL.

Step 2. HY (Spd(Awo, AL)y, &) almost commutes with base change: By the proof of [Schl2,
Proposition 6.18] (and Lemma B.1.7), we know that Spa (B, B¥) xg_, (4. 4%, Spa (D, D™) exists

as an adic space and is represented by Spa (R, R™) for a perfectoid pair (R, R") such that
BT /p® 441, D /p— R"/p (6.5)
is an almost isomorphism. Thus the proof of Step 1 and (6.5) imply that
H® (Spd (D, D*),,€) © 44, BY /p = H® (Spd (R, R*),,, €)
is an almost isomorphism. Now we wish to show the natural morphism
H® (Spd (Aso, AL)w, €) @4 jpar. DT /pD* — H° (Spd (D, D*),, €)

is an almost isomorphism. By the faithfully flat descent, it suffices to check after tensoring against
Bt /pB*t over Al /pAZl . Therefore, we use (6.4) and (6.5) to see that it suffices to show that

HO (Spd (B, B")y, &) ®@p+, R /p — H® (Spd (R, R"),, €)

is an almost isomorphism. Now Lemma C.3.5 (1) almost identifies (in the technical sense) this
morphism with the identity moprhism

(R /pR*)" — (R /pR")"

since €[g,q(p,p+) is a trivial OF /p-vector bundle of rank 7.

Step 3. H' (Spd(Awo, ALy, &) is almost zero for i > 0: As above, we use that
Spa (B, B') — Spa (A, AL)

is a finite étale morphism of affinoid perfectoids to conclude that all fiber products
Spa (B, B+)j/Spd(Aoo,A§o)

are represented by affinoid perfectoids Spa (Bj, Bj) and the natural morphisms

(B*/pB*) amat B /pBf

are almost isomorphisms. Since each restriction 8|Sp d4(B;,B) is trivial, Lemma C.3.5 (1) ensures
i
that higher cohomology of € on Spd (B}, B;r) almost vanish. Thus RT (Spd (Asc, AL)v, €) is almost
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isomorphism to the Cech complex associated to the covering Spd (B, B*) — Spd (As, AL). Step 2
implies that this complex is almost isomorphic to the standard Amitsur complex

Almost exactness of this complex follows from Lemma 2.10.4. O
6.5. Strictly Totally Disconnected Covers of Affinoids. The main goal of this section is to
get rid of the almost mathematics in Lemma 6.4.8 under some stronger assumptions on A, (and
on &).

Set-up 6.5.1. We fix

(1) a p-adic perfectoid field K with its rank-1 open and bounded valuation ring Ok and a good
pseudo-uniformizer w € O (we always do almost mathematics with respect to the ideal
m =, w7 0 = K°°),
(2) an affine admissible formal scheme X = Spf A with an adic generic fiber X = Spa (4, A™1);
(3) a strictly totally disconnected affinoid perfectoid Spa (Ao, AL) (see Definition C.2.1) with
a morphism
Spa (A, AL) — Spa (4, AT)
such that Spd (Aeo, AL ) — Spd (A, AT) is a v-covering and all fiber products
Spa (Aso, A )i/ Spa(4,AT)
are strictly totally disconnected affinoid perfectoid spaces;

(4) an O;O/p—vector bundle € such that &[g (Ao A) ™ (O " for some integer r.

+
Spd (Ano,At)/P)

Corollary 6.5.2. Under the assumption of Set-up 6.5.1, let f: Spf By — Spf Ay be an étale
morphism of admissible affine formal Og-schemes. Then

(Boo, BL) = ((Bo®4,A%) [1/p), Bo®ayAL)
is a perfectoid pair and Spa (Boo, BY) is a strictly totally disconnected (affinoid) perfectoid.

Proof. Corollary 6.4.5 already implies that Spa (B, BL) is an affinoid perfectoid. Moreover,
Lemma 6.4.6 implies that

Spa (Bso, BL) ~ Spa (B, BT) X Spa (4,A+) Spa (A, AL),

where Spa (B, BY) is the generic fiber of Spf By. So Spa(Buo, BL) — Spa(Aw, AL) is an étale
morphism, and so the claim follows from Lemma C.2.6. O

Lemma 6.5.3. Under the assumption of Set-up 6.5.1, let Mg be an AL /pAt -module
Mg == H" (Spd (Ao, AL)v, €) -

Then Mg is (non-canonically) isomorphic to (A} /pAL )", and for every morphism Spa (D, D) —
Spa (Ao, AL) of strictly totally disconnected affinoid perfectoids, the natural morphism

Mg ® 41 ), Dt /p —H" (Spd (D,D%),,€)
is an isomorphism. Moreover,
i (spd (Ao, A )I/SPA(AAT), 8) ~0

for é,5 > 1.
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Proof. Once we fixed an isomorphism

8|Spd (Aso,AL) = (O}O/P)T |spd(Aoo,A;)v
the isomorphism Mg ~ (AL /AL)" follows from Corollary C.3.13. An isomorphism

Mg @4, D /p ~* H(Spd (D, DY), €)

is then clear. And vanishing

i (spd (Ao, A )i/SPA(AAT), e) ~0
for 4,5 > 1 also follows from Corollary C.3.13. because we assume that all fiber products

Spd (Aoe, AT )i/8Pd(4,AT)
are representable by strictly totally disconnected (affinoid) perfectoid spaces. O
Corollary 6.5.4. Under the assumption of Set-up 6.5.1, let f: Spf By — Spf Ap is an étale
morphism with (Beo, BY) a perfectoid pair as in Corollary 6.4.5. Then the natural morphism
r (Spd (Aoo, AL )I/SPA(AAT) 8) ®0/pAg Bo/pBo — T (Spd (B, Bt )i/SPd(B.BY) 8) .

is an isomorphism for j > 1.

Proof. By definition, all fiber products Spa (A, A )7/ 5P2 (AAT) satisfy the assumption of Set-
up 6.5.1, so Proposition C.1.6 (6) ensures that it suffices to show the claim for j = 1. In this case,
the result follows from Lemma 6.5.3 and Corollary 6.5.2. 0

Corollary 6.5.5. Under the assumption of Set-up 6.5.1, let f: Spf By — Spf Ay is an étale
morphism with (Beo, BL) a perfectoid pair as in Corollary 6.4.5. Then the natural morphism

H' (Spd (4, A)u, €) ® 49 /pa, Bo/pBo — H' (Spd (B, BY),,€).
is an isomorphism for ¢ > 0.
Proof. Again, by definition, all fiber products Spa (As, A% )7 /Spa(4,47) satisfy the assumption of
Set-up 6.5.1, so Lemma 6.5.3 implies that

Hi (Spd (Ao, A )I/SPA(AAT), e) ~0

for 4,5 > 1. Therefore, cohomology groups H!(Spd (4, A™),, &) can be computed via cohomology
of the Cech complex associated to the covering Spd (Ao, AL) — Spd (A4, AT). By Corollary 6.5.2,
the same applies to Spa (B, B') and the Cech complex associated to the covering Spd (Bso, BL) —
Spd (B, BT). Therefore, the claim follows from Corollary 6.5.4. g

Corollary 6.5.6. Under the assumption of Set-up 6.4.1, let K C C' be a completed algebraic closure
of K, and Spa (A, Af) = Spa (A, AT) Xgpa (k,0x) SPa (C,O¢). Then the natural morphism

H' (Spd (4, AT)o, €) @0, /p Oc/p — H' (Spd (A, AL)w, €) -
is an almost isomorphism.

Proof. The proof is similar to that of Corollary 6.5.4 and Corollary 6.5.5. The only change that we
need to make is that the fiber product

Spa (AOO, A:o) X Spa (K,0x) Spa (La OL)

is a strictly totally disconnected affinoid perfectoid with the +-ring almost isomorphic to AT, R0 <OL.
The strictly totally disconnected claim follows from Lemma C.2.6 and almost computation of the
+-ring follows from the proof of [Sch13, Proposition 6.18]. O
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6.6. Perfectoid Torsors. We apply the results of Section 6.4 to certain pro-étale covers of Spa (A, A™)
to see that computation of v-cohomology sheaves can be often reduced to the computation of certain
continuous cohomology groups. To make this precise, we need to define the notion of a G-torsor
under a pro-finite group G.

Definition 6.6.1. A v-sheaf G associated to a pro-finite group G is a v-sheaf G: Perf? — Sets
such that G(S) = Homeont(|S], G).

A morphism of v-sheaves X — Y is a G-torsor if it is a v-surjection and there is an action
a: G x X — X over Y such that the morphism a Xy po: G x X — X Xy X is an isomorphism,
where po: G x X — X is the canonical projection.

Remark 6.6.2. If a pro-finite group G is a cofiltered limit of finite groups G =~ lim; G;, then

Now we can formulate the precise set-up we are going to work in.

Set-up 6.6.3. We fix

(1) a p-adic perfectoid field K with its rank-1 open and bounded valuation ring O and a good
pseudo-uniformizer w € Ok (we always do almost mathematics with respect to the ideal
m=J, @'/"" 0 = K*°);

(2) an affinoid rigid-analytic space Spa (A, AT) over K with an admissible formal O g-model
Spa (Ap), and a morphism (A, AT) — (A, AL) such (A, AL) is a perfectoid pair and
Spd (Aso, AL) — Spd (A4, AT) is a A _-torsor under a pro-finite group An;

(3) a very small O;Q /p-vector bundle €.

We start the section by studying the structure of the fiber products Spd (Ao, Aio)j/Spd (4,4%)
for j > 1. For a general v-cover, we cannot say much about these fiber products. But the situation
is much better in the case of G-torsors.

Lemma 6.6.4. Under the assumption of Set-up 6.6.3, the fiber product Spd (A, At yi/Spd (4,47)
is represented by an affinoid perfectoid® Spa (T}, T;r) for every j > 0. Moreover, for every j > 0,

(Tj7 Tg—i_) = (Mapcont(Aglv Aio)ﬂ Mapcont(Ag)glv AboyoJr))
and TH /pTHH ~ T /o T o Mapeo, (AL ', AL /pAL).

Proof. We first show that Spd (A, A;ro)j/ Spd (4,4%) are representable by affinoid perfectoids. Since
Spd (Ao, AL) — Spd (4, A1) is a A _-torsor, we get

Spd (Aoe, AL )I/8PAAAT) ~ gpq (4, AT) x AT
o1 b b,+ Jj—1
~lim (Spa(Aoo,Aoo)xéi )
o i=1 b i—1 pb+
~ lim (Spa (Map(Ai L AP), Map(A 1, A% )))

is a cofiltered limit of affinoid perfectoid spaces, so it is an affinoid perfectoid space Spa (TJ,Tf)
by [Sch17, Proposition 6.5]. Moreover, loc. cit. implies that Tf is equal to the w’-adic completion

35Recall that Spd (Aso, AL) is itself represented by an affinoid perfectoid Spa (A%, A%).
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of the filtered colimit colim; Map(A{ -1 Az’j) and 7T = T;ﬂ#] In particular, we already see that
) ) b : j—1  4b, b
Tjﬁ Jr/})T}H ~ T;r/(w) Tj+ ~ (cohm[ Map(A?] ,Aoj)) /(™)
~ colim; Map(A? ™", A% /(w)’ A%)
~ colimy Map(Ag_l, AL JwAL)
~ colimy Map(Ag_l, AL /pAL)
= Mapcont(A]o:lv Ag_o/pA:o)

Now we compute Tj+ and T;. We start with Tj+:
T} =~ lim (conm, Map(AI !, A%) /(wb)”>
~ lién (coliml Map(Ag_l, Abog/(wb)”AZ;)*))
~ lim Map (Aggl, At /(wb)”Aﬁ;j)
= Mgy (AL lim AL /()" A%
>~ Map,ont (Agla Aib+) :
Since Ay is compact and A% ~ AZ’S“[%], we also have
Ty =T [1/w’]
~ colim, » , Mapg,p, (Ag;l, Abo’j')
~ Mapgont (Agl, colim, _; Agj)
~ Map o <A{;1, AZo)
finishing the proof. U

Note that since Spd (A, AL) — Spd (A, AT) is a A -torsor, there is a canonical continuous
AT -linear action of Ay, on AY. Now we want to relate v-cohomology groups of € to the continuous
group cohomology of A,,. This is done in the following lemmas:

Lemma 6.6.5. Under the assumption of Set-up 6.6.3, we define Mg to be an AT /pAT -module
H (Spd (A, AL )y, €). Then Mg is almost faithfully flat, almost finitely presented AL /pAf -
module, and

HO(Spd (Ao, AL)Y/FPHAAD [€) 2 Mapn (AL, Me) 2" Mapeoy (AL, (ME)),

H'(Spd (Aue, AL )I/SPA(AAT) ey ~a
for every i,5 > 1.

Proof. Lemma 6.6.4 implies that all fiber products Spd (As, AL )7/5pd (4,47) satisfy the assumptions
of Lemma 6.4.8. Thus Lemma 6.4.8 and the computation of fiber products in Lemma 6.6.4 imply
that

H (spd (Ao, A )i/SPA(AAT) e) ~
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for every 4,5 > 1, and the natural morphism
Me @ y1. a1, Mapeon; (ALY, AL /p) — HO (Spd (Aco, AL)Y/SPHAAT), 8)
is an almost isomorphism for every j7 > 1. Thus it suffices to show that the natural morphism
Me @ 44 1 MaDeon (ALY, AL /p) — Mapeon (ALY, Me)

is an isomorphism. This can be done by writing A, = lim; A; and reducing to the case of a finite
group similarly to the proof of Lemma 6.6.4. The almost isomorphism

Mapcont(Aglv MS) ~¢ Mapcont(Ag17 (Mg)')
is achieved similarly using that (—); commutes with colimits being a left adjoint functor. O
Lemma 6.6.6. Under the assumption of Set-up 6.4.1, we define Mg to be an AL /pAl -module

H° (Spd (Aso, AL)y, €). Then there is a canonical continuous action of A on (Mg), compatible
with the action of Ay on ALY /pAL, ie. glam) = g(a)g(m) for any a € AL /pAL and m € M.

Proof. Lemma 6.6.4 ensures that the fiber product Spd (A, AL) X $pd (4,4+)SPd (Acc, AZ) is repre-
sented by an affinoid perfectoid Spa (T, T, ). Therefore, we can uniquely write it as Spd (S, ST) for
an untilt of (T3, Ty") corresponding to the morphism Spa (Ts, Ty ) — Spd (4, A*) — Spd (Q,, Zy).

Lemma 6.4.8 implies that the descent data for the sheaf € provides us with an (ST /pS™t)e-
isomorphism

a a
(S*/p) B (At jp)" (Mg)® — (Mg)" D (At /p)" (S*/p)
satisfying the cocycle condition. By Corollary 2.2.4 (2), this defines an (AL /pA} )“-linear mor-
phism
+ a
(Me)* = (Me)* @ (41 sy (S7/p)"
By Lemma 6.4.8 and Lemma 6.6.5, this is equivalent to an (AL /pAL )“-linear morphism
(Me)a — Mapoyg (ACXM (Mg)!)a :
By Lemma 2.1.9 (3), this is the same as an (AL /pAZL)-linear morphism
P: (Mg)| — Mapcont (AOO7 (Mg)|) .
This defines a morphism
Vi Ao = Homy ) (M), , (Me),)
by the rule

1(g)(m) = (6(m))(9)-

One checks that the cocycle condition translates into the statement that ~ is a group homomor-
phism, i.e. it defines an action of A,. Likewise, one checks that A} /pAZ -linearity of ¢ translates
in to the fact that this action is compatible with the action on AT /pAT . And continuity of ¢
translates into the fact that + defines a continuous action, i.e. the natural morphism

: U; Ao
COthono,open(Mg)! — (Mg)'
is an isomorphism. ]

Corollary 6.6.7. Under the assumption of Set-up 6.4.1, we define Mg to be an AT /pAT -module
HO (Spd (As, AL )y, €). Then

H'(Spd (4, A7), €) =" Hegy (Do, (ME))).
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Proof. Lemma 6.6.5 implies that
I (spd (Ao, A )i/SPA(AAT) g) ~7

for i,j > 1. Therefore, the cohomology groups H(Spd (4, A*),, &) can be almost computed via
cohomology of the Cech complex associated to the covering Spd (As, AL) — Spd (A, AT). More-
over, Lemma 6.6.5 also implies that the terms of this complex can be almost identified with the
bar complex computing continuous cohomology of the pro-finite group A, with coefficients in the
discrete module (A¢);. We leave it to the reader to verify that the differentials in the Cech complex
coincide with the differentials in the bar complex computing continuous cohomology. U

For the future reference, we also discuss the following base change result:

Lemma 6.6.8. Let G be a pro-finite group, and let M be a discrete R-module that has a continuous
R-linear action of G. Suppose that R — A is a flat homomorphisms of rings. Then the canonical
morphism H! . (G,M)®r A — H. (G, M ®r A) is an isomorphism for i > 0.

cont cont

Proof. This is a combination of two facts: filtered colimits commute with tensor product, cohomol-
ogy of finite groups commute with flat base change (in particular, invariants commute with base
change). Indeed, Lemma follows from a sequence of isomorphisms

H. (G, M) @ A= (colimpag open H'(G/H, M) @5 A
~ colim oG open (H (G/H, M") @ A)
=~ colimpag openH (G/H, M @5 A)
=~ colimpgag openH (G/H, (M @5 A))
~ Héont(Ga M ®pr A)
O
6.7. Nearby Cycles are Quasi-Coherent. We start the proof Theorem 6.1.9 and Theorem 6.1.2
in this Section. Namely, we show that the complex Rv,(€) are quasi-coherent and commutes with

étale base change for a small O;O/ p-vector bundle €. The main idea is to apply the results of
Section 6.4 to a particular perfectoid covering of X.

For the rest of this section, we fix a perfectoid p-adic field K with a good pseudo-uniformizer
w € Ok (see Definition B.1.6). We always do almost mathematics with respect to the ideal
m = Un wl/pnOK.

Lemma 6.7.1. Let X = Spa (A4, A") be a strongly noetherian Tate affinoid over Spa (Qp, Zy),
and € an O}O /p-vector bundle. Then there is a strictly totally disconnected affinoid perfectoid
Spa (As, AL) with a morphism Spa (A, AX) — Spa (A4, A™) such that
(1) the morphism Spd (A, AL) — Spd (A, A1) is a v-covering;
(2) all fiber products Spa (As, AL)7/SP2 (A.A7) are strictly totally disconnected affinoid perfec-
toids;
(3) €lspa (Avo,AL) ™ (O}Q/p)r lspd (Au, A% for some integer r.

Proof. Lemma C.2.10 ensures that there is a morphism Spa (A, AL) — Spa (A4, AT) satisfying the
first two properties. Now Lemma C.4.4 ensures that 8|Spd (s, AL) (O;Q/p)r ]Spd (Ao, AL)" O
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Lemma 6.7.2. Let X = Spf A an admissible affine formal Ox-scheme with an affinoid generic
fiber X = Spa (A, A1), and & an O}Q/p—vector bundle. Then R'v,(€) is quasi-coherent for i > 0.
More precisely, the natural morphism

P

Hi(XY, &) = Riv, (&)
is an isomorphism for any i > 0.

Proof. The universal property of the tilde-construction implies that we do have a natural morphism

c: Hi(XY, &) = Riv,(&).
Recall that Riv, (&) is the sheafification of a presheaf defined by
s H(UG , €).
Thus, in order to show that ¢ is an isomorphism, it suffices to show that the natural morphism
HI(X,€) @ a0 /pag (Ao/pAo)y — H'(UF . €)

is an isomorphism for any open formal subscheme Spf (Ap) (fy C Spf Ag. We choose a covering
Spa (Aso, As) — Spa (A4, A1) from Lemma 6.7.1. Then the result follows from Corollary 6.5.5
since (A, AT) = (Ax, AL) and € fit into Set-up 6.5.1. O

Theorem 6.7.3. Let X an admissible formal Og-scheme with adic generic fiber X = Xk, and &
an O;O /p-vector bundle. Then R'v,(€) is quasi-coherent for ¢ > 0. Furthermore, if f: ) — X an
étale morphism with generic fiber f: Y — X then the natural morphism

fis (Rive.€) = Rivy.. (€0 )
is an isomorphism for any i > 0.

Proof. Both claims are local on X and 2), so we can assume that X = Spf Ay and Q) = Spf By are
affine. Then quasi-coherence of R'v, (&) follows from Lemma 6.7.2. In order to show that

fi (Rivx.€) = Rivg. (€lyo ),
it suffices to show that the natural morphism
HY(XY, &) ®ay/pae Bo/pBo — H{(Y,?,€)

is an isomorphism. This follows from Corollary 6.5.5 using the covering Spa (A, AZ) — Spa (A, A™)
from Lemma 6.7.1. O

For the future reference, we also prove the following result:

Lemma 6.7.4. Let X = Spa (A, AT) be an affinoid rigid-analytic space over K, € an (‘);r(0 /p-vector
bundle, and K C C a completed algebraic closure of K. Then

H'(XY, &) @0, /p Oc/p — HI(XE,, €)
is an almost isomorphism.

Proof. This follows directly from Corollary 6.5.6 using the covering Spa (An, AL) — Spa (A4, A™)
from Lemma 6.7.1. O
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6.8. Nearby Cycles are Almost Coherent for Smooth X and small €. The main goal of
this section is to show that the complex Rv,(€) has almost coherent cohomology sheaves for an
admissible formal Og-scheme with smooth generic fiber. The main idea is to apply the results of
Section 6.6 to a particular “small” perfectoid torsor cover of X, where one has a good control over
the structure group A.

For the rest of the section we fix a p-adic perfectoid field K with a good pseudo-uniformizer
w € Okg. We always do almost mathematics with respect to the ideal m =, /P O

We first discuss the overall strategy of the proof. We proceed in four steps: firstly, we show the
result for the formal G} and € = O;Q /p, then we deduce the result for affine formal schemes such
that the adic generic fiber admits a map to a torus T7 that is a composition of finite étale maps
and rational embeddings. After that we show the result in general by choosing a “good” covering
of X possibly after an admissible blow-up of X to finish the proof for & = O}O /p. We reduce the

general case to the case & = O;Q /p via Corollary C.4.10.
The main ingredient for the third step is Achinger’s result ([Ach17, Proposition 6.6.1]) that any
étale morphism g: Spa (A, AT) — D" can be replaced with a finite étale morphism
g': Spa (A, AT) — D%.

The proof of this result in [Ach17] is given only for rigid-analytic varieties over the fraction field
of a discrete valuation ring, but we need to apply it in the perfectoid situation that is never
discretely valued. So Appendix D provides the reader with a detailed proof of this result without
any discreteness assumptions.

Now we begin to realize the strategy sketched above. We consider X = Spf OK<T1i1, o T,

and set RT = O (T, ..., T;F') and R} = OK<T1ﬂ/pm,...,Tfl/pm>. We note that the map
Spf R, — Spf R" defines a plm-torsor, thus . continuously acts on Ry}, by R*-linear automor-
phisms.

Now we consider an R-algebra
REL = O (TP TEYP™) = (colim, R},

where “stands for the p-adic completion. It comes with a continuous R-linear action of the group
Ao = Zp(1)™ = Tp(upe) on RE. We trivialize Z,(1) by choosing some compatible system of p'-th
roots of unity (¢, (2, (3, - .. ). In order to describe the action of Ay on RY, we need the following
definition:

Definition 6.8.1. For any a € Z[1/p], we define (¢ as CZfl whenever ap! € Z. It is clear to see
that this definition does not depend on a choice of .

Essentially by definition, the k-th basis vector v, € Ax > Zj acts on RY as
V(TP . Tom) = ¢TIy .. Tom.

Lemma 6.8.2. [Schl3, Lemma 5.5] Let R*, RY and A be as above. Then the cohomology
groups H! (A, RL /pRL) are almost coherent Rt /pRI -modules. And the natural map

cont
fzont(AOOv R;ro/p) ®R+/p A+/p - Héont(Aooﬂ R;ro/p ®R+/p A+/p)
is an isomorphism for a p-torsionfree R™-algebra A™ and i > 0.

Proof. We note that R* /pR™ is an almost noetherian ring by Theorem 2.11.4. Thus Theorem 2.7.8
implies that H’, ,(Ae, RYL /pRL) is almost coherent if it is almost finitely generated.

cont
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Now [BMS18, Lemma 7.3] says that R cont (Ao, RE /pRZL) is computed by means of the Koszul
complex K (RY /pR;v1 —1,...,v, — 1). Then, similarly to [Bhal8, Lemma 4.6], we can write

K (RL /iy —1,...,7m —1) = K (R"/p;0,0,...,0)® & K (RT/p;¢™ —1,...,¢% —1)

(a1,--an)€(Z[1/p]N(0,1))"
We observe that
H' (K (R*/pR";0,0,...,0)) = A" (R" /pR™)

is a free finitely presented R*/pR"-module. For each (ai,...,a,) € (Z[1/p]|N(0,1))", we can
assume that a; has the minimal p-adic valuation for the purpose of proving that

K(RL /pRL;vm — 1,0, — 1)

has almost finitely finitely generated cohomology groups. Then [BMS18, Lemma 7.10] implies
that H' (K (RT/pR*; (™ —1,...,(% — 1)) is finitely presented over RT/pR™ and (% — 1-torsion
module. Note that

op(C® —1) = Gy — 1) = 22 50

-1
p—Dp
where a; = b/p' with ged(b,p) = 1. Moreover, for any h € Z, there are only finitely many indexes
(a1,...,an) € (Z[1/p] N (0,1))™ with v,(a;) > h. This implies that

Heont (Aoo, RL/PRL) = H' (K (RL/pim =1, 7 — 1))

is a finitely presented R /pRT-module up to any w!/P" torsion. In particular, this module is almost
finitely presented.

Now we show that H._ (A, RL/pRL) commutes with base change for any O x-flat algebra A™T.

In order to show this, we observe the (RT/pR")[Ax]-module RY, /pRE comes as a tensor product
M ®g, /p R /p for the (O /pOK)[Ac]-module

M = o, (O /pOK)T{™ ... Ty"
(a1,-,an)€(Z[1/p]N[0,1))"
where the basis element ~; acts by
Ye(Ty . Tpm) = CRTyt . T
Therefore, the desired claim follows from a sequence of isomorphisms
Heont (Doo, RE /D) @Rt jp AT/ = (Hign(Doo, M) ®0,c/p BT /P) @Rty AT /D
~ Hont (Boo, M) @0, p AT /D
~ Hgn (Do, M @0, p AT /p)
~ Hioni(Doo, RE /0 @rit gy A /p),

where the third isomorphism uses Lemma 6.6.8. ]

Lemma 6.8.2 combined with Corollary 6.6.7 essentially settle the first step of our strategy. Now
we move to the second step. We start with the following preliminary result:

Lemma 6.8.3. Let Ap be a topologically finitely presented O g-algebra, and P a topologically free
Ap-module, i.e. P =@; Ao for some set I. Then M is Ap-flat.
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Proof. We start the proof by noting that [Sta21, Tag 00M5] guarantees that it suffices to show that
TorfO(P, M) = 0 for any finitely presented Ag-module M. We choose a presentation

0—-Q—>A—->M—=0

and observe that @ is finitely presented because Ag is coherent. So vanishing of Tor; is equivalent
to showing that

P®y, Q@ = P ®a, A
is injective.

Now note that Q[p™], Af[p™], and M [p>] are bounded by [Bosl4, Lemma 7.3/7], so the same
holds for @; Q, @; Af, and @; M. Therefore, the usual p-adic completions of @; Q, @; Af and
@, M coincide with their derived p-adic completions. Since derived p-adic completion is exact (in
the sense of triangulated categories) and coincides with the usual one on these modules, we get

that the sequence
n
0— @]Q — @IAO — @IM -0

Now we want to show that this short exact sequence is the same as the sequence

P®y, Q= P®a, A = P®4, M — 0.

is exact.

As a consequence, this will prove that P ®4, @ — P ®4, Ay is injective.
For each Ap-module N, there is a canonical map

P®s, N — @IN )
So we have a morphism of sequences:

P®AOQ*>P®AOA6L*>P®AOM*>O

l l l

0—>®1Q—>®1A6‘—>®1M4>0.

The map Aj ®4, P — @ 7AG is an isomorphism because Ay ®4, P = P" is already p-adically
complete. This implies that the arrow

M @4, P — EBIM
is surjective. But then
P ® 4 Q— @IQ

is surjective since M was an arbitrary finitely presented A-module. Now a diagram chase implies
that

M®AOP—>@1M

is also injective. And, therefore, it is an isomorphism. So
P —
24, Q@ — D,Q
is also an isomorphism. Therefore, these two sequences are the same. In particular,

P®a, Q— P®a, Ay

is injective. i


https://stacks.math.columbia.edu/tag/00M5
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To establish the second part of our strategy, we will also need a slightly refined version of [Sch13,
Lemma 4.5] specific to the situation of an étale morphism to a torus.

We recall that we have defined
R = O /(TH, ..., T,
R} = OK<T1i1/pm,...,Tflﬂ/pm>, and
RE = O (TP TEVPY = (colim, RE)
and a group Ay ~ Z7* continuously acts on RY,. We also define R (resp. Ry, Roo) as RT[1/p]
(resp. R;[1/p], RL[1/p]). For an étale morphism Spa (A, A*) — Spa (R, Rt) = T" we define a
Huber pair
(A, AY) = (R ®R A, (Rm @r A)T) = (Rm®@RA, (Rm®rA)"),
where (R, ®p A)T is the integral closure of the image of R} ®p+ AT in R, ®p A. Similarly, we
define
AL = (colim,, A})"
and A, == AL [1/p].

Lemma 6.8.4. [Sch13, Lemma 4.5] Let Spa (A4, AT) — Spa(R,R") = T™ be a morphism that
is a composition of a finite étale maps and rational embeddings. Then (A, AL) is an affinoid
perfectoid pair, Spd (Aso, AL) — Spd (4, AT) is a A_-torsor, and, for any n € Z, there exists m
such that the morphism

AL ®ps RE, — AL
is injective with cokernel annihilated by @/?".

Proof. We note that [Sch13, Lemma 4.5] proves that (Ao, A1) is an affinoid perfectoid (denoted
by (Ss0,S%) there). By construction (and Proposition C.1.6 (6)), Spd (A, A;) — Spd (A4, A™)
is a (Z/p™Z)"-torsor. So Spd (A, AL) =~ lim,, Spd (4., A) (see Proposition C.1.6 (5)) is a
A ~lim,, (Z/p"Z)"-torsor. Therefore, we are only left to show that, for any n € Z, there exists
m such that the morphism

AL ®ps RE, — AL
is injective with cokernel annihilated by w/?".

We denote by ﬁm the p-adic completion of p-torsionfree quotient of A} ® RE RE (ﬁm is denoted
by Ay, in [Sch13, Lemma 4.5]). Then [Sch13, Lemma 4.5] shows that, for any n € Z, there exists
m such that the map A, — AT has cokernel annihilated by w!/P" . Moreover, the map becomes
an isomorphism after inverting p. We observe that this implies that /Tm — AL is injective as the
kernel should be p*°-torsion, but the p-adic completion of a p-torsionfree ring is p-torsionfree. Thus
the only thing we need to show is that A}, @5+ R, is already p-torsionfree for any m. We note

that R} is topologically free as an R, -module because

—

+1/p>® +1/p> +1/p™ +1/p™\ l/pP1 1/pbn
RE = O (TEVP7 . 1E/p >:@(bh_“’bn)ezn\mzno;{@l P TEY TP e

_ M + . pl/p™ 1/pbn
a e9(171,...,bn)ezn\mznRm h T

Thus, RY, is R} -flat for any m by Lemma 6.8.3. Therefore, A}, ®p. R is flat over A, so it is,
in particular, Ox-flat. As a consequence, it does not have any non-zero p-torsion. This finishes the
proof. O
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Lemma 6.8.5. Let X = Spf Ay be an affine admissible formal Og-scheme with generic fiber
X = Spa (A, AT) that admits a map f: X — T" = Spa (R, R") that factors as a composition of
finite étale morphisms and rational embeddings. Then the cohomology groups

Hz(Xz?v O;r(o/p)
are almost coherent Agy/pAg-modules for i > 0.

Proof. We denote the completed algebraic closure of K by C'. Then we note that Lemma 6.7.4
implies that ' .
H'(X),0%0/p) ®o,c/p Oc/p = H(XE,, 010 /p)

is an almost isomorphism for all ¢ > 0. Therefore, faithful flatness of the morphism Og /p — O¢/p
and Lemma 2.10.5 imply that it suffices to prove the claim under the additional assumption that
K = C is algebraically closed.

‘Theorem 2.11.4 ensures that Ap is an almost noetherian ring, thus it suffices to show that
H{(XP, O}o /p) are almost finitely generated Ag/pAg-modules.

Now the generic fiber X is smooth over C, so [BGR84, Corollary 6.4.1/5] implies that AT = A°
is a flat, topologically finitely type Oc-algebra that is finite over Ag. Thus Lemma 2.8.3 ensures
that it suffices to show that H'(XY, 0%, /p) is almost finitely generated A*/pA*-modules for i > 0.
We note that AT is almost noetherian as a topologically finitely generated O¢c-algebra, so almost
coherent and almost finitely generated A*T-modules coincide.

We consider a A__-torsor Spd (Ax, AL) — Spd (A, AT) that is constructed in Lemma 6.8.4.

Thus Corollary 6.6.7 ensures that
RI(XY, 0%, /p) = Rlcont(Aoo, AL /pAL).

So we reduce the problem to showing that the complex Rl cont (Ao, AL /pAL) has almost finitely
generated cohomology modules.

Now we pick any € € Q~¢ and use Lemma 6.8.4 to find m such that the map

Af@pe RL — AL
is injective with cokernel killed by p®. Thus we conclude that the map
Ay /P @i, Rio/p = AL /D
has kernel and cokernel annihilated by p®. Then it is clear that the induced map
Hiont(AOW A:’L/p ®R7+n/p Rc—i_o/p> — Hz;:ont(Aom A;_o/p)

has kernel and cokernel annihilated by p?¢ for any i > 0. Therefore, Lemma 2.5.7 implies that it is
sufficient to show H{ i (Ao, A /p @+ Ip R /p) is almost finitely generated over AT /pA™ for any
m >0 and any ¢ > 0.

The trick now is to consider the subgroup p™A., that acts trivially on A /pAt to pull it out
of cohomology group by Lemma 6.8.2. More precisely, we consider the Hochschild—Serre spectral
sequence

B = H' (Do /0™ Do Mo (0" Do, A5 /p @ s, R /D)) = Hiti (B A /0 @t ) RE /D)

We recall that group cohomology of any finite group G can be computed by an explicit bar
complex. Namely, for a G-module M, the complex looks like

oG, M) S el L
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where ' ‘ '
CHG,M)={f:G" - M} ~ M¥#C
and

di(f)(g[:’?gl? cee 791) = go- f(917 s 791) +
i

Z(*l)]f(go, ce395-2,95-195,95+15 - - - agl) + (*1)Z+1f(goa cee agifl)-

j=1
In case M is an A" /pA*-module and G acts AT /pA*-linearly on M, all the terms C*(G, M) have
a natural structure of an A*/pA*-module, and the differentials are A*/pA*-linear. Moreover,
the terms C'(G, M) are finite direct sums of M as an AT /pA*-module. In particular, they are
almost coherent, if so is M. Thus Lemma 2.6.8 guarantees that all cohomology groups H*(G, M)
are almost coherent over AT /pA™ if M is almost coherent (equivalently, almost finitely generated)
over AT /pAt.

We now apply this observation (together with Lemma 2.6.8) for
G = Ao /™Aoo and M = H (p"™ Ao, AL /P @, R /D)

cont

to conclude that it suffices to show Hgom

(P Do, A [P ® i Ip R /p) is almost coherent (equiva-
lently, almost finitely generated) over A /pA™ for any j > 0, m > 0. We note that A is finite
over AT by [BGR84, Corollary 6.4.1/5]. Thus Lemma 2.8.3 implies that it is enough to show that
H . (p" Ao, At /p ® i jp Rao/P) is almost finitely generated over Ay, /pAsy, for i > 0 and m > 0.

cont
Now we can use Lemma 6.8.2 to write

Hgont (ponm Ajr_z/p ®Rj‘n/p R:o/p) = Hgont (pmAOO’ Rg_o/p) ®R;;/p A’r—;/p

Moreover, Lemma 6.8.2 guarantees that H‘Zont(pono,Rjo /p) is almost finitely generated over
Ry /pRY,. Thus Hyg (P Aco, RS /D) @ gt Ay /p is almost finitely generated over A, /pA, by

Lemma 2.8.1. ]

Corollary 6.8.6. Let X = Spf Ay and X = Spa (A, A™) be as in Lemma 6.8.5, and let € be a very
small 0%, /p-vector bundle. Then HY(X$, €) are almost coherent over Ag/pAy.

Proof. Similarly to the proof of Lemma 6.8.5, we can assume that K = C' is algebraically closed
and Ag = A° = AT is almost noetherian.

By assumption, we can find a finite étale surjection Y — X that splits €. Since X is noetherian,
we can dominate it by a Galois cover to assume that Y — X is a G-torsor for a finite group G such
that &|yo ~ (07, /p)" for some r. Then we we have the Hochschild-Serre spectral sequence

By = H' (G (Y9, (050 /p)") ) = HH(xD.€)

Similarly to the proof of Lemma 6.8.5, the argument with the explicit bar complex computing
H*(G,—) implies that it is sufficient to show that HY (YUO, (O;<> /p)T) is almost coherent over

(‘);ZQ (Y©)/p for j > 0. But this is done in Lemma 6.8.5. O

Lemma 6.8.7. Let K be a p-adic perfectoid field, and X an admissible formal O g-scheme with adic
generic fiber X = Xg. Let € be a small O}O /p-vector bundle on X¢. Then there is a collection of

(1) an admissible blow-up X’ — X,
(2) a finite open affine cover X' = J,c; 4,
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such that, for every ¢ € I, the restriction 8|(u4 2 is very small.
i, v

Proof. By the smallness assumption, there is a finite open cover X = |J;c; U; such that 8|(U~ 2
can be trivialized by a finite étale surjection. Therefore, [Bosl4, Lemma 8.4/5] implies that there
is an admissible blow-up X’ — X with a covering X’ = [ J,.; {4 such that &; x = U;. We can refine

il to assume that each Ll; = Spf A, is affine. O

Theorem 6.8.8. Let X be an admissible formal O g-scheme with smooth adic generic fiber X and
mod-p fiber Xg. Then

Ry (&) e D’ (%0)°

acoh

for any small O;Q /p-vector bundle €.

Proof. Firstly, we note that the claim is clearly Zariski-local on X and descends through rig-
isomorphisms by the Almost Proper Mapping Theorem 5.1.3. Thus Lemma 6.8.7 implies that
it suffices to prove the theorem for X = Spf Aj an affine formal Og-scheme and a very small €.

Now we note that X is rig-smooth in terminology of [BLR95, §3]. Thus, [BLR95, Proposition
3.7] states that there is an admissible blow-up 7: X’ — X and a covering of X’ by open affine formal
subschemes 4l with rig-étale morphisms f;: Ll — KSZK, i.e. the adic generic fibers f; ;- : U} - — D%
are étale. We apply the Almost Proper Mapping Theorem 5.1.3 again to conclude that it suffices
to show the theorem for X’. Moreover, since the claim is Zariski-local on X, we can even pass to
each 4 separately. So we reduce to the case X = Spf Ay is affine, admits a rig-étale morphism
ii:X— K%K, and & is very small.

We wish to reduce the question to the situation of Corollary 6.8.6, though we are still not quite
there. The key trick now is to use Theorem D.4 to find a finite rig-étale morphism f: X — A%K.
In particular, the generic fiber fx: X — Df( is a finite étale morphism. So the only thing we are
left to do is to embedd Dil( into Tg( as a rational subset. This is done by observing that

T -1 Tqg—1
D4 :T%( ! - )CT?{.
p p

In particular, X admits an étale morphism to a torus that is a composition of a finite étale morphism
and a rational embedding. Therefore, Corollary 6.8.6 implies that

RI(X?,8)* € DY, (Ag/pAo)°.

Finally, we note that Lemma 6.7.3 ensures that R[(XY, &) ~® Ry, (&), so
Ru, (8)* e D} . (Xp)”

acoh

by Theorem 4.4.6. U

6.9. Nearby Cycles are Almost Coherent for General X and €. The main goal of this section
is to generalize Theorem 6.8.8 to the case of a general generic fiber X and any (‘);r(O /p-vector bundle
€. The idea is to reduce the general case to the smooth case by means of Lemma 5.4.4, resolution
of singularities, and proper hyperdescent.

For the rest of this section, we fix a perfectoid p-adic field K with a good pseudo-uniformizer
w € Ok (see Definition B.1.6). We always do almost mathematics with respect to the ideal
m= Unwl/p"OK.
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Lemma 6.9.1. Let Spf Ag be an admissible affine formal Og-scheme with adic generic fiber
Spa(A,AT). Let f: X — Spa(A,A") be a proper morphism with smooth X, and & is an
Oérp a4, A+)/ p-vector bundle. Then H'(X?, &) is an almost coherent Ag/pAg-module for any i > 0.
Proof. Step 1: € is small. By the theory of formal models (see [BL93, Assertion (¢) on p.307]),
we can choose an admissible formal Ox-model X of X with a morphism f: X — Spa Ap such that
fx = f. The map f is proper by [L90, Lemma 2.6] (or [Tem00, Corollary 4.4 and 4.5]). Now we
can compute

RI(X?, &) ~ RD(Xo, R (€))
Theorem 6.8.8 reads that Ru, () € D (Xg) as X is smooth. Thus Theorem 5.1.3 implies that

acoh
RI(XY,€) ~ RI(Xo,Rus (€)) € D, (Ao/pAo).

Step 2: General &. Lemma 5.4.4 implies that there is a finite étale morphism g: Spa (B, BT) —
Spa (A, AT) such that &|g,q (B,B+) 1s trivial. Without loss of generality, we can assume that g is a
G-torsor for some finite group G. Then the base change morphism ¥ = Xp — X is also a G-torsor.
Then we we have the Hochschild—Serre spectral sequence

By = Hi (G, I (YUO, e)) = HiH(X0, )

Similarly to the proof of Lemma 6.8.5, the argument with the explicit bar complex computing
H'(G,—) implies that it is sufficient to show that H7 (Y%, &) is almost coherent over Ag/pAy for
j > 0. But this follows from Step 1 because Y is smooth and proper over Spa (A, A™). O

Now we recall the notion of a hypercovering that will be crucial for our proof. We refer to [Sta2l,
Tag 01FX] and [Con| for more detail.

Definition 6.9.2. Let C be a category admitting finite limits. Let P be a class of morphisms in
C which is stable under base change, preserved under composition (hence under products), and
contains all isomorphisms. A simplicial object X, in € is said to be a P-hypercovering if, for all
n > 0, the natural adjunction map>°

Xo — cosky, (sky(Xe))

induces a map X,,+1 — (cosky, (sk,(Xe)))n+1 in degree n + 1 which is in P. If X, is an augmented
simplicial complex, we make a similar definition but also require the case n = —1 (and we then say
X, is a P-hypercovering of X_1).

Lemma 6.9.3. Let X be a quasi-compact, quasi-separated rigid-analytic variety over K. Then
there is a proper hypercovering a: X, — X such that all X; are smooth over K.

Proof. First of all, we note that quasi-compact rigid-analytic varieties over Spa (K,Of) admit
resolution of singularities by [Tem12, Theorem 5.2.2]. Thus, the proof of [Con, Theorem 4.16] (or
[Sta21, Tag 0DAX]) carries over to show that there is a proper hypercovering a: X, — X such that
all X; are smooth over Spa (K, Q). O

Lemma 6.9.4. Let a: Xq — X be a proper hypercovering of a rigid-analytic variety X. Then
a®: X¢ — X9 is a v-hypercovering of X©.

36See [Con, §3] (or [Sta2l, Tag 0AMA]) for the definition of the coskeleton functor.


https://stacks.math.columbia.edu/tag/01FX
https://stacks.math.columbia.edu/tag/0DAX
https://stacks.math.columbia.edu/tag/0AMA
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Proof. The functor (—)® commutes with fiber products by Proposition C.1.6 (6). So
((cosky (sknXe))nt1)® = (cosky (skn X0 ))ns1.

Therefore, the only thing we need to show that (=) sends proper coverings to v-coverings. This
follows from Lemma C.1.13 and Example C.1.11. O

Theorem 6.9.5. Let X be an admissible formal O g-scheme with adic generic fiber X and mod-p
fiber Xo := X Xgpt 0, Spec Ok /p. Then

RV*(E) € D:coh(xo)
for any O;O /p-vector bundle €.

Proof. The claim is Zariski-local on X, so we can assume that X = Spf Ay is affine. Thus
Lemma 6.7.3 and Theorem 4.4.6 ensure that it suffices to show that

RI(X, &) € D}, (Ao/pAy).

acoh

Lemma 6.9.3 shows that there is a proper hypercovering a: X, — X with smooth X;, and
Lemma 6.9.4 implies that a: X — X< is then a v-hypercovering.

The proof of [Sta2l, Tag 01GY] implies that there is a spectral sequence
Bl = (X.<> e) = HH (X2, ¢8).

2,V

Lemma 6.9.1 guarantees that H (X2 | &) is almost coherent over Ag/pAq for every i,j > 0. There-

1,07

fore, Lemma 2.6.8 guarantees that H*/ (X%, €) is almost coherent Ag/pAg for every i +j > 0. [

6.10. Cohomological Bound on Nearby Cycles. The main goal of this section is to show
that Ry, (€) is almost concentrated in degrees [0, d] for a very small vector bundle €. This claim
turns out to be pretty hard. In order to achieve this result we have to use a recent notion of
perfectoidization developed in [B522] that give a stronger version of the almost purity theorem in
the world of diamonds. Our approach is very much motivated by [Guol9, Proposition 7.5.2].

For the rest of this section, we fix a perfectoid p-adic field K with a good pseudo-uniformizer
w € Og. We always do almost mathematics with respect to the ideal m =, /P O

One may notice that all previous sections did not really use much that we work on the v-site XZ?
of a diamond associated to a rigid-analytic variety X rather than its pro-étale site Xj;o6. Most
arguments can be carried over in the pro-étale site. However, it is crucial to work on the level of
diamonds in this section. The main observation is that the functor

(=) {(Pre-)Adic Analytic Spaces} — {Diamonds}

is not fully faithful, so it is a priori possible that a non-perfectoid (pre)-adic space becomes repre-
sentable by an affinoid perfectoid after diamondification. An explicit construction of such examples
is the crux of our argument in this section. In order to construct them, we need the following
theorem of B. Bhatt and P. Scholze:

Theorem 6.10.1. [BS22, Theorem 10.11] Let R be an integral perfectoid ring®’. Let R — S
be the p-adic completion of an integral map. Then there exists an integral perfectoid ring Sperfq
together with a map of R-algebras S — Sperfd, such that it is initial among all of the R-algebra
maps S — S’ for S’ being integral perfectoid.

3TWe use [BMS18, Definition 3.5] as the definition for integral perfectoid rings here. This definition coincides with
Definition 6.4.2 in the p-torsionfree case, but it is less restrictive in general.


https://stacks.math.columbia.edu/tag/01GY

ALMOST COHERENT MODULES AND ALMOST COHERENT SHEAVES 165

Now we show how we can use this result to get cohomological bound on Rv/, (€). We recall that
a torus

T = Spa (K(T{', ..., T7Y), O (IF, ..., TF")) = Spa (R, R")

admits a map

T = Spa (K(Tﬁ”pw,...,le/pw>,OK<Tf—L1/p°°,...,Tfl/pw>) — T

such that TZ is an affinoid perfectoid, and the map becomes a A = Zp(l)d-torsor after applying
the diamondification functor.

Now we can embed a d-dimensional disk D? as a rational subdomain

Dd:Td<T1_1,...,T”_1) c T4,
P p

so the fiber product
DY, = D% xpa T, — D!
is again an affinoid perfectoid covering of D¢ by Lemma 6.8.4.
If X = Spa(A, AT) — D% is an arbitrary finite morphism, then the fiber product X xp« D%

may not be an affinoid perfectoid space (or even an adic space). However, it turns out that the
associated diamond is always representable by an affinoid perfectoid.

Lemma 6.10.2. Let f: X = Spa (A, AT) — D? be a finite morphism of rigid-analytic K-varieties.
Then the fiber product XOQO = X< X Dd,< Dcol&;<> is representable to an affinoid perfectoid space (of
characteristic p).

Proof. Let us say that D? = Spa (S, S*) and f)go = Spa (Soo, S%). The map f defines an integral
morphism ST — AT, we define
Alo = SI®Rg+AT.
This is a p-adic completion of an integral morphism over an integral perfectoid ring S (see [BMS18,
Lemma 3.20]), so there is a map
ALy = (AL )perta
initial to an integral perfectoid ring. We define A, to be Alo[l /p] and AL to be the integral closure

of Ay in As. Then (Aso, AL) is an affinoid perfectoid pair by [BMS18, Lemma 3.21]. Therefore,
it suffices to show that the natural morphism

Spd (Ase, AL) = Spd (A, A) Xgpa(s,5+) SPd (Se, S5)

is an isomorphism. This can be easily checked on the level of rational point by the universal
property of (Alo)perfd and the construction of the diamondification functor in Definition C.1.5 (and
[BMS18, Lemma 3.20] that relates affinoid perfectoid pairs and integral affinoid rings). O

Theorem 6.10.3. Let X = Spf Ag be an admissible formal Og-scheme with adic generic fiber
X = Spa (A, AT) of dimension d, and let & be a very small O;o /p-vector bundle on X. Then

RI(XJ,€)" € DY) (Ao/pAo)".

Proof. Lemma 6.9.1 ensures that RI'(X$, &) € Dycon(Ao/pAo), so it suffices to show that
HY(XY, &)~ 0
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for i > d. Now we note that the Noether Normalization Theorem (see [Bosl4, Proposition 3.1.3])
implies that there is a finite morphism f: X — D? Now we consider the A ~ Zp(l)d—torsor

X$ ~ X© xpao DR — X0

By Lemma 6.10.2, X2 is represented by an affinoid perfectoid space Spd (As, AL ) = Spa (AZO, AE;OJF).
Thus we are in the situation of Set-up 6.6.3. So Corollary 6.6.7 implies that

HY (XY, €) 2 Hgue (Ao, (ME)1),
where Mg ~ HY(XZ ,,€). Therefore, the claim follows from the observation that cohomological

00,V

dimension of Ay, ~ Z,(1)4 ~ Z& is d by [BMS18, Lemma 7.3]. O

6.11. Proof of Theorem 6.1.2. The main goal of this section is to give a full proof of Theo-

rem 6.1.2. Basically, we just need to combine all the results we have already achieved together.
For the rest of this section, we fix a perfectoid p-adic field K with a pseudo-uniformizer @w € Ok

as in Remark B.1.5. We always do almost mathematics with respect to the ideal m = J,, w! /7" O,

Theorem 6.11.1. Let X an admissible formal O g-scheme with adic generic fiber X of dimension
d and mod-p fiber Xy, and € an O;Q /p-vector bundle. Then

(1) the nearby cycles R, € D (Xp) and (Ru, &) € D[O’Qd](%o)a;

qc,acoh acoh

(2) for an affine admissible X = Spf A with the adic generic fiber X, the natural map

H <X§>, 5) ~ Riy, (&)
is an isomorphism for every ¢ > 0;
(3) the formation of R'v,(€) commutes with étale base change, i.e., for any étale morphism
f: 9 — X with adic generic fiber f: Y — X, the natural morphism
iy (1, (€)) - Rivy.. (Elyo)
is an isomorphism for any i > 0;
i as an open affine covering X = J,.; 4l; such that ¢ is very small, then
4) if X h ff ing X = (J;c; 84 such that €] o i 1L, th

(Rv,€)" € D% (x0)%;

acoh

(5) if € is small, there is an admissible blow-up X’ — X such that X’ has an open affine covering
X' = ;e ti such that €|, )0 is very small.
In particular, if € is small, there is a cofinal family of admissible formal models {.’{Q}Ze I
of X such that .
(RVx;,*E) e DO (% ).

acoh

for each 7 € I.

Proof. The first part of (1), (2), and (3) follow from Theorem 6.7.3 and Theorem 6.9.5. Now to
show that Rv, & is almost concentrated in degrees [0, 2d], it suffices to show that, for every affine
Il = Spf Ag C X, the complex RI‘(H?(U, €)® (almost) lies in D24 (Ay/pAg)®. By Lemma 6.7.4
and full faithful flatness of O /p — (‘)d/p, it is sufficient to proof under the additional assumption
that K = C' is algebraically closed. Then Theorem C.4.5 and Theorem C.4.8 imply that

& = Ru RN\ E
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is an O}ét /p-vector bundle concentrated in degree 0. Therefore,
RI(UE &) ~ RI (U, €),
and
RI'(Yc.er, &) € DI (49 /pAo)
by [Hub96, Corollary 2.8.3 and Corollary 1.8.8].

To show (4), we consider an open affine covering X = (J;c;4; and denote 4; = Spf A;. Then
Part (2) implies that it suffices to show that

RI (445, €)" € Dy (Ai/pA))*
for each i € I. This follows from Theorem 6.10.3 and the assumption that &, o is very small.
(5) now follows from Lemma 6.8.7. O
6.12. Proof of Theorem 6.1.9. The main goal of this section is to prove Theorem 6.1.9. Essen-

tially the idea is to use the “classification” of Zariski-constructible sheaves to reduce Theorem 6.1.9
to Theorem 6.1.2.

For the rest of this section, we fix a perfectoid p-adic field K with a pseudo-uniformizer w € Qg
as in Remark B.1.5. We always do almost mathematics with respect to the ideal m =, w/P" k.

We recall that we have a diagram of morphisms of ringed sites:

A
(X2,0%0/p) =2 (XGoirr O%o /p) — (Xer, 0%, /p) —— (Rzar Ox,).

Both v, and t, will play an important role in the proof.

Lemma 6.12.1. Let §: X — 2) a finite morphism of admissible formal Og-schemes with adic
generic fiber f: X — Y, and § € D% (X;F,). Then the natural morphism

Ruy . (f*fr'~ ® O;Q /p) — Rfo « (RV%7* (?@ O;O/p))
is an isomorphism in D(%)y).

Proof. Firstly, we note that f is finite, and so f, ~ Rf, by [Hub96, Proposition 2.6.3]. Now the
proof of Corollary 6.3.9 just goes through using Corollary 6.2.9 (that does not use Theorem 6.1.9
as in input) in place of Lemma 6.3.7. O
Lemma 6.12.2. Let f: X — Y be a finite morphism of quasi-compact, quasi-separated rigid-
analytic varieties over K, and J € DUl (X;Fp) such that

Rux. (F© 0%, /p)* € DISM(3x0)% (resp. Rux. (F @ 0%, /p) € DY (%0))

acoh qc,acoh

for any formal Ox-model X of X. Then, for any formal Og-model ) of Y,

Ruy . (f:F© 0F, /p)* € DISF(90) (vesp. Ruy . (£.F @ 0%, /p) € D7 eon(D0))-
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Proof. Firstly, we note that we can choose a finite morphism f: X — ) such that its generic fiber
fi is equal to f (for example, this follows from [FKK18, Corollary 11.5.3.3, I11.5.3.4]).

Now Lemma 6.12.1 ensures that we have an equality
Ruy . (f:F ® 0%, /p) = Rfox (Rvz. (F© 0%, /p)) -

Therefore, Ruy) . (f*ff"® O;;o /p) already lies in Dyeon(Yo)® (resp. Dye.acon(Po)) by Theorem 5.1.3.
The cohomological bound follows from Proposition 3.5.23 and the fact that a finite morphism f is
acyclic on quasi-coherent sheaves. (Il

Lemma 6.12.3. Let X be an admissible formal O g-scheme with adic generic fiber X of dimension
d and mod-p fiber Xy, and a complex of sheaves F € D[ngs] (X;Fp). Then

Ri, (3’@ O}ét/p) ~ Ry, (F® O}O/p) € D;rc’acoh(%o), and
b +d
Ru, (5@ 0%, /p)" € Do) (X0)"
Proof. We start the proof by noting that an isomorphism
Rt (9 © 0%, /p) ~ Ru, (F® 0%, /p)
is automatic by Lemma C.5.10 and overconvergence of Zariski-constructible sheaves. In what

follows, we will freely identify these sheaves.

Step 1: The case of a local system F. In this case € = F ® O}O/p fits into the assumption of
Theorem 6.11.1. Since an F-local system on any rigid-analytic variety Y splits by a finite étale
cover, so F ® O}O /p is very small for any open affinoid U C X. Thus the desired claim follows
from Theorem 6.11.1.

Step 2: The case of a zero-dimensional X . If X is of dimension 0, then any Zariski-constructible
sheaf on X is a local system. So the claim follows from Step 1.

Now we argue by induction on dim X. We suppose the claim is known for every rigid-analytic
variety of dimension less than d (and any Zariski constructible F) and wish to prove the claim for
X of dimensiond d.

Step 3: Reduction to the case of a reduced X. Consider the reduction morphism i: X,eq — X.
Then ig is an equivalence of étale topoi, we see that

i T F

is an isomorphism. Thus the claim follows from Lemma 6.12.2.

Step 4: Reduction to the case of a normal X. Consider the normalization morphism f: X' — X.
It is finite by [Con99, Theorem 2.1.2] and an isomorphism outside of a nowhere dense Zariski-closed
subset Z. Therefore, there is an exact triangle

F— fof 'F =49

where 7: Z — X is a Zariski-closed immersion with dimZ < dim X and G € DLTC_I’S}(Z ). Now the
induction hypothesis and Lemma 6.12.2 ensure that

R, (1*9 & o;o/p) € D(—;c,acoh (XO) ’

acoh

Ru. (.G ® 0%, /p)* € DISH ()7
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Therefore, it suffices to show the claim for f,f~'F, and so Lemma 6.12.2 applied to f guarantees
that it suffices to show that

RV:{/,* (f_lgj® O;/O/p> € Dq+c,acoh (%6) ’
a
— ? d
Ruy, (115004, /p)" € Dl (x0)°
for any admissible formal Og-model X’ of X’. So we may and do assume that X is normal.

Step 5: Reduction to the case § = F,,. Clearly, it suffices to prove the claim for  concentrated
in degree 0. Then, by definition of a Zariski-constructible sheaf, there is a nowhere dense Zariski-
closed subset i: Z — X with a complement j: U — X and an Fj-local system L on U such that
F|u ~ L. In particular, there is a short exact sequence

0—jL —>F—iF|lz —0.

Similarly to the argument in Step 4, it suffices to prove the claim for F = j L.

Then “méthode de la trace” (see [Sta2l, Tag 03SH]) implies that there is a finite étale covering
g: U" — U such that L' := L[y is an iterated extension of constant sheaves F,. Then L is a direct
summand of g, (). Thus it is enough to prove the claim for

F=j (g*L') .
Moreover, it suffices to prove the claim for F = j (g*Ep) because the claim of Lemma 6.12.3 satisfies

the (2)-out-of-(3) property, and both functors g, and ji are exact.

Now we use [Han20, Theorem 1.6] to extend ¢ to a finite morphism ¢’: X’ — X. Then a similar
reduction shows that it is actually sufficient to prove the claim for F = ¢, (Ep). Now this case
follows from Step 2 and Lemma 6.12.2.

Theorem 6.12.4. Let X be an admissible formal O g-scheme with adic generic fiber X of dimension
d and mod-p fiber Xy, and a complex of sheaves F € D[ZTC’S} (X;Fp). Then

(1) there is an isomorphism R, (9’ ® O}ét /p) ~ Rv, (F® 0%, /p);

(2) thenearby cycles R, (F ® 0%, /p) € D,

gc,acoh

(X0), and Ru, (F © 0%, /p)* € DIt (xg)e;

acoh

(3) for an affine admissible X = Spf A, the natural map

0 (X9,5 0 0%, /p) = Riv. (T2 0%, /)
is an isomorphism for every i > 0;

(4) the formation of R'v, (F ® O}O /p) commutes with étale base change, i.e., for any étale
morphism §: ) — X with adic generic fiber f: Y — X, the natural morphism

fo (R'vzs (F® 0Ly /p)) = Rivy. (f'F © 05, /p)
is an isomorphism for any ¢ > 0;

Proof. (1) and (2) follow from Lemma 6.12.3. Now (3) follows from Lemma 4.4.4 and the isomor-
phism
RT (Xo,Rv, (F® 0%, /p)) ~ RI(XY,F® 0L, /p).

Now we show (4). By (1), it suffices to show that the natural morphism
s (Rt (0 0%, /p)) = Rity.. (FT 0 0F, /)
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Moreover, [BH21, Proposition 3.6] ensures that it suffices to prove the claim for F = g, (Ep) for
some finite morphism g: X’ — X. Then we can lift it to a finite morphism g: X’ — X as in the
proof of Lemma 6.12.2. Then we have a commutative diagram

(Y, 07, /) > (D, Oayy)
/ . fo
(Xé 0%, /p) 7 » (X0, Oxg) %
J (6.6)
12
g (Yer, OF /p) o (o, Og,)
/ . J/ %
(X7 O}ct/p) = ” (:{Oa Of{o)

with 9’ =9 xx X’ and Y’ its adic generic fiber. Then we have a sequence of isomorphisms:
o (Rtae,* (g* (F,) ® 0%,/ p)) =~ 3 (Rtx,* (Rg*o}ét / p))
~ o <R90,* <Rtae',*o}ét /p)>
~Ra). (" (Rtw.0%, /p))
~Rg). (Rty.. (07, /p))
. (RQLOQt /p>
~ Rty (4. (F,) © 07, /)

~ Riy « (fil (Q*Ep) ® O)—tét/p)

The first isomorphism holds by (the proof of) Corollary 6.2.9. The second isomorphism is formal
and follows from Diagram 6.6. The third isomorphism holds by flat base change applies to a flat
morphism fyo. The fourth isomorphism follows from Theorem 6.11.1 applied to & = O;,Q /p and
étale morphism 2)’ — X’. The fifth isomorphism is formal again. The sixth isomorphism follows
from (the proof of) Corollary 6.2.9. Finally the last isomorphism follows from [Hub96, Theorem
4.3.1]. O

6.13. Proof of Theorem 6.1.11. The main goal of this section is to prove Theorem 6.1.11. The
proof is a formal reduction to the case of (‘);r(<> /p-vector bundles.

For the rest of this section, we fix a perfectoid p-adic field K with a good pseudo-uniformizer
w € O. We always do almost mathematics with respect to the ideal m = |J, @w!/?" Q.

Lemma 6.13.1. Let X be a rigid-analytic variety over K, and € an O;Q—Vector bundle on X.
Then € is derived p-adically complete.

Proof. Lemma 6.1.11 implies that it suffices to prove the claim v-locally on X§> . Therefore, we may
and do assume that & = (O;O)T for some integer r. Then the claim follows from Lemma C.3.5 (3).
O
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Lemma 6.13.2. Let X = Spf Ag be an affine admissible formal O g-scheme with adic generic fiber
X = Spa (A, A") of dimension d, and € an O} ,-vector bundle. Then

RI (x0,€)" e DI (40).
Moreover,
RI (X0,€)" € D (40)
if € is very small (see Definition 6.1.10).
Proof. Lemma 6.13.1 implies that & is derived p-adically complete. So [Sta2l, Tag 0AOG] ensures
that
RD (Xy, 8)
is derived p-adically complete as well. Now Theorem 6.11.1 implies that
Rr(x0,€)" /o] = Rr (X0, €/p€)" € DY (Ao/pay),
and
[Rr (x9,€)" /o] ~ R (X2, €/p€)" € DL (Ao/pAo)”

if € is very small. So Corollary 2.13.3 ensures that
RT (X<> 8) e D2 (4y)a,

acoh
@ [0,d
( ) 8) E aco;L
if € is very small. O

Lemma 6.13.3. Let X = Spf Ay be an admissible affine formal O g-scheme with adic generic fiber
X = Spa (4, A"), and §: Spf By — Spf Ag an étale morphism with adic generic fiber f: Y — X,
and € an O}O—Vector bundle on X. Then the natural morphism

r: R (Xy, 8) ®4, By — R (Yf, 5) .
is an isomorphism.

Proof. The morphism Ay — By is flat since f is étale. Now Lemma 6.13.2 and Lemma 2.12.7 ensure
that cohomology groups of both RI’ (Xé> , 8) ®4a, Bo and RI’ (YUO, 8) are (classically) p-adically
complete. In particular, both complexes are derived p-adically complete. So it suffices to show
that r is an isomorphism after taking derived mod-p fiber (see [Sta2l, Tag 0G1U]). Then the claim
follows from Theorem 6.11.1 (3) (4). O

Theorem 6.13.4. Let X be an admissible formal O g-scheme with adic generic fiber X of dimension
d and mod-p fiber Xy, and € an O+<>—V€Ct01' bundle. Then

(%) and (Ru,&)® € D24 (x)a,

acoh

(1) the nearby cycles R, € D

gc,acoh

(2) for an affine admissible X = Spf A with the adic generic fiber X, the natural map
. A )
5 (X§>, 8) = Riv, ()

is an isomorphism for every i > 0;
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(3) the formation of Riv,(€) commutes with étale base change, i.e., for any étale morphism
f: 9 — X with adic generic fiber f: Y — X, the natural morphism

* (R'vx(€)) = Rivg « (Elyo)
is an isomorphism for any i > 0;
(4) if X has an open affine covering X = [J,, 4 such that €|y, ,yo is very small, then
(Rv,.€)* € D% (x)e,

acoh

(5) if € is small, there is an admissible blow-up X’ — X such that X’ has an open affine covering
X' = U;er i such that €[y,  yo is very small.
In particular, if € is small, there is a cofinal family of admissible formal models {X/};cr
of X such that
T

for each 7 € I.

Proof. Firstly, we show that Rv,.& € D;acoh(%) and (Rv,&)" € Dgoézg] (X)%. The claim is local
on X, so we can assume that X = Spf A is affine. Then it suffices to show that, for every étale

morphism Spf By — Spf Ag with adic generic fiber Y — X,
H'(Y,?, Elyo)
is almost coherent for ¢ > 0,
HI(Y,?, Elyo) =
for ¢ > 2d, and the natural morphism
H(X7,€) = H'(Y,?, Elyo)

is an isomorphism (see Lemma 5.1.8 and its proof). The first claim follows from Lemma 6.13.2
and the second one from Lemma 6.13.3 (and Ap-flatness of By). This already proves (1) and (2).
The proof of (3) is essentially the same using Lemma 4.6.5. Now (4) follows from Lemma (4)
and already established (2). Finally (5) follows from Lemma 6.8.7 since smallness is the condition
mod-p. ]

Let us also mention a version of Theorem 6.1.11 for the pro-étale site of X as defined in [Sch13]

and [Sch16]. It will be convenient to have this reference in our future work. In what follows, 6} is
the completed integral structure sheaf on Xp,06 (see [Schl13, Definition 4.1]), and

V' (Xproéta O}) — (%Zara O%)
is the evident morphism of ringed sites.

Theorem 6.13.5. Let X be an admissible formal O g-scheme with adic generic fiber X of dimension
d and mod-p fiber Xy. Then
(1) the nearby cycles Rv, (0% /p) € D,

gc,acoh

(X0), and R/, (0% /p)* € D2 (x¢)e;

acoh

(2) for an affine admissible X = Spf A, the natural map

Hi (Xproet, 0% /p) — R, (0% /p)

is an isomorphism for every i > 0;
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(3) the formation of Riv, (O} / p) commutes with étale base change, i.e., for any étale morphism
f: 9 — X with adic generic fiber f: Y — X, the natural morphism

fo (R'vz. (0X/p)) = Rivy,, (03/p)

is an isomorphism for any i > 0;

Proof. By [Sch13, Corollary 3.17], Ry, (O}/p) ~ Ri, <(‘)}ét/p). So the results follow formally
from Theorem 6.12.4. O

Theorem 6.13.6. Let X be an admissible formal O g-scheme with adic generic fiber X of dimension
d. Then

(1) the nearby cycles Ryia} eD’

gc,acoh

(%) and (R.0%)® € D4 (%)a;

acoh

(2) for an affine admissible X = Spf A with the adic generic fiber X, the natural map
. ~ A .~
' (Xproer, 0% ) = RIVLO%

is an isomorphism for every i > 0;

(3) the formation of R'v,(€) commutes with étale base change, i.e., for any étale morphism
f: 9 — X with adic generic fiber f: Y — X, the natural morphism

P (R, (0%)) - Rivg. (0F)
is an isomorphism for any ¢ > 0;

Proof. The proof is identical to the proof of Theorem 6.13.4 once one establishes that the sheaf 6}
is p-adically derived complete. For this, see [BMS18, Remark 5.5]. ]

APPENDIX
APPENDIX A. DERIVED COMPLETE MODULES

The main goal of this section is to collect some standard results on derived complete modules
that seem difficult to find in the literature.

For the rest of the section, we fix a ring R with an element w € R.

Definition A.1. A complex M € D(R) is w-adically derived complete (or just derived complete)
if the natural morphism M — R lim,[M/w™] is an isomorphism.

Remark A.2. This definition coincides with [Sta21l, Tag 091S] by [Sta21, Tag 0917Z].
Lemma A.3. Let M € D(R) be a derived complete complex. Then

(1) M € D24(R) if [M/w] € DZ4(R/wR).

(2) M € DSY(R) if [M/w] € DS4(R/wR);
Proof. (1) : By shifting, we can assume that d = 0. Now suppose that [M/w] € D=°(R/w). Then
we use an exact triangles

[M/w] = [M/@"] = [M/=" "]

to ensure that [M/w"] € D=°(R/w") for every n > 0. Now we use that M is derived complete to

see that the natural morphism
M — Rlim[M/w" M]
n
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is an isomophism. By passing to cohomology groups (and using that lim has cohomological dimen-
sion 1), we see that

0—R! lim H Y ([M/="]) — H{(M) — lim HY([M/="]) — 0

are exact for any integer 4. This implies that H'(M) = 0 for i <0, i.e. M € DZ°(R).

(2) : Similarly, we can assume that d = 0. Then the same inductive argument shows that
[M/w"] € D<Y(R/w") and we have short exact sequences

0— R! lim H~Y([M/="]) — H(M) — lim H ([M/w"]) — 0.

So we see that M € DSY(R) and HY (M) = R! lim,, H*([M/w"]). Now note that an exact triangle
[M/w] = [M/w"] = [M/w"]

and the fact that [M/w] € DSY(R/w) imply that HY([M/w"]) — H°([M /=" ~1]) is surjective, so

R!lim, H°([M/w"]) = 0 by the Mittag-Leffler criterion. O

Lemma A.4. Let R be a ring with an ideal of almost mathematics m, and an element @w € m.
Let M € D(R) be a w-adically derived complete complex. Then m ® M is also w-adically derived
complete complex.

Proof. Consider an exact triangle
moM— M— Q.

Since m ® M — M is an almost isomorphism, we see that cohomology groups of () are almost
zero. In particular, they are w-torsion, so derived complete. Therefore, @ is derived complete (for
example, by [Sta2l, Tag 091P] and [Sta2l, Tag 091S]). Now derived completeness of M and @
implies derived completeness of m @ M. ]

Lemma A.5. Let R be a ring with an ideal of almost mathematics m, and an element @ € m. Let
M € D(R) be a w-adically derived complete complex. Then

(1) M € D24 R)% if [M?/w] € D2*(R/wR)".
(2) M € DY R)% if [M?/w] € D<*(R/wR)".

Proof. Lemma A.4 guarantees that m ® M is derived w-adically complete. Therefore, the claim
follows from Lemma A.3 applied to m ® M. O

Now we fix an R-ringed site (X, Ox).

Definition A.6. A complex M € D(X) is w-adically derived complete (or just derived complete)
if the natural morphism M — Rlim,[M/w"] is an isomorphism.

Remark A.7. This definition coincides with [Sta21, Tag 0999] by [Sta21, Tag 0AOE].

Lemma A.8. Let B C Ob(X) be a basis in a site X, and M € D(X). Then M is w-adically
derived complete if and only if RI'(U, M) is w-adically derived complete for any U € B.
Proof. Suppose that M is w-adically derived complete. Then RI'(U, M) is derived w-adically
complete for any U € Ob(X) by [Sta2l, Tag 0BLX].

Now suppose that RI'(U, M) is w-adically derived complete for any U € B, and consider the
derived w-adic completion M — M with the associated distinguished triangle:

M—>Z\/4\—>Q.
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We wish to show that @ ~ 0. In order to show it, it suffices to establish that RI'(U, Q) ~ 0 for any
U € B. Now we use [Sta2l, Tag 0BLX] to conclude that

— —

RINU, M) ~RI'(U, M),
so we get the distinguished triangle

—

RI'(U, M) — RI(U, M) — RI(U, M).

Since RI'(U, M) is derived w-adically complete by the assumption, so we see that the morphism

—

RINU,M) — RI'(U, M)
is an isomorphism. Therefore, we conclude that RI'(U, Q) ~ 0. This finishes the proof. g

APPENDIX B. PERFECTOID THINGS
The main goal of this Appendix is to recall the main structural results about perfectoid rings.
B.1. Perfectoid Rings.

Definition B.1. [Sch17, Definition 3.6] A non-archimedean field (K, | . |x) is a perfectoid field if
there is a pseudo-uniformizer w € K such that @w? | p in O = {z € K | |z| < 1} and the p-th
power Frobenius map

P OK/WOK — OK/WPOK

is an isomorphism.

Definition B.2. A complete valuation ring K is a perfectoid valuation ring if K := Frac(K™) is
a perfectoid field with its valuation topology.

A Huber pair (K, K1) is a perfectoid field pair if K is a perfectoid field and K™ is an open and
bounded valuation subring.

Remark B.3. Any perfectoid valuation ring K is automatically microbial (see [Sem 15, L9, Propo-
sition 9.1.3 and Definition 9.1.4]). Any rank-1 valuation ring K* € K+t C K defines the same
topology on K by [Bou98, Ch. VI, §7.2, Prop. 3]. Therefore, K** must be equal to K° the set of
powerbounded elements. In particular, there is a unique rank-1 valuation ring between K+ and K
that we denote by O, and the associated rank-1 valuation on K by | . |x: K — Rxo.

Lemma B.4. [Sch17, Proposition 3.8] Let K be a non-archimedean field. Then K is a perfectoid
field if and only if

(1) K is not discretely valued,

(2) Iplx <1,
(3) the Frobenius morphism ®: O /pOx — Ok /pOk is surjective.

We wish to show that the ideal m = K°° C K+ defines an ideal of almost mathematics in K.
For the future reference, it will be convenient to do in a more general set-up of perfectoid pairs.

Definition B.1.1. [Sch17, Definition 3.1] A complete Tate-Huber pair (R, R") is a perfectoid pair
if R is a uniform Tate ring containing a pseudo-uniformizer wpr € R° such that w% | pin R°® and

the Frobenius homomorphism R°/wprR° 2oty Re /@' R° is an isomorphism.
A Tate-Huber pair (R, RT) is p-adic perfectoid pair if it is a Huber pair, and R is p # 0 in R.

A Tate ring R is a perfectoid ring if (R, R°) is a perfectoid pair.
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Remark B.1.2. It is not, a priori, clear that a perfectoid ring R that is a field is a perfectoid field
(in the sense of Definition B.1). The problem is to verify that R has a non-archimedean topology
on it. This turned out to be always true by [Ked18].

Remark B.1.3. By [Sch17, Proposition 3.5], a complete Tate ring R of characteristic p is perfectoid
if and only if R is perfect as a ring, i.e. the Frobenius morphism is an isomorphism.

P

Remark B.1.4. In the definition of a perfectoid pair, it suffices to require R°/wgrR°
R°/ w%RO to be surjective. This map actually turns out to be always injective. Moreover, this
condition turns out to be equivalent to the surjectivity of the Frobenius map

R°/pR° — R°/pR°.
In particular, it is independent of a choice of a pseudo-uniformizer w?, | p, see [Sch17, Remark 3.2
for more detail. Therefore, if R is an algebra over a perfectoid field K with a pseudo-uniformizer

wg € Ok, one can always take wr = wg. In particular, every perfectoid ring in the sense of
[Sch12, Definition 5.1] is a perfectoid ring in the sense of Definition B.1.1.

Lemma B.5. [Sch17, Lemma 3.10] Let (R, RT) be a perfectoid pair. Then there is a pseudo-
uniformizer w € R°° such that

(1) @w? | pin R%;

(2) w admits a compatible sequence of p™-th root of w/P" e R for n > 0.
In this case, R* = |, w!/P" Rt

Proof. [Sch17, Lemma 3.10] says that there is a pseudo-uniformizer @ € R°° C R™ such that @? | p
in R°, and there is a compatible sequence of the p"-th roots @w'/?" € R° for n > 0. Since Rt is
integrally closed, we conclude that all @!'/?" must lie in RT. Since R°° is a radical ideal RT and
contains w, it clearly contains (J,,~, w!/P" Rt

Now we pick an element z € R°°, and wish to show that = € {J,>¢ w!/P" R, Since z is
topologically nilpotent, we can find an integer m such that

" € wR*

Therefore, zP" = wa for a € R*. Thus

m

<ﬁ)p =ac R

Therefore, —7m € R™ because R™ is integrally closed in R. So x € w!/?" Rt O

Remark B.1.5. If (R, R") is a p-adic perfectoid pair, then one can choose @ such that @wPR" =
pR™. Indeed, [BMS18, Lemma 3.20] implies that R is perfectoid in the sense of [BMS18, Definition
3.5]. Thus the desired w exists by [BMS18, Lemma 3.9].

Definition B.1.6. A pseudo-uniformozer @ € RT of a p-adic perfectoid pair (R, RT) is good if
wR™ = pR* and w admits a compatible sequence of p-power roots.

For the rest of the section, we fix a perfectoid pair (R, RT) and an ideal m = R°°. Our goal is
to show that m defines a set-up for almost mathematics, i.e. m = m @+ m is RT-flat and m?> = m.

Lemma B.6. Let (R, R") be a perfectoid pair, and m = R°° the associated ideal of topologically
nilpotent elements. Then m is flat over Rt and m ~ m? = m.
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Proof. Lemma B.5 implies that m is flat as a colimit of free modules of rank-1.

Now we wish to show that m? = m. We take any element x € m, by Lemma B.5 we know that
z = w!/P"q for some integer n and a € Rt. Therefore,

nt1\P—1 n+1
T = (wl/p ) (wl/p a) € m?.
Now we consider a short exact sequence

0—-m—=R" = R"/m—0.

By flatness of m, we conclude that it remains exact after applying the tensor product against m.
Therefore, the sequence

0—m—m—m/m?>—0
is exact. Since m? = m, we conclude that

0

Lemma B.1.7. Let (R, R") be a perfectoid pair. Then the natural inclusion ¢: R™ — R° is an
almost isomorphism.

Proof. Clearly, the map ¢: RT — R° is injective, so it suffices to show that its cokernel is almost
zero, i.e. annihilated by any ¢ € m. Pick an element x € R°, then ez € R°° C R*. Therefore we
conclude that (Coker¢) = 0 finishing the proof. O

B.2. Universal Perfectoid Cover. The main goal of this section is to give a construction of a
“universal cover” perfectoid cover of an affinoid (pre-)adic®® affinoid space X = Spa (A4, A1) over
Spa (Qp, Z,). Throughout this section, we assume that (A4, A™) is a Tate-Huber pair over (Qy, Zj)
with no non-trivial idempotents in A. We do not assume that A is sheafy.

Our assumption on (A, A1) implies that Spec A is connected. We choose a geometric point
T: Specf) — Spec A

for an algebraically closed field €2, and consider the category of pointed, connected, finite étale
Galois morphisms
{(Spec A;, T5) — (Spec A, T)},c; (B.1)

A standard argument shows that this system is cofiltered (we point out that it uses the connect-
edness assumption). Now we want to make this system into a system of (pre-)adic spaces over
Spa (A4, AT).

We define AZT" to be the integral closure of A™ in A;. We show that each (Ai,Af) is a Huber
pair if we put the natural topology on A; (see [Zav21b, Appendix D.3]).

Lemma B.2.1. Let (A, AT) be a complete Tate-Huber pair with a pair of definition (49 C AT, @),
and A — B is a finite étale morphism. Then (B, BT) is a complete Tate-Huber pair where BT is
the integral closure of A™ in B.

Proof. Step 1: B is complete in its natural topology. Since B is finite étale, B is a projective A-
module of finite rank. Then there is another finite A-module M such that B® M ~ A®". Consider
the projection p: A®™ — B, the natural topology on B coincide with the quotient topology (see
[Zav21b, Lemma B.3.2]). Using that A is Huber ring, it is not difficult to show that the quotient
topology on B should coincide with the subspace topology. Since A®™ is complete, we conclude

38We do not assume that it is sheafy.
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that the natural topology on B is separated. Therefore, the same applies to M as we never used
the ring structure on B. Then B is closed in A as a kernel of a continuous homomorphism with
a separated target. In particular, B is complete in its subspace (equivalently, quotient) topology,
and as discussed above, this topology coincides with the natural topology. So it is complete in its
natural topology.

Step 2: B admits a finite set of A-module generators x1,...,x, that are integral over Ay. Pick
any finite set 2},..., ), € B of A-module generators. It suffices to show that z; = ws, € B are
integral over Ay for some integer c¢. So it is enough to show that, for any b € B, there is an integer
¢ such that w°®b is integral over Aj.

By definition, b is integral over A. So we can find a monic equaition
V' + ap "+ ag=0

with ag, € Afor k =0,...,n—1. Then there is an integer ¢ such that w®ay € Ag for k =0,...,n—1.
Thus the equation

(@)™ + a1 (WD) + - 4 apw™ =0
shows that w®b is integral over Ay.

Step 3: An Ag-subalgebra By of B generated by x1,...,x, is finite as an Ag-module. Clearly
this algebra is finitely generated over Ag as an algebra and every element is integral. Therefore, it
is finite.

Step 4: By is open in B and the induced topology coincides with the w-adic one. Choose some
Ap-module generators by, ..., b, € By. Clearly, By [%] = B, so the A-linear morphism

m
q: @Aei — B
i=1

sending e; to b; is surjective. By [Hub94, Lemma 2.4(i)], ¢ is open. In particular, the topology on
B is the quotient topology along q. Therefore, By is open in B as ¢~ (By) is a subgroup containing
an open subgroup @, Ape;. Moreover, the topology on By is w-adic since By = ¢q(®i”, Ape;), the
topology on @ Ape; is already w-adic, and ¢ is open.

Step 5. (B, BY) is a complete Huber pair: We have already showed that B is complete in its
natural topology and (By,w) is a pair of definition for this topology. Therefore, B is a Huber
ring. It suffices to show that B™ is open, integrally closed and lies in B°. Openness is clear since
By C BT, and B is integrally closed by definition. One also easily show that B™ C B° because
BT is integral over AT C A°. O

Corollary B.2.2. Let (A;, A]) as above. Then, for every j > i, the natural morphism Spa (A;, A;r) —
Spa (A;, Af) is a (finite étale) surjection.

Proof. Note that Spec A; — Spec A; is surjective as it is finite étale (so open and closed) and
Spec A; is connected. Since both A; and A; are Galois over A, it is clear that A; is Galois over A;.
Denote its Galois group by G. Then A; = (4;)¢ and A} = (Aj)G. Now [Zav21b, Lemma 4.2.1]
implies that (Ai,AZT")’ with the subspace topology is a Tate-Huber pair. Clearly the morphism
(Ai, A7) — (A, AT) is continuous and surjective, so it is a homeomorphism by the Banach Open
Mapping Theorem [H1b93a, Lemma 2.4]. Therefore, | Spa (4;, A])| = | Spa (Aj,A;r)/G| by [Han,
Theorem 3.1]. In particular, it is surjective. ([l
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Corollary B.2.2 that {Spa (A4;, A]) — Spa (A4, AT)}ier gives a cofiltered pro-system of finite étale
covers of Spa (A, AT). We want to say that its limit is a “perfectoid universal cover” of Spa (A, A™).
In order to make rigirous sense of it, we need to show some preliminary results.

We define A :— colim; A;, A" = colim I Aj, AT to be the p-adic completion of A" (even if the
colimit topology does not coincide with the p-adic topology) and A, = Ajo[%} We now study
properties of these rings.

Lemma B.2.3. The scheme Spec A is connected and any finite étale cover splits.

Proof. Connectedness of Spec A is equivalent to the fact that A has no non-trivial idempotents. It
can be easily seen that any idempotent should come from a finite level, so any idempotent must be
trivial because Spec A; is connected for every i.

Now we show that any finite étale cover f: Spec B — Spec A splits. Since finite étale morphism
are finitely presented and A = colim; 4; is a filtered colimit of rings, we can use the spreading
out techniques from [Gro66] to assume that f comes as a base change of a finite étale morphism
fi: Spec B; — Spec A; for some ¢ € I. It suffices to show that f; has a section after a pullback
along v;; : Spec A; — Spec A; for some j > i.

We recall that Spec B; has a finite number of connected components by [Sta2l, Tag 07VB]. It
implies that each connected of Spec B; is open and closed. Since a finite étale morphism is open and
closed, we can replace Spec B; by its connected component to assume that Spec B; is connected.
Now we use [Sta2l, Tag 0BN2] and [Sta2l, Tag O0BNB] to say that f; is dominated by a finite
Galois cover X — Spec 4;, so we can replace Spec B; with X to assume f; is Galois. But then,
after choosing a geometric point in Spec B; over the geometric point T; — Spec A;, we conclude
that Spec B; — Spec A; is equal to some transition map Spec A; — Spec A; in the cofiltered system
{Spec A;,v; j}. Clearly, Spec B; splits after a pullback along Spec A; = Spec B; — Spec A;. O

We topologize A by declaring AZ with its p-adic topology to be a ring of definition in A
(recall that (A, A™) is assumed to be a Tate-Huber pair over (Q,, Z,)).

Lemma B.2.4. Let (Ax, AL) be as above. Then (A, AL) is a Tate-Huber pair, Spec A is
connected and every finite étale cover splits.

Proof. Clearly, A" s integrally closed in A. Thus A} is integrally closed in A, by [Bha, Lemma
5.1.2]. By definition A} is open and bounded in A, so (Ax, AL) is a Tate-Huber pair with a
pseudo-uniformizer p € AL .

Now we show that A, does not have non-trivial idempotents. Any idempotent is clearly inte-
gral over Z, so must lie in AX. Thus it suffices to show that A} does not have any non-trivial
idempotents.

In order to verify this, we show that A" and A% are p-adically henselian. Lemma B.2.1 implies
that every (A;, A:r) is a Huber-Tate pair for every 7, so any element a; € A;r lies in some ring of
definition A; ¢ C AT by [Hub93b, Corollary 1.3]. In particular, Aj = colim A; o where the colimit
is taken over all ring of definitions in AZT". Since each A; is p-adically complete, the colimit A;r
is p-adically henselian. Thereover A" is also p-adically henselian as a filtered colimit of p-adically
henselian rings. Clearly, A% is also p-adically henselian as it is p-adically complete. Now [Ray70,
XI, §2, Proposition 1] reads that we have bijections

Idem(AZL) = Idem(AL /p) = Idem(ZJr/p) = Idem(ZJr).

So it suffices to show that A" has no non-trivial idempotents. This is done in Lemma B.2.3.
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Now we show that there are no non-split finite étale covers of Spec Ao.. We apply [GRO3,
Proposition 5.4.53] to a p-adically henselian ring A to get an equivalence of categories

(Aco)er ~ Afes

But Spec A has no non-split finite étale covers by Lemma B.2.3 (we leave to the reader to check
that covers on both sides also coincide). 0

Lemma B.2.5. The pair (A, AL) is a perfectoid pair.

Proof. Lemma B.2.4 guarantees that (A, AL) is a Tate-Huber pair. By Remark B.1.4, it suffices
to show that A, is uniform, there is a pseudo-uniformizer w such that @w? | p, and the Frobenius
morphism

A JwA, — AS JwP AL,
is surjective.

Clearly, A} is an algebra over Oc¢,,so @ = pt/P e Og, is a pseudo-uniformizer such that @? | p.
We show that the Frobenius map

©: AL [P AL, = AL /pAL

o
o

is surjective. For any class f € AS /pA
TP — pT — f. Clearly,

we pick a lift f € A2 and consider the equation

Spec Axo[T]/(T? — pT — f) — Spec Ao
is finite étale. So by Lemma B.2.4, it has a section. Thus there is some element g € A, such that
gP —pg = f. Clearly, it is integral over AS_, so g € AS.. Therefore, its class g € AS_/p'/PA2. is an
element such that ®(g) = f.

Finally, we show that A, is uniform. Note again that AT is an Oc,-algebra, so it makes sense
to consider almost mathematics with respect to the ideal m = (J2°, p!/ "Oc,. We use [Schl2,
Lemma 5.3 (iv)] and Lemma 2.1.10 to conclude that (AL ), is p-adically complete and so [Bha,
Lemma 5.1.2] reads that (A}). is integrally closed in Ay,. Therefore, [Bha, Proposition 5.2.5 and
Proposition 5.2.6] (AL is p-root closed in A, because AL is integrally closed in A.) imply that
A8 = (AL). is uniform finishing the proof. O

Now we summarize what we got so far.

Lemma B.2.6. Let (A, A") be a Tate-Huber pair over (Qp,Z,). Then there is a a cofiltered
system of morphisms {Spa (A;, A]") — Spa (A, AT)}ier and of finite groups {A,; };cs with surjective
transition maps A; — A, for ¢ > j such that

(1) Spa(A4;, AF) — Spa(A;, Aj) is finite étale and surjective for ¢ > 7;
(2) Spa(4;, AF) — Spa (A, AT) is a A;-torsor;

(3) Spa (A, AL) in the notation as above, is a connected affinoid perfectoid space such that
its every finite étale cover splits.

Proof. The first part is Corollary B.2.2. For the second part, by construction, Spec A — Spec A; is
a A;-torsor for some finite group 4A;. This means that the natual morphism

A;®@aAi — A; @4 (A[A])
is an isomorphism. To see that Spa (A;, 4;) — Spa (A, A™) is a A;-torsor, we need to show that
Ai®adi — A; @4 (A[A)])
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is an isomorphism. Now note that the topology on A; ® 4 A; coincides with the natural topology
by [Zav21b, Lemma B.3.5]. Therefore, it is already complete by Lemma B.2.1. Thus, 4;@4A4; ~
A4 Aj ~ A; @4 A[A;] as we wanted.

For the third part, Lemma B.2.4 and Lemma B.2.5 imply that Spa (A, AL) is an affinoid
perfectoid. In particular, it is sheafy. So to show that it is connected, it suffices to show that A
does not have any idempotents. This is done in Lemma B.2.4. Now [Sch12, Proposition 7.6 and
Theorem 7.9] reads that Spa (Aso, AT )tes =~ (Ao )fer- Note that any finite étale surjective cover of
Spa (B, B") — Spa (A, AL)) corresponds to a finite étale surjective cover of Spec B — Spec Axo.
Indeed, any maximal ideal m C A, is a support of some valuation in Spa (A, AL). Therefore,
Spec B — Spec Ay is surjective onto the set of closed points. Since an étale map is open, we
conclude that Spec B — Spec A, must be surjective. So we conclude that every finite étale cover
of Spa (Ax, AL) splits by Lemma B.2.4. O

ApPPENDIX C. THE PRO-ETALE AND v-SITES

The main goal of this section is to recall certain comparison results about étale, quasi-proétale,
and v-topologies. We will freely use the notion of perfectoid spaces and their tilts from [Sch12] and
[Sch17].

C.1. The v-topology. We start by discussing of the v-topology on an adic space X and certain
structure sheaves attached to this space.

One of the problems with the category of adic spaces is that this category does not have limits.
Therefore, in order to speak about pro-étale morphisms, we had to work with pro-systems and
distinguish objects of the pro-étale site of X (that is, a priori, just a cofiltered diagram) and their
realizations as adic spaces (whenever they exist). It turns out that this type of problems can
be resolved by considering an adic space as a sheaf X° on the category of perfectoid spaces of
characteristic p > 0. This may sound very counter-intuitive to consider a p-adic rigid-analytic
variety as a sheaf on characteristic p objects, but it turns out to be a very useful thing. The main
idea is that an S = Spa (R, RT)-point of X should be a choice of an untilt S# of S (this is a mixed
characteristic object) and a morphism S# — X. This procedure turns out to remember a lot of
information about X (e.g. étale cohomology), but not all information on X (see Warning C.1.8)

Definition C.1.1. [Schl7, Definitions 8.1, 12.1, and 14.1] The category Perf is the category of
characteristic p perfectoid spaces.

The v-topology on Perf is defined by saying that a family {f;: X; — X };c; of morphisms in Perf is
a covering if, for any quasi-compact open U C X, there is a finite subset Iy C I and quasi-compact
opens {U; C X, }ier, such that U C U, fi(U;).

A small v-sheaf is a v-sheaf Y on Perf such that there is a surjective map of v-sheaves Y/ — Y
for some perfectoid space Y.

The v-site Y, of a small v-sheaf Y is the site whose objects are all maps Y/ — Y from small
v-sheaves Y’ with coverings given by families {Y; — Y };c; such that U;c;Y; — Y is a surjection of
v-sheaves.

Remark C.1.2. The v-site of a small v-sheaf Y has all finite limits by [Sch17, Proposition 12.10]
and [Sta2l, Tag 0020].

In what follows, we denote by Adq, the category of adic spaces over Spa (Q,, Z,) and by pAdq,
the category of pre-adic spaces over Spa (Qy, Zj) as defined in [SW13, Definition 2.1.5] and [IKL15,
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Definition 8.2.3]*”. The category of pre-adic spaces has the following list of useful properties (see
[SW13, Proposition 2.1.6] or [K1.15, §8.2.3]):

(1) There is a fully faithful functor Adq, — pAdQP from the category of adic spaces over
Spa (Qp, Zp),

(2) every pre-adic affinoid space’” Spa (A4, A1) is naturally an object of pAdq,,

(8) for an adic space S and a pre-adic affinoid space Spa (A, A1), the set of morphisms is given
by

HompAde (S) Spa (A? A+)) = HomCont((Av A+)) (OS(S)a O;(S»)a

(4) pPAdgq, has all finite limits,

(5) for a pseudo-adic space X, one can functorially associate an underlying topological space
| X| such that it coincides with | Spa (A, AT)| if X = Spa (A4, AT) a pre-adic affinoid space
and it coincides with the usual underlying topological space | X| if X = (|X|,0x,0%) is an
adic space,

(6) for every pre-adic space X € pAdQP, one can functorially associate an étale site Xg such
that, for X a strongly noetherian or perfectoid space, Xg; coincides with the étale site
defined in [Hub96] and [Sch12] respectively.

Warning C.1.3. In general it is not true that Hompaag (Spa (B, B™),Spa(A.A")) is equal to
Homeont ((A, AT), (B, BT)) unless Spa (B, B*) is sheafy.

Definition C.1.4. [SW13, Definition 2.4.1] Let X; be a cofiltered inverse system of pre-adic spaces
with quasi-compact and quasi-separated transition maps, X a pre-adic space, and f;: X — X; a
compatible family of morphisms.

We say that X is a tilde-limit of X;, X ~ limy X; if the map of underlying topological spaces
|X| — limy | X;| is a homeomorphism, and if there is an open cover of X by affinoid Spa (A, A+) C
X, such that the map

COthpa(Ai,A;r)CXi A, — A

has dense image, where the filtered colimit runs over all open affinoid
Spa (Ai,Aj) C X;

over which Spa (4, A+) C X — X; factors.

Definition C.1.5. [Schl7, Definition 15.5] The diamond associated to X € pAdq is a presheaf
X©: Perfo? — Sets

such that, for any perfectoid space S of characteristic p, we have
X0(8) = {((sﬁ, L) f 8t X) } Jisom

where S? is a perfectoid space, and ¢: (Sﬂ)b — S is an identification of a S* as an untilt of S.
The diamantine spectrum Spd (A, A1) of Spa (A, AT) is a presheaf Spa (A4, AT)?.

We list the main properties of this functor:
39T hese spaces are called adic in [SW13], we prefer to call them pre-adic to distinguish with adic spaces in the

sense of Huber
40By a pre-adic affinoid space, we mean a space Spa (A, A1) for a not necessarilly sheafy Huber pair (A4, A™).
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Proposition C.1.6. The diamondification functor factors through the category of v-sheaves. And
the functor (=) pAdq, — Shv(Perf,) satisfies the following list of properties:
(1) if X is a perfectoid space, X¢ ~ bed
(2) X© is a small v-sheaf for any X € pAde41,
(3) if {X; — X}ier is an open (resp. étale) covering in pAdq , the family {XZ<> — XOlier is
an open (resp. étale) covering of X<,
(4) there is a functorial homeomorphism |X| ~ | X¢| for any X € pPAdq,
(5) if X is a perfectoid space such that X ~ lim; X; in pAdq, with quasi-compact quasi-
separated transition maps, the natural functor X< — lim; Xi<> is an isomorphism,
(6) the functor (—)<: : pAdq, — Shv(Perf,) commutes with fiber products.
Proof. The first claim follows from [Sch17, Corollary 3.20] and the definition of the diamondification.
As for the second claim, [Sch17, Proposition 15.6] implies that X is a diamond, and it so it is a
small v-sheaf by [Sch17, Proposition 11.9] and the definition of a diamond (see [Sch17, Definition
11.1]). The third and the fourth claims follow from [Sch17, Lemma 15.6]. The proof of the fifth
claim is identical to [SW13, Proposition 2.4.5] (the statement makes the assumption that X and
X; are defined over a perfectoid field, but it is not used in the proof).
We now give a proof of the sixth claim. Let U — V, W — V be morphisms in pAdQP with a

fiber product U xy W. We fix a perfectoid space S of characteristic p. Then we have a sequence
of identifications

(U xv W)O(S) = {((sm) ,SE U Xy W)}/isom

= {((Sﬁ,b) St U)}/isom XL ((.0),85=V)} fisom {((Sﬁ,b> LI W) } /isom
= UO(S) Xy o(s) WO(S)
that is functorial in S. Therefore, this defines an isomorphism
(U xy W)© = U xye WO,
O

Warning C.1.7. The functor (—)<> does not send the final object to the final object. In particular,
it does not commute with all finite limits.

Warning C.1.8. The functor (—): pAdq, — Shv(Perf,) is not fully faithful. This is actually
crucial for our proofs in Section 6.10.

The next goal is to discuss example of v-covers of X< that will be of essential interest for our
purposes.

Definition C.1.9. A family of morphisms {f;: X; — X }ier in PAdq, is a naive v-covering if,
for any quasi-compact open U C X, there is a finite subset Iy C I and quasi-compact opens
{UZ' C Xi}ie[o such that ’U‘ - Uielo|fi|(‘Ui|)-

Remark C.1.10. Using that the natural morphism |X xy Z| — [X| X|y| [Z] is surjective, it is
easy to see that a pullback of a naive v-covering is a naive v-covering.

411t is even a diamond in the terminology of [Sch17], but we will never need this
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Example C.1.11. A quasi-compact surjective morphism X — Y is a naive v-cover. A family of
jointly surjective étale morphisms {X; — X} is a naive v-cover.

Our next goal is to show that the diamondification functor (—)° sends naive v-covers to surjections
of small v-sheaves.

Lemma C.1.12. Let f: X — Y be a quasi-compact (resp. quasi-separated) morphism in pAde.
Then f¢: X® = Y is quasi-compact (resp. quasi-separated) in the sense of [Sch17, p.40].

Proof. We first deal with quasi-compact f. Choose a morphism S — Y from an affinoid perfectoid
S, it corresponds to a morphism S* — Y with an affinoid perfectoid source S*. To check that f< is
quasi-compact, it suffices to show S xy-¢ X ¢ is quasi-compact. By Proposition C.1.6, S Xyo X ¢~
(S* xy X)®. By [Sch17, Lemma 15.6],

‘S Xy <o XO‘ ~ ‘Sﬁ Xy X’
quasi-compact by our assumption on f. Now § Xy X ¢ is quasi-compact by [Sch17, Proposition
12.14(iii)] and the fact that (S* xy X)< is locally spatial by [Sch17, Lemma 15.6].

The case of a quasi-separated f follows from Proposition C.1.6 and the quasi-compact by con-
sidering the diagonal morphism Ay: X — X xy X. O

Lemma C.1.13. Let {f;: X; — X }ier be a naive v-covering in pAdq, . Then {f?: Xi<> — X%Yier
is a v-covering.

Proof. We can find a covering {U; — X };c; by open affinoids. Since {U ]Q — X©} is a v-covering
by Proposition C.1.6, it suffices to show that {f; ;: X;; = X; xx U; = Uj}ier is a v-covering for
every j € J. Since naive v-covers are preserved by open base change, we reduce to the case X is
an affinoid.

Moreover, we know that X is a small v-sheaf, so there is a v-surjection f: S — X from a
perfectoid space S (by the proof of [Sch17, Proposition 15.4], S can be chosen to be affinoid). By
definition, the map f corresponds to a map ¢g: S* — X. Since diamondization commutes with
finite fiber products by Proposition C.1.6, it is enough to show that {(X; x x SH)® — (S%)¢}ics is
a v-covering. In other words, we can assume that X = S* is an affinoid perfectoid space.

Now we can find a covering {U; ; — X;};jcs, by open affinoids for each ¢ € I. Then the family
{Ui,j = X }ier jey, is also a naive v-covering, and so it suffices to show that {UZ% — Xo}iejdeji is
a v-covering. In other words, we can assume that X is an affinoid perfectoid and that X, are all
affinoids. A similar argument allows us to assume that X; are affinoid perfectoid.

Finally, we note that under our assumption that X and X; are (affinoid) perfectoids, {X; —
X }ier is a naive v-covering if and only if {XZ<> — X©Yier is a v-covering since |XZ<>| ~ | X;| and
|X®| = |X| by [Sch17, Lemma 15.6]. O

C.2. The Quasi-proétale Topology. The main goal of this section is remind the reader the main
notions of a quasi-proétale topology. This topology will be play an important intermediate role in
relating the v-topology to the étale topology.

In order to recall the definition of a quasi-proétale topology, we need to recall some definitions
from [Sch17].
Definition C.2.1. A perfectoid space X is totally disconnected if X is quasi-compact, quasi-
separated, and every open cover of X splits.

A perfectoid space X is strictly totally disconnected if X is quasi-compact, quasi-separated, and
every étale cover of X splits.
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Lemma C.2.2. Let X be a totally disconnected perfectoid space, and ¥ — X a quasi-compact
separated étale morphism of perfectoid spaces. Then Y is totally disconnected.

Proof. By [Sch17, Lemma 7.2], it suffices to show that every connected component 7' C X has a
unique closed point. Clearly f(7T') is connected, so it lies in a connected component of X that is
isomorphic to Spa (K, K1) for some perfectoid field pair (K, KT) due to [Sch17, Lemma 7.3]. So it
is enough to show that Y x x Spa (K, K1) is totally disconnected for every connected component
Spa (K, K*) C X. In other words, we can assume that X is an adic spectrum of a perfectoid field
pair.

Now [Sch17, Lemma 9.9] implies that Y is a quasi-compact open in a finite étale morphism
Y — X. Since Y is finite étale over X, it is of the form

n

| | Spa (Ki, K;") — Spa (K, K*)

i=1
where K C K; is a finite separable extension of perfectoid fields, and K ;r is an integral closure of
K* in K;. Therefore, [Ked18] ensures that (K;, K;") is a perfectoid field pair (i.e. K;” C K; is an
open and bounded valuation ring in Kj;).

Now any open adic subspace of Spa (K, Kf) is of the form Spa (Kj, KZ/JF) for some other open

and bounded valuation ring K{Jr C K. Theefore, Y is of the form

| | Spa (K, K] T)
=1

that is a totally disconnected perfectoid space. ]

Lemma C.2.3. Let X be a totally disconnected perfectoid space such that every finite étale cover
of X splits. Then X is strictly totally disconnected.

Proof. By [Sch17, Proposition 7.16], it suffices to show that, for every point € X, the completed
residue field K(z) = k(z) is algebraically closed. Since completed residue fields do not change
under specialization, we can assume that z is the unique closed point in its connected component.

Now suppose that K(X) is an algebraically closed, so there is a finite separable extension K (z) C
L defining an finite étale morphism of perfectoid spaces Spa (L, L") — Spa (K (z), K(z)"). Since
Spa (K (z), K(x)*) C X is a connected component (see [Sch17, Lemma 7.3]), it is an intersection
of clopen subset containing x. Therefore, [Sch17, Proposition 6.4(i)] implies that there is a clopen
subset U C X containng = and a finite étale morphism

V >U

such that its pullback on Spa (K (z), K (x)") coincides with Spa (L, LT) — Spa (K (z), K(x)"). But
then
VUX\U) = X

is a finite étale cover of X that does not split. Contradiction with our assumption on X. U
For the next definition, we assume that f: X = Spa(S,S*) — Y = Spa (R, R") is a morphism

of adic spaces such that each X and Y is either an affinoid perfectoid or a strongly noetherian Tate
affinoids.
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Definition C.2.4. [Sch17, Definition 7.8] A morphism f: Spa(S,S*) — Spa (R, R") is an affinoid
pro-étale morphism if there is a cofiltered system of étale morphisms Spa (R;, Rj) — Spa (R, RT)
such that each (R;, Rj) is either a strongly noetherian Huber pair or a perfectoid pair, and S+
is the w-adic completion of colim; RZF (for some compatible choice of pseudo-uniformizers), and
S = S*[é].

A morphism f: Spa(S,ST) — Spa (R, RT) is pro-(finite étale) if it is affinoid pro-étale and each
Spa (R;, Rj") — Spa (R, R*) can be chosen to be finite étale.

An morphism f: Spa(S,ST) — Spa(R,R") is pro-(open) if it is affinoid pro-étale and each
Spa (R;, R;") — Spa (R, R") can be chosen to be a disjoint union of rational subdomains.

For the next definition, we assume that f: X — Y is a morphism of adic spaces such that each
X and Y is either perfectoid or locally noetherian.

Definition C.2.5. [Sch17, Definition 7.8] A morphism of adic spaces f: X — Y is pro-étale if, for
every point z € X, there is an open affinoid x € U C X and an open affinoid f(z) € V C Y such
that f|y: U — V is affinoid pro-étale.

Lemma C.2.6. Let X be a strictly totally disconnected perfectoid space, and ¥ — X be an
affinoid pro-étale morphism. Then Y is strictly totally disconnected.

Proof. This follows directly from [Sch17, Lemma 7.19]. O
Now we are ready to define quasi-proétale morphisms.

Definition C.2.7. [Sch17, Definition 10.1 and 14.1] A morphism of small v-sheaves f: X — Y
is quasi-proétale if it is locally separated, and for every morphism S — Y with a strictly totally
disconnected perfectoid S, the fiber product Xg := X Xy S is represented by a perfectoid space
and Xg — S is pro-étale.

The quasi-proétale site Xqpro¢r Of a small v-sheaf is the site whose objects are quasi-proétale
morphisms Y — X, with coverings given by families {Y; — Y };c; such that U;c;Y; — Y is a
surjection of v-sheaves.

Lemma C.2.8. Let f: X — Y be a pro-étale morphism with X and Y being either a space or a
locally noetherian. Then f¢: X — Y is quasi-proétale. Furthermore, if f is a naive v-covering,
then f< is a v-covering.

Proof. 1t is easy to see that a morphism of affinoids X — Y induces a separated morphism of
diamonds f¢: X¢ — Y (for example, it is quasi-separated by Lemma C.1.12 and then the
valuative criterion of [Sch17, Proposition 10.9] is easy to verify). Then, for the purpose of proving
that f¢ is quasi-proétale, it suffices to show f¢ pro-étale after any base S — Y with a strictly
totally disconnected perfectoid S. By definition, an S-point of Y corresponds to a morphism
S% — Y and Proposition C.1.6 (6) implies that

S xyo X9~ (S% xy X)©.

Since pro-étale morphisms are stable under base change, we can assume that Y is a strictly totally
disconnected perfectoid space. Proposition C.1.6 (3) ensures that we can prove the claim locally
on X and Y, so we may assume that f is affinoid perfectoid. Then we can write X = Spa (S, S™)
as a tilde-limit of étale morphisms

X ~ lim X; = Spa(R;, R) =Y
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with each X; an affinoid perfectoid space. Now Proposition C.1.6 (1) and Proposition C.1.6 (5)
imply that
X0 = li}an — Y.

is a pro-étale morphism (see [Schl17, Proposition 6.5] to ensure that limit is computed via the
formula in Definition C.2.4). If f is a naive v-covering, f¢ is a v-covering by Lemma C.1.13. O

Lemma C.2.9. (1) Let X = Spa (A4, AT) be a strongly noetherian Tate affinoid over Spa (Q,, Z,).
Then there is a pro-(finite étale) surjective morphism ¥ — X with an affinoid perfectoid
Y.

(2) Let X = Spa (A, A") be an affinoid perfectoid space. Then there is a pro-(open) surjective
morphism Y — X with a totally disconnected perfectoid Y.

(3) Let X = Spa (A, AT) be a totally disconnected perfectoid space. Then there is a pro-(finite
étale) surjective morphism Y — X with a strictly totally disconnected perfectoid Y.

Proof. (1) : Since X is a strongly noetherian Tate affinoid, it has finite number of connected com-
ponents (because A has finite number of non-trivial idempotents). Therefore, we can assume that
X is connected. Then the claim follows from Lemma B.2.6.

(2) : This follows directly from [Sch17, Proposition 7.12].

(3) : Fix a family of all finite étale surjective morphisms {X; — X};c;. This diagram is not
cofiltered, but we are going to make another cofiltered diagram out of it. For each finite subset
J C I, we define Xj = Hje] Xj. Then each X; — X is still finite surjective, and the evident
transition maps X; — X for J' C J are still finite étale. In particular, {X; — X} jc7 finite 1S &
cofiltered family, so we can define the limit (in the category of perfectoid spaces) affinoid perfectoid
space

Xoo = li§n X;— X

It is pro-(finite étale) over X, and every finite étale cover of X splits in X, (because it is an element
of the limit). Note that each X is totally disconnected by Lemma C.2.2. So any open covering of
X7 splits, then any open covering of X, splits by [Sch17, Proposition 6.4(0)]. Therefore, X is
totally disconnected.

Now we define X, iteratively as X1 = Xo and X% = (X2 )oo. Finally, we define

X2 =lim X7
n

The same approximation argument as above shows that X is totally disconnected. Furthermore,
[Sch17, Proposition 6.4] implies that every finite étale covering of X2 is defined over some X7,
and thus splits over X!, Thus any finite étale covering of X splits. So X is a strictly totally
disconnected by Lemma C.2.3. It is clear that X — X is surjective morphism of affinoids, so a
naive v-covering. The only thing we are left to show is that X — X is pro-(finite étale). This
follows from the fact that pro-(finite étale) covers of affinoid perfectoids are preserved by cofiltered
limits. This, in turn, can be deduced from [Sch17, Proposition 6.4(i)] via a standard spreading out
argument, we leave details to the reader. O

Corollary C.2.10. Let X = Spa (A, A") be a strongly noetherian Tate affinoid over Spa (Qy, Zy).
Then there is a morphism Spa (A, AL) — Spa (A4, AT) such that

(1) Spd (As, AL) — Spd (A, A™) is a quasi-proétale covering;

(2) the fiber products Spa (As, AL )7/ Spa(A,AT) are strictly totally disconnected (affinoid) per-
fectoids for j > 1.
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Proof. Take Spa (Ao, AL)) — Spa (A4, AT) to be the composition of three covering from Lemma C.2.9.
Then
Spd (As, AL) = Spa (A%, AL") — Spd (4, A7)

is a quasi-proétale covering by Lemma C.2.8. Now the claim about higher products follows from
Lemma C.2.6 since each

; +

Spa (As, AL )/ 502 (A4 - Spa (Ao, AL)
is a composition of affinoid proétale morphisms. O
C.3. Structure Sheaves. The main goal of this section is to define various structure sheaves on
(a diamond of) a pre-adic spaces over Q,, and discuss a precise relation between them.

Firstly, we note that for any pre-adic space X over Q,, its étale, quasi-proétale, and v-sites are
related by a sequence of morphisms of sites:

n
X9 2 X8 0~ Xa (C.1)
Now we define different structure sheaves on each of these sites.

Definition C.3.1. Let X be a pre-adic space over Spa (Qp, Z,).
An integral “untilted” structure sheaf O}O is a v-sheafification of a pre-sheaf

{S = X%} = 0%,(5%)
with the evident transition map*?
An rational “untilted” structure sheaf O xo is (‘)}0[%].

A mod-p structure sheaf O}O /p is the quotient of O;Q by p in the v-topology on X <.
A quasi-proétale integral “untilted” structure sheaf O;Q is the restriction of (‘);r(<> on the quasi-

qp
proétale site of X<> i.e. O+qp = A*O;Q

A quasi-proétale mod-p structure sheaf O;Q/p is the quotient of (‘)};<> by p in the quasi-proétale

topology on X .
An étale mod-p structure sheaf O}ér /p is the quotient of O}ér by p in the étale topology on X,

where O}ét is the usual integral structure sheaf on Xg.
Remark C.3.2. Note that it is, a priori, not clear if O;C%/p ~ A\, (O}Q/p). The issues is that we

former is defined via taking the quotient by p in the quasi-proétale topology, and the latter in the
v-topology. However, we will show later that they always coincide.

Remark C.3.3. The relation between OJF<> /p and O+ /p is even more mysterious. The first

is roughly defined via descent from perfect01d spaces. Whlle the other is defined using the étale
topology of Xg;, so if X is a noetherian adic space, it does not have any direct relation with
perfectoid spaces.

Essentially by definition, these structure sheaves promote Diagram (C.1) to a diagram of mor-
phisms of ringed sites:

(X8, 0%0 /p) 2 (Xpoas %o /p) —— (X, 0%, /) (C2)

42Recall that a morphism S — X< is, by definition, a data of an untilt S* with a morphism S* — X and an
isomorphism (S*)” ~ S. Thus a pair of morphisms T'— S — X defines a pair T# — §¥ — X
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We also have ‘tilted’ versions of the structure sheaves:

Definition C.3.4. Let X be a pre-adic space over Spa (Qp, Z,).

An integral “tilted” structure sheaf OI;’(O is a v-sheafification of a pre-sheaf
{S — X} 0%(9)
with the evident transition map.
If X is a pre-adic space over a p-adic perfectoid pair (R, RT) with a good pseudo-uniformizer
w € RT (see Definition B.1.6), a rational “tilted” structure sheaf Og(o is O&t[#}
We start with some easy properties of the structure sheaves:
Lemma C.3.5. Let X € pAde be a pre-adic space over Spa (Qp,Z,). Then
(1) for any affinoid perfectoid ¥ = Spa (S, 5%) — X¢, HO(Y, 0% ,,) = 5%T, and H (Y, 0% ) ~*
0 for i > 1;
(2) for any affinoid perfectoid Y = Spa (S, ST) — X ¢, H(Y, O;’g) = S*, and H(Y, O;’g) ~a ()
for i > 1;
(3) the sheaf O;Q is derived p-adically complete and p-torsionfree;
(4) if X is pre-adic space over a perfectoid pair (R, R) with a good pseudo-uniformizer w € R™,
the sheaf O;’g is derived w’-adically complete and w’-torsionfree;
(5) if X is pre-adic space over a perfectoid pair (R, RT) with a good pseudo-uniformizer w € R™,
there is a canonical isomorphism O;O /D =~ O;’g @
Proof. (1) and (2) follow directly from [Sch17, Theorem 8.7 and Proposition 8.8].

(3): Clearly, in order to show that O}o is p-torsionfree, it suffices to show that O}O(U ) is
p-torsionfree on a basis of X7§> . Therefore, it is enough to show that

0%o (Y)

is p-torsionfree for any affinoid perfectoid Y — X . Thif follows from (1).

+

Lemma A.8 ensures that, for the purpose of proving that O

suffices to show that

o is p-adically derived complete, it

RI'(S, O}L(Q)
is derived p-adically complete for any affinoid perfectoid ¥ = Spa (S,ST) — X. Then it suffices to
show that each cohomology group H'(Y, O}o) is derived p-adically complete. Now (1) implies that
HO(Ya O}o) = bt
is p-adically complete, and thus it is derived p-adically complete (see [Sta21, Tag 091R]). Moreover,
(1) implies that all higher cohomology groups
H'(Y,0%,) ~*0

are almost zero. In particular, they are p-torsion, and so derived p-adically complete. Thus,
RI'(S, O;O) is derived p-adically complete finishing the proof.

(4) : This is completely analogous to the proof of (3) using (2) in place of (1).

(5) : Denote by F the presheaf quotient of O;o by p, and by G the presheaf quotient of Ol;’(t. It

suffices to construct a functorial isomorphism
F(U) ~5U)
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on a basis of Xf,> . Therefore, it suffices to construct such an isomorphism for any affinoid perfectoid
U. Then (1) and (2) ensure that, for an affinoid perfectoid U = Spa (S, S*) — X©,
F(U) ~ 85+ /pSh+, and §(U) ~ ST/’ S+
Essentially by the definition of a tilt, we have a canonical isomorphism
St /psht ~ gt /P 5t
finishing the proof. O

Our next goal is to show a precise relation between (‘);r(O /D, O;(?p /p, and (‘);r(ét /p. If one is willing

to work in the almost world, this relation is quite easy (and essentially boils down to Lemma C.3.5).
However, for the purpose of understanding the relation between O /p-vector bundles in different
topologies, it is essential to eliminate any almost mathematics in this relation.

Lemma C.3.6. Let X € pAdQP be a pre-adic space over Q,. Then the natural morphism
O;gp/p = M (0% /p) s

is an isomorphism. If X is a perfectoid space or a locally noetherian space over Q,, then the natural
morphisms

' (Oj{ét/p) - O;%J/P,
0%, /p — Ry (Oj(%/p)
are isomorphisms as well.

Proof. The first result is [MW20, Proposition 2.13]. For the second result, we note that [MW20,

Lemma 2.7] ensures that, for a perfectoid or locally noetherian X, OF o 43 is isomorphic to the sheaf
qp

0t 1 -1 ((q+
Oy, = 117rlnu (OXét /p") .
Now note the quasi-proétale site of a diamond is replete (in the sense of [BS15, Definition 3.1.1])

due to [MW20, Lemma 1.2]. Therefore, the fact that O}ét is p-torsionfree and [BS15, Proposition
3.1.10] imply that

6;@ ~ Rlimp~* (O}ét/p”) ~ u*l(O}ét)

is the derived p-adic completion of p~! (O},t). Since O;Q is also p-torsionfree by Lemma C.3.5,
¢ ap
the universal property of derived completion implies that

O%o p= 0% /7]
~ [0 } )/p]
S ( *et/p)

Finally, [Sch17, Proposition 14.8 and Lemma 15.6] imply that

O%,./p =~ Rpp™" (O}ét /p) ~ Ry, (O}gp /p) :

43This is denoted by O Yo in [MW20].
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Our next goal is to compare R, ((9;“(O / p) with Oj((?p /p. In order to do this, we need a number

of preliminary results.

Remark C.3.7. The proof of the isomorphism ! (O}t/p) ~ (‘);r(<> /p in Lemma C.3.6 essentially
© ap

uses only [MW?20, Lemma 2.7] that was established only in the perfectoid or locally noetherian
situation. One can check that the proof carries over to the situation of an adic space strongly
sheafy in the sense of [HK21, Definition 4.1]. In particular, Lemma C.3.6 stays correct for a
“smoothoid” X in the sense of [Heu]. It is possible that the result stays correct for all pre-adic
spaces over Spa (Qp, Zp).

Lemma C.3.8. Let {X; = Spa(S;, S;")}ier be a cofiltered system of affinoid perfectoid spaces
over (Qp,Zp), and let Xoo = Spa (Soo, SL), where SI is the p-adic completion of colim; S;t and
Soc = S;ro[%] Then the natural morphism

/p

is an isomorphism, where f;: X, — X; are the obvious morphisms.

colimy fi_IO}iyét /D — O}

00,ét

Proof. Note that [Sch17, Proposition 6.5] implies that X, = lim; X; in the category of perfectoid
spaces.

Now we observe that an affinoid perfectoid site X; ¢ragr induce the same étale topos as the full
étale site X ¢. Therefore, it suffices to prove the claim on the affinoid étale site. Moreover, it
suffices to show the claim on the presheaf level. Namely, let F; be the presheaf quotient of Ox
by p for i € I or ¢ = oo. Then it suffices to show that

colimy(f; 1F:(U)) = Foo(U)

1,6t

is an isomorphism®* for any U € Xoo étaft-

Pick any étale morphism Uy — X with an affinoid perfectoid Us,. Then [Sch17, Proposition
6.4(iv)] implies that, for some iy € I, there is an affinoid perfectoid U;, with an étale morphism
Ui, = Xj, such that

U’io XXz'O Xoo ~ Uoo
For any j > ip or j = oo, define U; := U;, xx, X;. Since fiber products commute with limits, we
get that
in the category of perfectoid spaces. Now an easy application of [Sch17, Proposition 6.4(iv)] ensures
colim[(fi_l?i(U)) = colim;y O[J}Z_(UZ-)/p.
Thus it suffices to show that the natural morphism

colimy (‘)?}i(Ui)/p — (‘)”;(Uoo)/p

is an isomorphism. The fact that Uy, = lim; U; and [Sch17, Proposition 6.5] ensure that O?}OO(UOO)
is the p-adic completion of colim; O&(UZ) Therefore, the natural morphism

colimy OF; (Ui)/p = Of; _(Uso)/p

is clearly an isomorphism finishing the proof. (|

4Here f[l is understood to be a presheaf pullback
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Corollary C.3.9. Let X be a pre-adic space over Spa (Q,,Zy), and X = lim; X; is a cofiltered
limit of characteristic p affinoid perfectoid spaces over X <. Then the natural morphism
colim; H' (X, 0%, /p) = H' (Xoo, 0% /D)

is an isomorphism for every i > 0.

Proof. A morphism X; — X< defines an untilt X f — X of X; over X. So we may replace X with
X lﬁ for some i € I to assume that X is an affinoid perfectoid space over Spa (Q,, Zy).
In this case, we write X; = Spa(R;, R;') and X = Spa (R, RL) and denote their untilts
corresponding to a morphism to X< by
Xf = Spa(Rf,R?’Jr) = Spa (S;, S;), X* = Spa (R?,Rgﬁr) = Spa (Seo, SL).
Now [Sch17, Corollary 3.20] ensures that
Spa (S, ST) ~ li}n Spa (Si, S;")

in the category of perfectoid spaces. In particular,

S% =~ colimy S}
is the p-adic completion of colimf Sf . Lemma C.3.6 implies that it suffices to show that the natural
morphism
colim; H(X} ., 0 X, /P) = HO(XE 0, Oy )
is an isomorphism. Now the result is a formal consequence of Lemma C.3.8 and [Sch17, Proposition
6.4] (for example, argue as in [Full, Proposition 5.9.2]). O

Lemma C.3.10. Let Y be a strictly totally disconnected perfectoid space, and Z — Y a wv-cover
by an affinoid perfectoid space. Then there is a presentation Z = lim; Z; — Y as cofiltered limit
of affinoid perfectoid spaces over Y such that each Z; — Y admits a section.

Proof. The proof of [MW?20, Lemma 2.11] carries over in this case if one replace a reference to
[Sch17, Lemma 9.5] with [Heu2l, Lemma 2.23]. O
Corollary C.3.11. Let X € pAdq, be a pre-adic space over Spa (Qp,Zp). Then the natural
morphism

O-‘r

xo,/P = BA (00 /p)

is an isomorphism.

Proof. Lemma C.3.6 ensures that O;Q /D — A (O}EO / p) is an isomorphism. Thus, it suffices to
show that v ‘

R/X, (0% /p) ~0
for 7 > 1. Since strictly totally disconnected spaces form a basis for the quasi-proétale topology of
any diamond, it suffices to show that

H(Y,0%,/p) =0

for a totally strictly disconnected perfectoid Y — X and j > 1. Pick a class x € H/(Y, O}O /p), it
is killed by some v-covering Z — Y by an affinoid perfectoid space Z. Now Lemma C.3.10 implies
that Z = lim; Z; — Y is cofiltered limit of affinoid perfectoid spaces over Y such that each Z; — X
admits a section. Then Corollary C.3.9 implies that

H/(Z,0%, /p) ~ colim; H (Z;, 0%, /p).
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Therefore, the class z € H/ (Y, 0%, /p) is killed under a morphism H’(Y, 0% /p) — H/(Z;, 0%, /p)

for some i € I. More presicely, 7} (z) = 0 € H/(Z,, O}O /p) for the structure morphism m;: Z; — Y.
Now we use a section s;: Y — Z; to see that

z = s;(nf(z)) = 0 € B (Y,0%, /p).
O

Corollary C.3.12. Let X be a perfectoid or locally noetherian adic space over Spa (Q,, Z,). Then
the natural morphisms

RI(X,0%, /p) =& RI(XS o;(% /p) = RI(XY, 0%, /p)
are isomorphisms.
Proof. Tt follows directly from Lemma C.3.6 and Corollary C.3.11. O

Corollary C.3.13. Let X = Spa (R, RT) be a strictly totally disconnected perfectoid space over
Spa (Qp, Zy). Then H{(XY, 0%, /p) ~ 0 for i > 1, and HO(X?, 0o /p) ~ RY/pR*.

Remark C.3.14. We emphasize that we have an actual vanishing of higher cohomology groups as
opposed to almost vanishing (that can be deduced from Lemma C.3.5).

Proof. By Corollary C.3.12, we know that
RI(XY, 0%, /p) ~ RT(X, 0%, /p).

But X is a strictly totally disconnected space, so any étale sheaf has no higher cohomology groups.
This implies that H(X, O%o/p) ~0fori>1, and

HO(XP,0%, /p) ~H(X,0%, )/p~ R"/pR".

ét

O

Corollary C.3.15. Let K be a p-adic non-archimedean field, K+ C K an open and bounded
valuation subring, and X a locally noetherian adic space over Spa (K, KT), and X° == X Xg,, (K,K+)
Spa (K, Ok). Then the natural morphism

RI(XY, 0% /p) @k jp O /p = RT(XC, 0%, /p)
is an isomorphism. In particular, if (K, K1) is a perfectoid field pair, then the natural morphism
RI(X?, 0%, /p) = RIO(Xy¥, 0%, . /p)
is an almost isomorphism.

Proof. The proof is local on X, so we can assume that X = Spa (A, AT) is affinoid. Then we can
find a morphism Spd (A, AL) — Spd (A, AT) such that all fiber products

Spa (As, ALY/ 502 (A4T) = Spa (B;, BY)

are strictly totally disconnected (affinoid) perfectoid spaces for j > 1. Thus Corollary C.3.13 implies
that

H (Spd (Bj, B )., O}Q/p> ~0
for i,57 > 1, and
HO (Spd (Bj, B} ), O;O/p> ~ B /pB}
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for j > 1. Therefore, one can compute HI (X2, (‘);r(<> /p) via the Cech cohomology groups of the
covering Spd (Aw, AL ) — Spa (A, AT). Thus, one gets an isomorphism
H'(X, 0% /p) (B /p = By /p— ..).
Now the morphism Spa (K, Ok) — Spa (K, K) is an pro-open immersion, so the fiber products
Spa (Bj, B} ) Xspa (k,ix+) Spa (K, Ok)
are strictly totally disconnected affinoid perfectoids represented by™*’
Spa (B;, Bj®K+OK).

In particular, the same argument as above implies that O /p cohomology of X °¥ can be computed
as follows:

H' (X9, 0% /p) = H (B /p @5+ ) Oxc [p = B [p et O /D = ...
Finally, the isomorphism
RT(XS, 0%, /p) ©x+ sy Or /p = RT(XP, 0%, /p)

follows from the flatness of the morphism K+ — O since Ok is an algebraic localization of KT
by [Mat80, Theorem 10.1]. If K is perfectoid, the almost isomorphism

RI(XY, 0% /p) = REO(X), 0%, o /p)

now follows from Lemma B.1.7. O

C.4. Vector Bundles in Different Topologies. The main goal of this section is to show that
the categories of v, quasi-proétale, and étale OF /p vector bundles are all equivalent.

The results of this section are mostly due to B. Heuer. The author learnt Theorems C.4.5 and C.4.8
from him. A version of these results is going to appear in [Heu]. We present a slightly different
argument that avoids considering “smoothoids” and non-abelian cohomology. We heartfully thank
B. Heuer for various discussion around these questions and for allowing the author to present a
variation of his ideas in this section.

For the next definition, we fix a pre-adic space X over Spa (Qy, Zy).

Definition C.4.1. An O;Q/p—module (in the v-topology on X©) & is a O}O/p—vector bundle
if, v-locally on X, it is isomorphic to (O;Q)T for some integer r. We denote the category of
O;Q /p-vector bundles by Vect%.
An O;O /p-module (in the quasi-proétale topology on X¢) € is a O;Q /p-vector bundle if, quasi-
qp qp

proétale locally on X, it is isomorphic to ((‘);r(<> )" for some integer r. We denote the category of
qp
(‘);qop/p—vector bundles by Vecty .

An O}ét /p-module (in the étale topology on X) € is a O}ét/p—vector bundle if, étale locally on
X, it is isomorphic to (O}ét)’” for some integer r. We denote the category of O}ét/p-vector bundles
by Vect<.

45For example, the proof of Lemma 6.4.6 goes through without any changes as Ok is an algebraic localization of
KT.
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Remark C.4.2. Note that O}o /p-vector bundles are “big sheaves”, i.e. it is defined on the (big)
v-site Xl? . In particular, it makes sense to evaluate it on only small v-sheaf Y — X< of X<,

But O;(?p /p and O}ét /p vector bundles are “small sheaves”; they are defined only on a (small)
quasi-proétale and étale sites respectively.

The main goal of this section is to show that all these notions of O /p-vector bundles are
equivalent.

Firstly, we define functors. Lemma C.3.6 implies that p ((f)}ét / p) ~ O;% /p. Therefore, =1

carries O},t /p-vector bundles to (‘)J;(<> /p-vector bundles. So it defines a functor
© qp
p* =t Veet§ — Vect®.

Unfortunately, it is not true that A~! <O+ o/ p) ~0OF X9 /p because we the quasi-proétale topology

was defined to be “small”, and the v- topology was deﬁned to be “big”. Therefore, we let A* be the
“OT /p-module pullback” functor
A" Veety — Vect.
defined by the formula
NE=ATE Dy gt g Oxo /P
qu

Our goal is to show that both A\* and p* are equivalences. Before we do this, we need some
preliminary lemmas:

Lemma C.4.3. Let X be a pre-adic space over Spa(Qp,Z,), € is a (‘);r(<> /p-vector bundle, and

Z — X is a cofiltered limit of affinoid perfectoid spaces over X¢. Then the natural morphism
colim; H (Z;, &) — H(Z, &)

is an isomorphism for every 7 > 0.

Proof. Without loss of generality, we can assume that I has a final object 0. Then, by the sheaf

condition and exactness of filtered colimits, it suffices to show the claim v-locally on Xg. Therefore,

we may assume that €|y ~ ((‘J}O/ p)|% is a trivial vector bundle. Then the claim follows from
Corollary C.3.9. O

Lemma C.4.4. Let Y be a strictly totally disconnected perfectoid space over Spa (Qy, Zp). Then
any O}to /p-vector bundle € is trivial.

Proof. By assumption, there is a v-covering by an affinoid perfectoid Z — Y = Y? such that there
is an isomorphism

fr&lz = (03, /p)lg-
Lemma (.3.10 implies that Z = lim; Z; — Y? is cofiltered limit of affinoid perfectoid spaces over
Y? such that each Zi — Y? admits a section.

Step 1. Approximate f. Lemma C.4.3 ensures that we can find ¢ € I and a morphism
fiz €|z, = (030 /D)I%,
such that fi|z = f
Step 2. Approzimate f~'. We note that the dual sheaf



196 BOGDAN ZAVYALOV

is also an O}O /p-vector bundle. So we can apply the same argument as in Step 1 to
(fHY: (0% /p)| — €V]z = Homgy 1y (€, 0%o/p) |z
to find (after possible enlarging ¢ € I) a morphism
9 (036 /0)|%, = €'z,
such that ¢'|z = (f~1)V. By dualizing, we get a morphism
gi: €|z, = (074 /)%,
such that g;|z = f~1.
Step 3. Show that f; o g; = 1d and g; o f; = Id after possibly enlarging i € I. We show the first

claim, the second is proven in the same way (and even easier). We think of Idg|, and f; o g; as
sections of the internal Hom sheaf, i.e. /

Idgy, , fiogi € (871%;0/1, (8)) (Zi) .

For brevity we denote Endo;<> Jp (€) by End. Note that End is again an O;o /p-vector bundle,

and so Lemma C.4.3 ensures that
colimy End(Z;) = E(2).
Thus if f; o g; and Id are equal in the limit, they are equal on some large Z;.
Step 4. Finish the proof. In Steps 1-3, we constructed morphisms

fir €z, = (056 /)I%

gi: €z, — (034 /p)I,
such that f; = g, ! Therefore, & is already trivial on Z;. But Z; — Y” admits a section by
construction, so we can pullback f; and g; along this section to trivialize & on Y. O

Theorem C.4.5. (see also [IHeu]) Let X be a pre-adic space over Q. Then the functor
A*: Vectqp — Vect,

is an equivalence of categories. Furthermore, for any Oj{éﬁp /p-vector bundle €, the natural morphism

& = RAMNE
is an isomorphism.
Proof. We start the proof by showing that the natural morphism
& = RMNE
is an isomorphism. The claim is quasi-proétale local, so we can assume that € is a trivial O;gp /D-

vector bundle. In this case, the claim follows from Corollary C.3.11.

This already implies full faithfulness of o*. Indeed, it follows from a sequence of isomorphisms:
Homoio/p (A€, A\ E9) ~ Homoj{é}p/p (E1, \A™E9)

~ HOIIIO+O /p (81, 82) .

qu
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To show that A* is essentially surjective, it is enough to show that, for an Oj{o /p-vector bundle
&, A€ is an O;o /p-vector bundle and the natural morphism
qp

E = NN\E

is an isomorphism. Both claims are quasi-proétale local on X<, so we can assume that X is a strictly
totally disconnected perfectoid space. Then € is a trivial vector bundle due do Lemma C.4.4. Then
A€ is a trivial O;o /p-vector bundle by Lemma C.3.6. Thus, the natural morphism

qp

& —= A'\E
is evidently an isomorphism. O

Lemma C.4.6. Let X be an affinoid perfectoid or a strongly noetherian Tate affinoid over

Spa (Qp,Zy), Y — X be a pro-(finite étale) or pro-open morphism. Then the natural morphism
colim; H/ (Y%, &) — H/(Y?, €)

is an isomorphism for any j > 0

Proof. Without loss of generality, we can assume that I has a final object 0. Then, by the sheaf

condition and exactness of filtered colimits, it suffices to show the claim quasi-proétale locally on
Yy. Therefore, we may assume that X = Yj is affinoid perfectoid, and & ~ (O;r(0 /p)?¢ is a trivial
qp

vector bundle. In this case, each Y; is also an affinoid perfectoid space. And the natural morphism
Yo - lim Vo
is an isomorphism. Then the claim follows from Corollary C.3.9 and Corollary C.3.11. O

Lemma C.4.7. Let X be an affinoid perfectoid or a strongly noetherian Tate affinoid over
Spa (Qp,Zy), and € is an (‘);r(<> /p-vector bundle. Then there is
qp

(1) a finite étale surjective morphism X’ — X;
(2) a finite covering by rational subdomains { X/ — X'}icr;
(3) a finite étale surjective morphism X! — X

such that &|x» is a trivial (‘);r(<> /p-vector bundle.
¢ ap

Proof. Any O;o /p-vector bundle on a strictly totally disconnected perfectoid space is trivial by
Theorem C.4.5qapnd Lemma C.4.4.

Lemma C.2.9 implies that there is a composition

X5 B ox, o x, N x

such that f3 is a pro-(finite étale) covering, fs is a pro-open covering, and f; is a pro-(finite étale)

covering, and X3 is strictly totally disconnected. Then we know that €|, ¢ is trivial by the above
3

discussion.

Now an approximation argument as in the proof of Lemma C.4.4 using Lemma C.4.6 in place of
Lemma C.4.3 implies that there is a finite étale covering

Xé—>X2
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such that €[y, ¢ is already trivial. [Sch17, Proposition 6.5] ensures that, if Xp = lim Xp; — X is
3

a pro-open representation for Xo — X, then X} comes as a pullback from a finite étale covering

Xé’l-o — Xa,, for some i € I. Define Xé,i = Xé,io XX, X2, for any i > ip. Then

1210 ’

so the same approximation argument as above ensures that € is already trivial on X} ; for some 1.

Now we are in the situation that there is a pro-(finite étale) covering X; — X, and a morphism
X%, — X such that €|y, o is a trivial O /p-vector bundle, and the X3, — X is a composition
I 3 'l b

of an open covering by rational subdomain and a finite étale covering. Now we apply the approxi-
mation argument once again (using [Sch17, Proposition 11.23] in place of [Sch17, Proposition 6.5])
to get the desired the desired covering of X that trivializes €. O
Theorem C.4.8. (see also [Heu]) Let X be a perfectoid or locally noetherian adic space over
Spa (Qp,Zy). Then the functor

p*: Veet§ — Vect®®

is an equivalence of categories. Furthermore, for any Oj{fi /p-vector bundle €, the natural morphism

& = Ruu*€
is an isomorphism.

Proof. The proof is completely analogous to the proof of Thereom C.4.5 using Lemma C.4.7 in
place of Lemma C.4.4. O

Remark C.4.9. Similarly to Remark C.3.7, Theorem C.4.8 stays correct for all stably sheafy
spaces. In particular, Theorem C.4.8 holds for smoothoids in the sense of [Heu]. We do not give
details as we will never need this level of generality.

Now we collect the main results of this section in one corollary (but not in the most optimal
way).
Corollary C.4.10. Let X be a perfectoid or locally noetherian adic space over Spa (Qp, Z,). Then
the categories Vecté}, Vect®, and Vect% are equivalent. Furthermore, if X is affinoid, and & is an
O /p-vector bundle. Then there is

(1) a finite étale surjective morphism X’ — X;
(2) a finite covering by rational subdomains {X/ — X'}icr;
(3) a finite étale surjective morphism X! — X

such that €|xy is a trivial O}O /p-vector bundle.

C.5. Etale Coefficients. The main goal of this section is to relate the v-cohomology of OF /p with
“étale coefficients” to the corresponding étale cohomology groups.

More precisely, we note that any sheaf F of Fj-modules on X can be considered as a sheaf
é;mét, or X$ via the morphisms in Diagram (C.1). In what follows, we abuse
the notation and denote (A\™'p~'F) @y, (‘)}O/p simply by F ® O}Q/p for any F € Shv(X¢; F)p).
Similarly, we denote by (u~'9) ®F, O;Q /p simply by F ® O;o /D

qp qp

on any of X6, X

Before we go to the comparison results, we need to discuss some preliminary results on sheaves
on pro-finite sets. They turn out to be tied up with overconvergent étale sheaves on strictly totally
disconnected spaces.



ALMOST COHERENT MODULES AND ALMOST COHERENT SHEAVES 199

Definition C.5.1. Let S be a pro-finite set, a sheaf of F-modules J is constructible if there exists
a finite decomposition of S into disjoint union of clopen subsets S = | |, S; such that Fg, is a
constant sheaf of finite rank.

Lemma C.5.2. Let S be a pro-finite set, and f: ¥ — G be a morphism of constructible sheaves
of Fy-modules. Then ker f and Coker f are constructible.

Proof. Since S is pro-finite, each point s € S admits a clopen subset s € Us C S such that both F|y,
and G|y, are constant. Since S is quasi-compact, we can find a finite disjoint union decomposition
S = U ,U; such that both F|y, and G|y, are constant. So we can assume that both F and G are
constant. Then it is easy to see that kernel and cokernel are constant as well. ([l

Lemma C.5.3. Let S be a pro-finite set, and F a sheaf of F,-vector spaces. Then F ~ colim; F;
for a filtered system of constructible sheaves JF;.

Proof. We use [Sta2l, Tag 093C] with B being the collection of clopen subsets of S to write F is a
filtered colimit of the form

m n
F ~ colimj Coker @Epyj — @Ep,Ui
j=1 i=1

Now Lemma C.5.2 implies that each cokernel is constructible finishing the proof. g

Definition C.5.4. An sheaf of F,-modules J on Xg; is overconvergent if, for every specialization
1 — 5 of geometric points of X, the specialization map F5 — J is an isomorphism.

Definition C.5.5. An étale sheaf of F,-modules J on a strictly totally disconnected perfectoid
space X is special if there exists a finite decomposition of X into disjoint union of clopen subsets
X =], X; such that F|x, is a constant sheaf of finite rank.

Lemma C.5.6. Let X be a strictly totally disconnected perfectoid space, and F an overconvergent
étale sheaf of Fj-modules. Then Then J ~ colim; F; for a filtered system of special sheaves F; of
F,-modules.

Proof. Since X is strictly totally disconnected, the étale and analytic sites of X are equivalent. So
we can argue on the analytic site of X. By [Sch17, Lemma 7.3], there is a continuous surjection
m: X — mo(X) onto a pro-finite set my(X) of connected components.

Step 1. The natural map 7™*m,F — F is an isomorphism: It suffices to check that it is an
isomorphism on stalks. Pick any point € X, [Schl17, Lemma 7.3] implies that the connected
component of x has a unique closed point s. Then after unravelling all definitions, one gets that
the map (7*m,F), — F, is naturally identified with the specialization map Fs — F, that is an
isomorphism by the overconvergent assumption.

Step 2. Finish the proof: Lemma C.5.3 ensures that m.F ~ colim; G, is a filtered colimit of
constructible sheaves. Since pullback commutes with all colimits, we get F ~ 7*7,.F ~ colim; 7*G/.
This finishes the proof since each G; := 7T*9§ is special. OJ

Lemma C.5.7. Let X be a pre-adic space over Spa (Q, Z;), and F an overconvergent étale sheaf
of Fy-modules. Then the natural morphism

O%o [P®T = RA(0%,/p® )

is an isomorphism.


https://stacks.math.columbia.edu/tag/093C
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Proof. Since strictly totally disconnected spaces form a basis for the quasi-proétale topology on X,
it suffices to show that a is an isomorphism on such spaces. Then we can write F ~ colim; F; as
filtered colimit of special sheaves by Lemma C.5.6. One easily checks that « is a coherent morphism
of algebraic topoi, so each RZ‘)\*((‘)}<> /p® —) commutes with filtered colimits by [AGV 72, Exp. VI,
Theoreme 5.1]. Thus it suffices to prove the claim for a special F. By definition of a special sheaf,
there exists a disjoint decomposition X = | | | X; into clopen subsets such that F|x, is constant
of finite rank. Since the question is local on X(?proét’ we can replace X with each X; to assume that

F is constant. In this case the claim follows from Corollary C.3.11. O
Remark C.5.8. We do not know if Lemma C.5.7 holds for non overconvergent étale sheaves F.

Now we discuss the relation between étale and quasi-proétale topology.

Lemma C.5.9. Let X be a perfectoid or locally noetherian adic space over Spa(Qp,Z,), and F
an ¢tale sheaf of F,-modules on X. Then the natural morphism

0% /P®F = Rpa(O /0@ )
is an isomorphism.
Proof. By Lemma C.3.6, the right hand side is canonically isomorphism to
Rytp ™ (O}ét/p ® CF) .
So the result follows from [Sch17, Proposition 14.8]. O
Now we combine all these results together (but not in the most optimal form):

Lemma C.5.10. Let X be a perfectoid or locally noetherian adic space over Spa (Qp,Z,), and F
an overconvergent ¢étale sheaf of F,-modules on X. Then the natural morphisms

0%, /p© T = Ry, (0%, /po F).,

O%o /PO F = RA. (ojﬂ§> /p® 5f)
are isomorphisms.

APPENDIX D. ACHINGER’S RESULT IN THE NON-NOETHERIAN CASE

Recall that P. Achinger proved a remarkable result [Ach17, Proposition 6.6.1] that says that an
affinoid rigid-analytic variety X = Spa (A, A1) that admits an étale map to a closed unit disc D%
also admits a finite étale map to D% provided that K is the fraction field of a complete DVR R
with residue field of characteristic p. This result is an analytic analogue of a more classical result of
Kedlaya ([[<ed05] and [Ach17, Proposition 5.2.1]) that an affine k-scheme X = Spec A that admits
an étale map to an affine space A} also admits a finite étale to A} provided that k has characteristic
.

We generalize P. Achinger’s result to the non-noetherian setting. The proof essentially follows
the ideas of [Ach17], we only need to be slightly more careful at some places due to non-noetherian
issues. We also show its formal counterpart.

Lemma D.1. Let k be a field of characteristic p, and let A be a finite type k-algebra such that
dim A < d for some integer d. Suppose that x1,...,x4 € A some elements of A, and m is any
integer m > 0. Then there exist elements y1,...,ys € A such that the map f: k[T1,...,T,] — A,
defined as f(T;) = x; + yfm is finite.
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Proof. We extend the set x1, ..., x4 to some set of generators x1,...,xq,...,2T, of A as a k-algebra.
This defines a presentation A = k[T1,...,Ty,...,T,]/I for some ideal I C k[T},...,T,,...,T,]. We
prove the claim by induction on n — d.

The case of n —d = 0 is trivial as then the map f: k[Th,...,Ty] — A, defined by f(T;) = x;, is
surjective. Therefore, it is finite.

Now we do the induction argument, so we suppose that n —d > 1. We consider the elements

N
I — o F A -
ri=zi—x, ,t=1...,n—1

for some integer m’ > m. Now the assumption n > d+ 1 and Krull’s principal ideal theorem imply
that we can choose some non-zero element g € I, thus we have an expression

/

! !
’ m / 2m. ’ (n—1)m
gy + 22 o+ o x, + a2 ) =0

Now [Mum99, §1] implies that there is some large m’ such that this expression is a polynomial
in x,, with coefficients in k[z],...,2] ] and a non-zero leading term. We may and do assume

that this leading term is 1. So x, is integral over a subring of R generated by zi,... 2 _;, we

denote this ring by R’. Since z; = ] + 22" | we conclude that R is integral over R'. Moreover,
R is finite over R’ as it is finite type over k. Now we note that [Mat86, Theorem 9.3] implies
that dim R’ < dim R < d, and R’ is generated by z/,...,z),_; as a k-algebra. So we can use the
induction hypothesis to find some elements

Yy, Uy €R

such that the morphism f': k[Th,...,Ty] — R, defined as f'(T;) = . + (y/)P"", is finite. Therefore,
the composite morphism
fik[Th,..., T = R

is also finite. We now observe that

im/ —m

F(T) =i+ )P =ai+ b + ) =a+ @ " )"
Therefore, the set (y; = xf:m it Yi)i=1,..q does the job. d
Lemma D.2. Let O be a complete valuation ring of rank-1 with the maximal ideal m and the
residue field k. Suppose that f: A — B is a morphism of topologically finitely generated O -
algebras. Then f is finite if and only if f ®9 k: A ®9 k — B ®¢ k is finite.

Proof. The “only if” part is clear, so we only need to deal with the “if” part. We recall that
[Mat&0, Lemma (28.P), p. 212] says that A — B is finite if and only if A/7 — B/x is finite for
some pseudo-uniformizer m € O. So we only need to show that finiteness of A ®9 k — B ®p k
implies that there is a pseudo-uniformizer 7 € O such that A/m — B/ is finite. Then we note
that the maximal ideal m is a filtered colimit of its finitely generated subideal {I;};c;. Moreover,
the valuation property of the ring O implies that this colimit is actually direct and that I; = (7;) is
principal for any j € J. We also observe that each ; is a pseudo-uniformizer since O is of rank-1.
Thus we see that

A®gk — B®gk = colimjc; (A/n; — B/mj)
and A/m; — B/7; is a finite type morphism by the assumption that both A and B are topologically

finitely generated. Then [Sta2l, Tag 07RG] implies that there is j € J such that A/7; — B/7; is
finite. Therefore, A — B is finite as well. ([l
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Before going to the proof Theorem D.4, we need to show a result on the dimension theory
of rigid-analytic varieties spaces that seem to be missing in the literature. It seems that there
is no generally accepted definition of a dimesion of an adic spaces. We define the dimension as
dim X = sup,cy dim Ox ., this is consistent with the definition of dimension in [FIX18, Definition
I1.10.1.1]. We denote by X' C X the set of all classical points of X.

Lemma D.3. Let f: X = Spa(B,B") - Y = Spa (A, AT) be an étale morphism of rigid-analytic
varieties over a complete rank-1 field K, then dim B > dim A. If Y is equidimensional, i.e.
dim Oy, = dimY for any classical point y € Y then we have an equality dim B = dim A.
In particular, if f: Spa (A, AT) — D?( is étale, then dim A = d.
Proof. We note that [F'K18, Proposition 11.10.1.9 and Corollary 11.10.1.10] imply that
dimX =dim B = sup (dimOx ), and dimY = dim A = sup (dim Oy).
reXxel yEYCl
Since f is topologically finite type, it sends classical points to classical points. Therefore, [Hub96,
Lemma 1.6.4, Corollary 1.7.4, Proposition 1.7.9] imply that the map Oy,f(z) = Ox,z is finite étale
for any = € X°!. Thus we see that
dim B = sup (dim Ox ;) = sup (dim Oy, ¢(,)) < dimY
zeXel zeXel
It is also clear that this inequality becomes an equality, if Y is equidimensional.
Finally, we claim that D4 = Spa (K(Ty,...,Ts), Ox(Ti,...,T4)) = Spa(A, A) is equidimen-
sional. Pick any classical point z € (D% ) and a corresponding maximal ideal m, € K(T1,...,Ty).
Then we know that A, and OD%J are noetherian by [F'K 18, Proposition 0.9.3.9, Theorem I1.8.3.6],

and @ o~ Zm\z by [FIK18, Proposition I1.8.3.1]. Therefore, we get

dim OD%I = dim OD%I =dim Ap, =dimA,, =d
where the last equality comes from [FIKX18, Proposition 0.9.3.9]. O

For the rest of the section we fix a complete rank-1 valuation ring O with the fraction field K
and the characteristic p residue field k. We refer to [Hub96, §1.9] for the construction of the adic
generic fiber of a topologically finitely generated formal O-scheme. The only thing we mention here
is that it sends an affine formal scheme Spf A to the affinoid adic space Spa (4 ®¢ K, A1), where
AT is the integral closure of the image Im(4A — A ®y K).

Theorem D.4. In the notation as above, let g: Spf A — K% be a morphism of flat, topologically
finitely generated formal O-schemes such that the adic generic fiber gx: Spa (A ®9 K, AT) — D&l(
is étale. Then there is a finite morphism f: Spf A — A‘é that is étale on adic generic fibers.

Proof. First of all, we note that Lemma D.3 says that dim A ®9 K = d. Now [FK18, Theorem
9.2.10] says that there exists an finite injective morphism

o: O(Ty,...,Ty) — A

with the Og-flat cokernel. This implies that K(T1,...,T;) — A ®¢ K is finite and injective.
Therefore, [Mat&6, Theorem 9.3] implies that

d=dmA®y K =dimK(Ty,...,T)) =d
Thus we get that d = d’. Flatness of Coker ¢ says that the map
k[Tl,...,Td] — AQp k
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is also finite and injective. Then the similar argument shows that dim A ®9 kK = d. Now we finish
the proof in two slightly different ways depending on characteristic of K.

Case 1, char K = p: We consider the morphism g#: O(Ty,...,Ty) — A induced by g. We define
x; = g7 (T;) fori =1,...,d. Since dim A®gk = d we can apply Lemma D.1 for the residue classes
T1,...,2q and m = 1 to get elements 71,...,7q € A ®g k such that the map

FH# kElTy,...,Tq] > A®po k, defined as F(Tﬁ =T;+ygf fori=1,....d
is finite. We lift 7; in an arbitrary way to elements y; € A, and define
0T, .. Ty) — A
as f#(T;) = x; +y¥ for any i = 1,...,d. This map is finite by Lemma D.2.
Now we note that X := Spa (A ®¢9 K, AT) is smooth over K, so [BLR95, Proposition 2.6] says
that étaleness of fr: X — D% is equivalent to bijectivity of the map
x 01 1
FESpa e = Qx/x

This easily follows from étaleness of g and the fact that d(z; + y¥) = d(x;) in characteristic p.

Case 2, char K = 0: We denote Spf A by X and its adic generic fiber Spa (A ®y K, AT) by X.
Then we use [BLRI5, Proposition 2.6] once again to see that the map

* 01 1
9x8pa i — Pxyx

is an isomorphism. Since (S/)\lx j0)K ~ /i and the same for K% and D%, we conclude that the
fundamental short exact sequence ([FIK18, Proposition 1.3.6.3, Proposition 1.5.2.5 and Theorem
1.5.2.6])

ol ol
o~ Lx/0 %Qx/K;‘i) -0

implies that o = 0. More precisely, we know that
X/AG ) 4

-~

~ A
1 ~ 1
/e = (QA/O<T1,...,Td>)

for a finite A-module 6}4/0<T1 T ([FK18, Corollary 1.5.1.11]). We denote this module by SAZ; for

the rest of the proof, and recall that the condition <§AZ;€ /A d> = 0 is equivalent to ﬁ; ®o K =0.
0/ K

Using finiteness of ﬁé and adhesiveness of A, we conclude that there is an integer k£ such that
kol _
pQ,=0
as p is a pseudo-uniformizer in O. Now, similarly to the case of charK = p, we consider the
morphism
gt (T, Ty) — A

and define x; == g7 (T}) for i = 1,...,d. Again, using that dim A®gk = d we can apply Lemma D.1
for the residue classes Z7,...,Zg and m = k + 1 to get elements 77, ...,7q € A ®g k such that the
map

FFR[TL, ...\ Ty = A®o k, defined as f#(T}) =7 + 5 fori=1,...,d,
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is finite. We lift 7; to some elements y; € A and define
f#l O(Tl,...,Td> — A

by f7(T;) = x; + yfkﬂ. The map f# is finite by Lemma D.2.
We are only left to show that the induced map
f: X — K%
is étale on adic generic fibers. We claim that pk(ﬁ}) = 0. Indeed, we use [FK18, Proposition

1.5.1.10] to trivialize ﬁé Ty, T )0 = @ledTi, so we have the fundamental exact sequence

d dT;—d(z;+ pk+1) ~
P Adr; ————= QYo = Q) >0
i=1

k+1
As d(y? ™ is divisible by pF*!. Therefore, we see that modulo p*+1 this sequence is equal to
i p q q

d
dTi%d(Ii) ~ -~
@ A/karldTZ Q}L‘/o/pk%*l N Q}/pk+1 =0
i=1

Thus we see that QL /pF+1 ~ QL /pF+1 In particular
f g p p )

(#QF) /o (1"0F) = (00} /o ("04) =0
by the choice of k. Therefore, pkﬁ} = 0 by [Mat&0, Lemma (28.P), p. 212]. By passing to the adic
generic fiber we get that frx: X — D?{ such that the map

A(FK): Ficha i = U/

is surjective. However, we recall that X and D‘Ii( are both smooth rigid-analytic varieties of (pure)
dimension d. Thus dy; is a surjective map of vector bundles of the same dimension d, so it must
be an isomorphism. Finally, [BLR95, Proposition 2.6] implies that fx is étale. O

Corollary D.5. Let K be a complete rank-1 valuation field with a valuation ring O, and the
residue field k of characteristic p. Suppose that g: X = Spa (4, A1) — DCII( is an étale morphism
of affinoid rigid-analytic K-varieties. Then there exists a finite étale morphism f: X — D%.

Proof. First of all, we note that [Hub94, Lemma 4.4] implies that AT = A°. So the map g
corresponds to the map

g#: (K<T1, R ,Td>,OK<T1, R ,Td>) — (A,AO)

of Tate-Huber pairs. We note that it suffices to find a topologically finitely generated ring of
definition Ay C A such that the map Ox (T4, ...,Ty) — A° factors through Ag. Then Theorem D.4
will imply the corollary.

We choose some surjection ¢: K(X1,...,X,) — A and consider a ring

0 =00 (X1,...,Xp))

This ring is open by the Banach Open Mapping Theorem ([Hub94, Lemma 2.4 (i)]). It is also
bounded as any map of Tate rings is adic, so it preserves boundedness. Therefore, Aj, is a ring of
definition in A.
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Now we use the universal property of Tate algebras ([Hub94, Lemma 3.3]) to get the unique
K-linear continuous homomorphism

1/}2 K<T1,...,Td,X1,...,Xn> — A
such that (T;) = g# (T;) and ¥(X;) = ¢(X;). Then a similar argument implies that
AO = ”L/}(OK<T1, . ,Td,Xl, ce 7Xn>)

is a topologically finitely generated ring of definition in A such that the map g% : O (T1,..., Ty —
A° factors through Ag. We note that Ag is O flat as it is torsionfree. Therefore, we can apply
Theorem D.4 to the map Spf Ag — A%K to construct a finite K-étale map f: Spf Ay — A%K.

Then the adic generic fiber fx: Spa (A, A°) — D‘[i(46 is the desired finite étale map. O
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