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Abstract. We extend the theory of almost coherent modules that was introduced in “Almost
Ring Theory” [GR03] by Gabber and Ramero. Then we globalize it by developing a new theory of
almost coherent sheaves on schemes and on a class of “nice” formal schemes. We show that these
sheaves satisfy many properties similar to usual coherent sheaves, i.e. the Almost Proper Mapping
Theorem, the Formal GAGA, etc. We also construct an almost version of the Grothendieck twisted
image functor f ! and verify its properties. Lastly, we study sheaves of p-adic nearby cycles on
admissible formal models of rigid-analytic varieties and show that these sheaves provide examples
of almost coherent sheaves. This gives a new proof of the finiteness result for étale cohomology of
proper rigid-analytic varieties obtained before in the work of Peter Scholze “p-adic Hodge Theory
For Rigid-Analytic Varieties” [Sch13].
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1. Introduction

1.1. Motivation. The purpose of this paper is threefold. The first goal is to develop a sufficiently
rich theory of almost coherent sheaves on schemes and a class of formal schemes. The second
goal is to provide the reader with one interesting source of examples of almost coherent sheaves.
Namely, we show that the complex of p-adic nearby cycles Rν∗ (E) has quasi-coherent, almost
coherent cohomology sheaves for any admissible formal OC-scheme X and O+

X♦
/p-vector bundle E

(see Definition 6.1.1).

Before we discuss the content of each chapter in detail, we explain the motivation behind the
work done in this manuscript.

The first source motivation comes from the work of P. Scholze on the finiteness of Fp-cohomology
groups of proper rigid-analytic varieties over p-adic fields (see [Sch13]). The second source of
motivation (clearly related to the first one) is the desire to set up a robust enough theory of almost
coherent sheaves that is crucially used in our proof of Poincaré Duality for Fp-local systems on
smooth and proper rigid-analytic varieties over p-adic fields in [Zav21a].

We start with the work of P. Scholze. In [Sch13], he showed that there is an almost isomorphism

Hi(X,Fp)⊗ OC/p 'a Hi(X,O+
Xét
/p)

for any proper rigid-analytic variety X over a p-adic algebraically closed field C. This almost
isomorphism allows us to reduce studying certain properties of Hi(X,Fp) for a p-adic proper rigid-
analytic space X to studying almost properties of the cohomology groups Hi(X,O+

Xét
/p), or the full

complex RΓ(X,O+
Xét
/p). For instance, Scholze shows that Hi(X,Fp) are finite groups by deducing

it from almost coherence of Hi(X,O+
Xét
/p) over OC/p.

Scholze’s argument does not involve any choice of an admissible formal model for X and is
performed entirely on the generic fiber via an elaborate study of cancellations in certain spectral
sequences. A different natural approach to studying RΓ(X,O+

Xét
/p) is to rewrite this complex as

RΓ
(
X,O+

Xét
/p
)
' RΓ

(
X0,Rt∗O

+
Xét
/p
)

for a choice of an admissible formal OC-model X and the natural morphism of ringed sites

t : (Xét,O
+
Xét
/p)→ (X0,Zar,OX0)

with X0 the mod-p fiber of X. Then we can separately study the complex Rt∗

(
O+
Xét
/p
)

and the

functor RΓ(X,−). In order to make this strategy work, we develop the notion of almost coherent
sheaves on X and X0 and show its various properties similar to the properties of coherent sheaves.

This occupies Chapters 2-5. Chapter 6 is devoted to showing that the complex Rt∗

(
O+
Xét
/p
)

(and,

more generally, “nearby cycles” of any O+
Xét
/p-vector bundle) has almost coherent cohomology

groups. Combining it with the Almost Proper Mapping Theorem 1.2.9, we reprove [Sch13, Lemma
5.8 and Theorem 5.1] in a slightly greater generality.

Theorem 1.1.1. (Lemma 6.3.4, Lemma 6.3.7, and Lemma C.5.10) Let C be a p-adic algebraically
closed non-archimedean field, X a proper rigid-analytic variety over C, and F a Zariski-constructible
sheaf of Fp-modules (see Definition 6.1.7). Then

(1) Hi(X,F ⊗Fp O
+
Xét
/p) is an almost finitely generated OC/p-module for i ≥ 0;
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(2) the natural morphism

Hi (X,F)⊗Fp OC/p→ Hi
(
X,F ⊗Fp O

+
Xét
/p
)

is an almost isomorphism for i ≥ 0;

(3) Hi(X,F ⊗Fp O
+
Xét
/p) is almost zero for i > 2 dimX.

Theorem 1.1.2. (Corollary 6.3.8)1 In the notation of Theorem 1.1.1. Then

(1) Hi(X,F) is a finite group for i ≥ 0;

(2) Hi(X,F) ' 0 for i > 2 dimX.

Now we discuss the role this paper plays in our proof of Poincaré Duality in [Zav21a]. We start
with a precise formulation of this result.

Theorem 1.1.3. [Zav21a] Let C be a p-adic algebraically closed non-archimedean field, X a rigid-
analytic variety over C of pure dimension d, and L an Fp-local system on Xét. Then there is a
canonical trace map

tX : H2d (X,Fp(d))→ Fp

such that the induced pairing

Hi (X,L)⊗H2d−i(X,L∨(d))
−∪−−−−→ H2d(X,Fp(d))

tX−→ Fp

is perfect.

The essential idea of the proof (at least for L = Fp) is to use Theorem 1.1.1 to reduce Poincare

Duality to the almost duality on the complex RΓ(X,O+
Xét
/p). This complex is studied via the

isomorphism
RΓ(X,O+

Xét
/p) ' RΓ(X0,Rt∗O

+
Xét
/p).

Roughly, we separately show almost duality for the “nearby cycles functor” Rt∗ and the almost
version of Grothendieck Duality for the OC/p-scheme X0. In order to even formulate these things
precisely, one needs to have a good way to globalize almost (coherent) modules to almost (coherent)
sheaves in a way that almost coherent sheaves share many properties similar to coherent sheaves

and the “nearby cycles” Rt∗

(
O+
Xét
/p
)

(and its integral counterpart) fit into this theory.

The main content of Sections 2-5 is to develop this general theory, and the main content of
Section 6 is to verify that “nearby cycles” are almost coherent.

That being said, we now discuss content and the main results of each section in more detail.

1.2. Foundations of Almost Mathematics (Sections 2-5). Section 2.1 is devoted to defining
the category of almost modules and studying its main properties. This section is very motivated
by [GR03]. However, it seems that some results that we need later in the paper are not present
in [GR03], so we give an (almost) self-contained introduction to almost commutative algebra. We
define the notions of the category of almost modules (see the discussion after Corollary 2.1.4),
their tensor products (see Proposition 2.2.1(1)), almost Hom functor alHomRa(−,−) (see Propo-
sition 2.2.1(3)), almost finitely generated (see Definitions 2.5.1), almost finitely presented (see
Definition 2.5.2), and almost coherent modules (see Definition 2.6.1). We show that almost coher-
ent modules satisfy most natural properties similar to the properties of classical coherent modules.
We summarize some of them in the theorem below:

1Theorem 1.1.2 can also be easily deduced from the results of [BH21].
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Theorem 1.2.1. (Lemma 2.6.8, Propositions 2.6.18, 2.6.19, 2.6.20, Theorem 2.10.3, and Lemma 2.10.5)
Let R be a ring with an ideal m such that m̃ := m⊗R m is R-flat and m2 = m.

(1) Almost coherent Ra-modules form a Weak Serre subcategory of ModaR.

(2) If R is an almost coherent ring (i.e. free rank-1 R-module is almost coherent), and Ma, Na

two objects in D−acoh(R)a. Then Ma ⊗LRa Na ∈ D−acoh(R)a.

(3) If R is an almost coherent ring, and Ma ∈ D−acoh(R)a, Na ∈ D+
acoh(R)a. Then

RalHomRa(Ma, Na) ∈ D+
acoh(R)a.

(4) If R is an almost coherent ring, Ma ∈ D−acoh(R)a, Na ∈ D+(R)a, and P a an almost flat
Ra-module. Then the natural map RHomRa(Ma, Na)⊗RaP a → RHomRa(Ma, Na⊗RaP a)
is an almost isomorphism.

(5) Descent of almost modules along an almost faithfully flat morphism R → S is always
effective.

(6) Let R → S be an almost faithfully flat map, and let Ma be an Ra-module. Suppose
that Ma ⊗Ra Sa is almost finitely generated (resp. almost finitely presented, resp. almost
coherent) Sa-module. Then so is Ma.

In case, R is I-adically adhesive for some finitely generated ideal I (see Definition 2.12.1), we
can show that almost finitely generated R-modules satisfy a (weak) version of the Artin-Rees
Lemma, and behave nicely with respect to the completion functor. These results will be crucial for
globalizing the theory of almost coherent modules on formal schemes.

Lemma 1.2.2. (Lemma 2.12.6 and Lemma 2.12.7) Let R be an I-adically adhesive ring with an
ideal m such that I ⊂ m, m2 = m, and m ⊗R m is R-flat (see Set-up 2.12.3). Let M be an almost
finitely generated R-module. Then

(1) for anyR-submoduleN ⊂M , the induced topology onN coincides with the I-adic topology;

(2) The natural morphism M ⊗R R̂ → M̂ is an isomorphism. In particular, if R is I-adically
complete, then any almost finitely generated R-modules is also I-adically complete.

In case R is a (topologically) finitely generated algebra over a perfectoid valuation ring K+ (see
Definition B.2), we can say even more. In this case, it turns out that R is almost noetherian (see
Definition 2.7.1), so the theory simplifies significantly. Another useful result that we can obtain in
this situation is that it suffices to check that a derived complete complex is almost coherent after
a taking the derived quotient by a pseudo-uniformizer $. This is very handy in practise because it
reduces many (subtle) integral question to the torsion case where there are no topological subtleties.

Theorem 1.2.3. (Theorem 2.11.4, Theorem 2.11.8, Theorem 2.13.2) Let K+ be a perfectoid
valuation ring with a pseudo-uniformizer $ as in Lemma B.5, and R a K+-algebra. Then

(1) R is almost noetherian if R is (topologically) finite type over K+;

(2) if R is a topologically finite type K+-algebra and M is a derived $-adically complete object

in D(R) such that [M/$] ∈ D
[c,d]
acoh(R/$). Then M ∈ D

[c,d]
acoh(R).

We discuss the extension of almost mathematics to ringed sites in Section 3. The main goal
is to generalize all constructions from almost mathematics to a general ringed site. We define a
notion of almost OX -modules on a ringed site (X,OX) (see Definition 3.1.9) and of OaX -modules
(see Definition 3.1.10) and show that they are equivalent:
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Theorem 1.2.4. (Theorem 3.1.20) Let R be as in Theorem 1.2.1 and (X,OX) a ringed R-site.
Then the functor

(−)a : ModaOX →ModOaX

is an equivalence of categories.

We also define the functors−⊗−, HomOaX
(−,−), alHomOaX

(−,−), HomOaX
(−,−), alHomOaX

(−,−),

f∗, and f∗ on the category of OaX -modules. We refer to Section 3.2 for an extensive discussion of
these functors. Then we study the derived category of OaX -modules and derived analogues of the
functors mentioned above. This is done in Sections 3.4 and 3.5.

We develop the theory of almost finitely presented and almost (quasi-)coherent sheaves on
schemes and a class of formal schemes in Section 4.1. The main goal is to show that these sheaves
behave similarly to the classical coherent sheaves in many aspects.

We roughly define almost finitely presented OaX -modules as modules such that, for any finitely
generated sub-ideal m0 ⊂ m, can be locally approximated by finitely presented OX -modules up to
modules annihilated by m0 (see Definition 4.1.4 for a precise definition). Sections 4.1-4.4 are mostly
concerned with local properties of these sheaves. We summarize some of the main results below:

Theorem 1.2.5. (Corollary 4.1.12, Theorem 4.4.6, Lemmas 4.4.8, 4.4.7, 4.4.9, and 4.4.10) Let R
be a ring with an ideal m such that m̃ := m⊗R m is R-flat and m2 = m.

(1) For any R-scheme X, almost coherent OaX -modules form a Weak Serre subcategory of
ModaOX .

(2) The functor

(̃−) : D∗(R)a → Daqc,∗(SpecR)a

is a t-exact equivalence of triangulated categories for ∗ ∈ {“ ”, acoh}. Its quasi-inverse
is given by RΓ(SpecR,−). In particular, an almost quasi-coherent OaSpecR-module Fa is

almost coherent if and only if Fa(SpecR) is an almost coherent Ra-module.

(3) The natural morphism ˜Ma ⊗LRa Na → M̃a⊗LOaSpecR
Ña is an isomorphism for any Ma, Na ∈

D(R)a.

(4) Let that f : SpecB → SpecA is an R-morphism of affine schemes. Then Lf∗(M̃a) is

functorially isomorphic to ˜Ma ⊗LAa Ba for any Ma ∈ D(A)a.

(5) Let f : X → Y be a quasi-compact and quasi-separated morphism of R-schemes. Suppose
that Y is quasi-compact. Then Rf∗ carries D∗aqc(X)a to D∗aqc(Y )a for any ∗ ∈ {“ ”,−,+, b}.

(6) Suppose that R is almost coherent. Then the natural maps

˜RalHomRa(Ma, Na)→ RalHomOaSpecR
(M̃a, Ña),

˜RHomRa(Ma, Na)→ RHomOaSpecR
(M̃a, Ña)

are almost isomorphisms for Ma ∈ D−acoh(R)a, Na ∈ D+(R)a.

We also establish one non-trivial global result on almost finitely presented OaX -modules. Namely,
we show that even though the definition of almost finitely presented OaX -modules is local, we can
find good approximations by finitely presented OX -modules globally under some mild assumption
on X. This result is systematically used in Chapter 5 to get global properties of almost coherent
OaX -modules.
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Theorem 1.2.6. (Corollary 4.3.5) Let X be a quasi-compact and quasi-separated R-scheme, and
let F be an almost quasi-coherent OX -module. Then F is almost finitely presented (resp. almost
finitely generated) if and only if for any finitely generated ideal m0 ⊂ m there is a morphism
f : G→ F such that G is a quasi-coherent finitely presented (resp. finitely generated) OX -module ,
m0(ker f) = 0 and m0(Coker f) = 0.

We now discuss the content of Sections 4.5-4.9. The main goal there is to prove analogues of
the results in Theorem 1.2.5 for a class of formal schemes. In order to achieve this we restrict our
attention to the class of topologically finitely presented schemes over a topologically universally
adhesive ring R (see Setup 4.5.1). This, in particular, includes admissible formal schemes over a
mixed characteristic, p-adically complete rank-1 valuation ring OC with algebraically closed fraction
field C.

One of the main difficulties in developing a good theory of almost coherent OaX-modules on a
formal scheme X is that there is no good abelian theory of “quasi-coherent” on X. This was an
important auxillary tool used in developing the theory of almost coherent sheaves on schemes that
does not have an immediate counterpart in the world of formal schemes.

We overcome this issue in two different ways: we use the notion of adically quasi-coherent
OX-modules introduced in [FK18] (see Definition 4.5.2) and the notion of derived quasi-coherent
OX-modules introduced in [Lur18] (see Definition 4.8.1). The first notion has the advantage that
every adically quasi-coherent OX-module is an actual OX-module, but these modules do not form
a Weak Serre subcategory inside ModOX

, so they are not always very useful in practice. The
latter definition has the advantage that derived quasi-coherent OX-modules form a triangulated
subcategory inside D(X), it is quite convenient for certain purposes. However, derived quasi-
coherent OX-modules are merely objects of D(X) and not actual OX-modules in the classical sense.
Therefore, we usually use adically quasi-coherent OX-modules when needed except for Section 4.8,
where the notion of derived quasi-coherent OX-modules seems to be more useful for our purposes.
In particular, it allows us to define the functor

(−)L∆ : Dacoh(A)a → Dacoh(Spf A)a

for any topologically finitely presented R-algebra A in a way that “extends” the classical functor
(−)∆ : Modacoh

A →ModOX
(see Definition 4.8.7 and Lemma 4.8.13).

Theorem 1.2.7. (Lemma 4.5.23, Corollary 4.8.16, Lemmas 4.9.4, 4.9.3, 4.9.4) Let R be a ring with
a finitely generated ideal I such that R is I-adically complete, I-adically topologically universally
adhesive, I-torsion free with an ideal m such that I ⊂ m, m2 = m and m̃ := m⊗R m is R-flat.

(1) For any topologically finitely presented formal R-scheme X, almost coherent OaX-modules
form a Weak Serre subcategory of ModaOX

.

(2) The functor

RΓ(Spf R,−) : Dacoh(Spf R)a → Dacoh(R)a

is a t-exact equivalence of triangulated categories.

(3) The natural morphism (Ma ⊗LRa Na)L∆ → (Ma)L∆ ⊗LOaSpf R
(Na)L∆ is an isomorphism for

any for any Ma, Na ∈ Dacoh(R)a.

(4) Let f : Spf B → Spf A be a morphism of topologically finitely presented affine formal R-

schemes. Then Lf∗
(

(Ma)L∆
)

is functorially isomorphic to (Ma ⊗LAa Ba)L∆ for any Ma ∈
Dacoh(A)a.
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(5) The natural map

(RalHomRa (Ma, Na))L∆ → RalHomOaSpf R

(
(Ma)L∆ , (Na)L∆

)
,

(RHomRa (Ma, Na))L∆ → RHomOaSpf R

(
(Ma)L∆ , (Na)L∆

)
are almost isomorphisms for Ma ∈ D−acoh(R)a, Na ∈ D+

acoh(R)a.

Similarly to the case of schemes, almost coherent sheaves on formal schemes satisfy the global
approximation property:

Theorem 1.2.8. (Theorem 4.7.6) Let R be as in Theorem 1.2.7, and X be a finitely presented
formal R-scheme, F an almost finitely generated (resp. almost finitely presented) OX-module. Then,
for any finitely generated ideal m0 ⊂ m, there is an adically quasi-coherent, finitely generated (resp.
finitely presented) OX-module G and a map φ : G→ F such that m0(Cokerφ) = 0 and m0(kerφ) = 0.

We discuss global properties of almost coherent sheaves in Chapter 5. Namely, we generalize
certain cohomological properties of classical coherent sheaves to the case of almost coherent sheaves.
We start with the almost version of the Proper Mapping Theorem:

Theorem 1.2.9. (Theorem 5.1.3) Let R be a universally coherent2 ring with an ideal m such that
m̃ := m⊗R m is R-flat and m2 = m. And let f : X → Y be a proper morphism of finitely presented
R-schemes with quasi-compact Y . Then Rf∗ carries D∗acoh(X)a to D∗acoh(Y )a for ∗ ∈ {“ ”,−,+, b}.

The essential idea of the proof is to reduce Theorem 1.2.9 to the classical Proper Mapping
Theorem over an universally coherent base [FK18, Theorem I.8.1.3]. The key input to make this
reduction work is Theorem 1.2.6.

We also prove a version of the Almost Proper Mapping Theorem for a morphism of formal
schemes:

Theorem 1.2.10. (Theorem 5.1.6) Let R be a ring with a finitely generated ideal I such that R
is I-adically complete, I-adically topologically universally adhesive an ideal m such that I ⊂ m =
∪∞n=1($1/n) for a non-zero divisor $ ∈ R, m2 = m and m̃ := m ⊗R m is R-flat. And let f : X → Y
be a proper morphism of finitely presented formal R-schemes with quasi-compact Y . Then Rf∗
carries D∗acoh(X)a to D∗acoh(Y)a for ∗ ∈ {“ ”,−,+, b}.

Then we provide a characterization of quasi-coherent, almost coherent complexes on finitely
presented, separated schemes over a universally coherent base ring R. This is an almost analogue
of [Sta21, Tag 0CSI]. We follow the same proof strategy but adjust it in certain places to make it
work in the almost setting. This result is important for us as it will later play a crucial role in the
proof of the Formal GAGA Theorem for almost coherent sheaves.

Theorem 1.2.11. (Theorem 5.2.3) Let R be a universally coherent3 ring with an ideal m such
that m̃ := m ⊗R m is R-flat and m2 = m. And let X be a separated, finitely presented R-scheme.
Let F ∈ D−qc(X) be an object such that

RHomX(P,F) ∈ D−acoh(R)

for any P ∈ Perf(X). Then F ∈ D−qc,acoh(X).

2Any finitely presented R-algebra A is coherent
3Any finitely presented R-algebra A is coherent

https://stacks.math.columbia.edu/tag/0CSI
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Theorem 1.2.12. (Corollary 5.3.3) Let R be as in Theorem 1.2.10, and X a finitely presented
R-scheme. Then the functor

Lc∗ : D∗acoh(X)a → D∗acoh(X)a

induces an equivalence of categories for ∗ ∈ {“ ”,+,−, b}.

We note that the standard proof of the classical formal GAGA theorem via projective methods
has no chance to work in the almost coherent situation (due to a lack of “finiteness” for almost
coherent sheaves). Instead, we “explicitly” construct a pseudo-inverse to Lc∗ in the derived world
by adapting an argument from the paper of J. Hall [Hal18].

The last thing we discuss in Section 5 is the almost version of the Grothendieck Duality. This
is an important technical tool in our proof of Poincaré Duality in [Zav21a]. So we develop some
foundations of the f ! functor in the almost world in this manuscript. We summarize the main
properties of this functors below:

Theorem 1.2.13. (Theorem 5.5.8) Let R be as in Theorem 1.2.9, and FPSR be the category of
finitely presented, separated R-schemes. Then there is a well-defined functor (−)! from FPSR into
the 2-category of categories such that

(1) (X)! = D+
aqc(X)a,

(2) for a smooth morphism f : X → Y of pure relative dimension d, f ! ' Lf∗(−)⊗LOaX Ωd
X/Y [d].

(3) for a proper morphism f : X → Y , f ! is right adjoint to Rf∗ : D+
acoh(X)a → D+

acoh(Y )a.

1.3. p-adic Nearby Cycles Sheaves (Section 6). The main goal of Section 6 is to give the
main non-trivial example of almost coherent sheaves. These are the so-called p-adic nearby cycles
sheaves.

We fix a p-adic perfectoid field K, and a rigid-analytic variety X over K with an admissible
formal OK-model X.

The rigid-analytic variety X comes with a morphism of ringed sites

ν : (X♦v ,O
+
X♦

)→ (XZar,OX)

and
ν : (X♦v ,O

+
X♦

/p)→ (X0,Zar,OX0)

where X0 is the mod-p fiber of X and X♦v is the v-site of the associated diamond (see Appendix C.1)
and O+

X♦
its integral “untilted” structure sheaf (see Definition C.3.1).

The main goal of Section 6 is to show that certain nearby cycles sheaves produce examples
of almost coherent sheaves. More precisely, we show that, for any O+

X♦
/p-vector bundle E (see

Definition 6.1.1), the complex Rν∗E has quasi-coherent and almost coherent cohomology sheaves.
We also give a bound on its almost cohomological dimension.

Theorem 1.3.1. (Theorem 6.1.2) Let X an admissible formal OK-scheme with adic generic fiber
X of dimension d and mod-p fiber X0, and E an O+

X♦
/p-vector bundle. Then

(1) the nearby cycles Rν∗E ∈ D+
qc,acoh(X0) and (Rν∗E)a ∈ D

[0,2d]
acoh (X0)a;

(2) for an affine admissible X = Spf A with the adic generic fiber X, the natural map

˜
Hi
(
X♦v ,E

)
→ Riν∗ (E)

is an isomorphism for every i ≥ 0;
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(3) the formation of Riν∗(E) commutes with étale base change, i.e., for any étale morphism
f : Y→ X with adic generic fiber f : Y → X, the natural morphism

f∗0
(
RiνX,∗(E)

)
→ RiνY,∗ (E|Y ♦)

is an isomorphism for any i ≥ 0;

(4) if X has an open affine covering X =
⋃
i∈I Ui such that E|(Ui,K)♦ is very small (see Defini-

tion 6.1.1), then

(Rν∗E)a ∈ D
[0,d]
acoh(X0)a;

(5) if E is small, there is an admissible blow-up X′ → X such that X′ has an open affine covering
X′ =

⋃
i∈I Ui such that E|(Ui,K)♦ is very small.

In particular, if E is small, there is a cofinal family of admissible formal models {X′i}i∈I
of X such that (

RνX′i,∗E
)a
∈ D

[0,d]
acoh(X′i,0)a.

for each i ∈ I.

Remark 1.3.2. We note that Theorem 1.3.1 implies that the nearby cycles complex Rν∗E is
quasi-coherent on the nose (as opposed to being almost quasi-coherent). This is quite unexpected
to the author since all previous results on the cohomology groups of O+/p were only available in
the almost category.

Remark 1.3.3. We do not know if an admissible blow-up X′ → X in the formulation of Theo-
rem 1.3.1 is really necessary or just an artefact of the proof. More importantly, we do not know
if, for every O+

X♦
/p-vector bundle E, there is an admissible formal model X such that the “nearby

cycles” sheaf RνX,∗E lies in D
[0,d]
acoh(X0)a.

In the proof of Theorem 1.3.1, we crucially use the following result that is essentially due to
B. Heuer (see [Heu] for a similar result in a slightly different level of generality).

Theorem 1.3.4. (Corollary C.4.10) Let X be a perfectoid or locally noetherian adic space over
Spa (Qp,Zp). Then the categories Vectét

X , Vectqp
X , and VectvX (see Definition C.4.1) are equivalent.

Furthermore, if X is affinoid, and E is an O+
X♦

/p-vector bundle. Then there is

(1) a finite étale surjective morphism X ′ → X;

(2) a finite covering by rational subdomains {X ′i → X ′}i∈I ;
(3) a finite étale surjective morphism X ′′i → X

such that E|X′′i is a trivial O+
X♦

/p-vector bundle.

Another family of sheaves for which we can establish a good behaviour of “nearby cycles” is
sheaves of the form F ⊗ O+

X♦
/p for a Zariski-constructible étale sheaf of Fp-modules (see Defini-

tion 6.1.7). Namely, in this case we can get a better cohomological bound, and also show that
nearby cycles almost commute with proper base change as this happens in algebraic geometry.

Theorem 1.3.5. (Theorem 6.1.9 and Lemma 6.3.9) Let X be an admissible formal OK-scheme

with adic generic fiber X of dimension d and mod-p fiber X0, and F ∈ D
[r,s]
zc (X; Fp). Then

(1) there is an isomorphism Rt∗

(
F ⊗ O+

Xét
/p
)
' Rν∗

(
F ⊗ O+

X♦
/p
)
;

(2) the nearby cycles Rν∗
(
F ⊗ O+

X♦
/p
)
∈ D+

qc,acoh(X0), and Rν∗
(
F ⊗ O+

X♦
/p
)a ∈ D

[r,s+d]
acoh (X0)a;
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(3) for an affine admissible X = Spf A, the natural map

˜
Hi
(
X♦v ,F ⊗ O+

X♦
/p
)
→ Riν∗

(
F ⊗ O+

X♦
/p
)

is an isomorphism for every i ≥ 0;

(4) the formation of Riν∗
(
F ⊗ O+

X♦
/p
)

commutes with étale base change, i.e., for any étale
morphism f : Y→ X with adic generic fiber f : Y → X, the natural morphism

f∗0
(
RiνX,∗

(
F ⊗ O+

X♦
/p
))
→ RiνY,∗

(
f−1F ⊗ O+

Y ♦
/p
)

is an isomorphism for any i ≥ 0;

(5) if f : X→ Y is a proper morphism of admissible formal OK-schemes with adic generic fiber
f : X → Y , then the natural morphism

RνY,∗
(
Rf∗F ⊗ O+

Y ♦
/p
)
→ Rf0,∗

(
RνX,∗

(
F ⊗ O+

X♦
/p
))

is an almost isomorphism.

We also show an integral version of Theorem 1.3.1:

Theorem 1.3.6. (Theorem 6.1.11) Let X be an admissible formal OK-scheme with adic generic
fiber X of dimension d, and E an O+

X♦
-vector bundle. Then

(1) the nearby cycles Rν∗E ∈ D+
qc,acoh(X) and (Rν∗E)a ∈ D

[0,2d]
acoh (X)a;

(2) for an affine admissible X = Spf A with the adic generic fiber X, the natural map

Hi
(
X♦v ,E

)∆
→ Riν∗ (E)

is an isomorphism for every i ≥ 0;

(3) the formation of Riν∗(E) commutes with étale base change, i.e., for any étale morphism
f : Y→ X with adic generic fiber f : Y → X, the natural morphism

f∗
(
RiνX,∗(E)

)
→ RiνY,∗ (E|Y ♦)

is an isomorphism for any i ≥ 0;

(4) if X has an open affine covering X =
⋃
i∈I Ui such that E|(Ui,K)♦ is very small (see Defini-

tion 6.1.10), then

(Rν∗E)a ∈ D
[0,d]
acoh(X)a;

(5) if E is small, there is an admissible blow-up X′ → X such that X′ has an open affine covering
X′ =

⋃
i∈I Ui such that E|(Ui,K)♦ is very small.

In particular, if E is small, there is a cofinal family of admissible formal models {X′i}i∈I
of X such that

(RνX′i,∗E)a ∈ D
[0,d]
acoh(X′i)

a.

for each i ∈ I.

Theorem 1.3.6 has an interesting consequence saying that v-cohomology groups of any O+
X♦

-
vector bundle are almost coherent and almost vanish in degrees larger than 2 dimX. This (together
with Theorem 1.1.1) indicates that there probably should be much stronger (almost) finiteness
results for some class O+

X♦
-sheaves.
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Theorem 1.3.7. (Theorem 6.3.3) Let K be a p-adic perfectoid field, X a proper rigid-analytic
K-variety of dimension d, and E an O+

X♦
-vector bundle (resp. O+

X♦
/p-vector bundle). Then

RΓ(X♦v ,E) ∈ D
[0,2d]
acoh (OK)a.

We now explain the main steps of our proof of Theorems 1.3.1 and 1.3.6 for E = O+
X♦

/p and

E = O+
X♦

respectively:

Proof Sketch. (1) We first show that the sheaves Riν∗(O
+
X♦

/p) are quasi-coherent. The main

key input is that cohomology of O+
X♦

/p-vector bundles vanish on strictly totally discon-
nected spaces (see Definition C.2.1), and that each affinoid rigid-analytic variety admits a
v-covering such that all terms of its Čech nerve are strictly totally disconnected.

(2) The same ideas can be used to show that the formation of Riν∗(O
+
X♦

/p) commutes with
étale base change.

(3) We show that the OX0-modules Riν∗
(
O+
X♦

/p
)

are almost coherent for smooth X. This is

done in three steps: we firstly find an admissible blow-up X′ → X such that X′ has an open
affine covering X′ =

⋃
i∈I Ui such that each Ui = Spf Ai admits a finite rig-étale morphism

to Âd
OC

, then we show that the cohomology groups Hi(U♦i,C,v,O
+
X♦

/p) are almost coherent

over Ai/pAi, and finally we conclude the almost coherence of Riν∗
(
O+
X♦

/p
)
.

The first step is the combination of [BLR95, Proposition 3.7] and Theorem D.4. The
first result allows to choose an admissible blow-up X′ → X with an open affine covering

X′ =
⋃
i∈I Ui such that each Ui admits a rig-étale morphism Ui → Âd

OC
. Then Theorem D.4

guarantees that actually we can change these morphisms so that Ui → Âd
OC

are finite and

rig-étale. This is the non-noetherian generalization of Achinger’s result [Ach17, Proposition
6.6.1] proven over a discretely valued ring.

The second step follows the strategy presented in [Sch13]. We construct an explicit affi-

noid perfectoid cover of Ui that is a Zp(1)d-torsor. So we reduce studying of Hi(U♦i,C,v,O
+
X♦

/p)

to studying cohomology groups of Zp(1)d that can be explicitly understood via the Koszul
complex.

The last step is the consequence of the Almost Proper Mapping Theorem 1.2.9 and the
already obtained results.

(4) The next step is to show that Riν∗
(
O+
X♦

/p
)

is almost coherent for a general X. This is
done by choosing a proper hypercovering by smooth spaces X• and then use a version of
cohomological v-descent to conclude almost coherence of the p-adic nearby cycles sheaves.
As an important technical tool, we use the theory of diamonds developed in [Sch17].

(5) Next we show that Rν∗
(
O+
X♦

/p
)

is almost concentrated in degrees [0, d]. This claim is
quite subtle. The key input is the version of the purity theorem [BS22, Theorem 10.11] that
implies that any finite (but not necessarily étale) adic space over an affinoid perfectoid has a
diamond that is isomorphic to a diamond of an affinoid perfectoid. This allows us to reduce
the question of cohomological bounds of Rν∗

(
O+
X♦

/p
)a

to the question of cohomological

dimension of the pro-finite group Zp(1)d. This can be understood quite explicitly via Koszul
complexes.

(6) Finally, we show Theorem 1.3.6 by reducing it to Theorem 1.3.1. The key input is Theo-
rem 1.2.3 that allows us to check finiteness mod-p.
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1.5. Notation. A non-archimedean field K is always assumed to be complete. A non-archimedean
field K is called p-adic if its ring of powerbounded elements OK = K◦ is a ring of mixed character-
istic (0, p).

We follow [Sta21, Tag 02MN] for the definition of a (Weak) Serre subcategory of an abelian
cateogry A.

For an R-ringed site (X,OX), an element of the derived category F ∈ D(X), and an element
$ ∈ R, we denote by [F/$] the cone of the multiplication by $-morphism, i.e.

[F/$] := cone(F
$−→ F).

Namely, we say that a non-empty full subcategory C of an abelian category A is a Serre subcat-
egory if, for any exact sequence A → B → C with A,C ∈ C, we have B ∈ C. We say that C is a
Weak Serre subcategory if, for any exact sequence

A0 → A1 → A2 → A3 → A4

with A0, A1, A3, A4 ∈ C, we have A2 ∈ C. Look at [Sta21, Tag 02MP] and [Sta21, Tag 0754] for an
alternative way to describe (Weak) Serre subcategories.

If C is a Serre subcategory of an abelian category A we define the quotient category as a pair
(A/C, F ) of an abelian category A/C and an exact functor

F : A→ A/C

such that, for any exact functor G : A → B to an abelian category B with C ⊂ kerG, there is a
factorization G = H ◦ F for a unique exact functor H : A/C → B. The quotient category always
exists by [Sta21, Tag 02MS].

If B is a full triangulated subcategory of a triangulated category D we define the Verdier quotient
as a pair (D/B, F ) of a triangulated category D/B and an exact functor

F : D→ D/B

such that, for any exact functor G : D → D′ to a pre-triangulated category D′ with B ⊂ kerG,
there is a factorization G = H ◦F for a unique exact functor H : D/B→ D′. The Verdier quotient
always exists by [Sta21, Tag 05RJ].

We say that a diagram of categories

A B

C D

f

h g

k

α

is (2, 1)-commutative if α : k ◦ h⇒ g ◦ f is a natural isomorphism of functors.

https://stacks.math.columbia.edu/tag/02MN
https://stacks.math.columbia.edu/tag/02MP
https://stacks.math.columbia.edu/tag/0754
https://stacks.math.columbia.edu/tag/02MS
https://stacks.math.columbia.edu/tag/05RJ
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For an abelian group M and commuting endomorphisms f1, . . . , fn, we define the Koszul complex

K(M ; f1, . . . , fn) := M →M ⊗Z Zn →M ⊗Z ∧2 (Zn)→ · · · →M ⊗Z ∧n (Zn)

viewed as a chain complex in cohomological degrees 0, . . . , n. The differential

dk : M ⊗Z ∧k (Zn) '
⊕

1≤i1<···<ik≤n
M →M ⊗Z ∧i+1 (Zn) '

⊕
1≤j1<···<jk+1≤n

M

from M in spot i1 < · · · < ik to M in spot j1 < · · · < jk+1 is nonzero only if {i1, . . . , ik} ⊂
{j1, . . . , jk+1}, in which case it is given by (−1)m−1fjm , where m ∈ {1, . . . , k + 1} is the unique
integer such that jm /∈ {i1, . . . , ik}.

If M is an R-module and fi are elements of R the complex K(M ; f1, . . . , fn) is a complex of
R-modules and can be identified with

M →M ⊗R Rn →M ⊗R ∧2 (Rn)→ · · · →M ⊗R ∧n (Rn) .

2. Almost Commutative Algebra

This chapter is devoted to the study of almost coherent modules. We recall some basic definitions
of almost mathematics in Section 2.1. Then we discuss the main properties of almost finitely
generated and almost finitely presented modules in Section 2.5. These two sections closely follow
the discussion of almost mathematics in [GR03]. Section 2.6 is dedicated to almost coherent modules
and almost coherent rings. We show that almost coherent modules from a Weak Serre subcategory
of R-modules, and they coincide with almost finitely presented ones in the case of almost coherent
rings. We discuss base change results in Section 2.8. Finally, we develop some topological aspects
of almost finitely generated modules over “topologically universally adhesive rings” in Section 2.12.

2.1. The Category of Almost Modules. We begin this section by recalling some basic defini-
tions of almost mathematics from [GR03]. We fix some “base” ring R with an ideal m such that
m2 = m and m̃ = m⊗R m is flat. We always do almost mathematics with respect to m.

Lemma 2.1.1. Let M be an R-module. Then the following are equivalent:

(1) The module mM is the zero module.

(2) The module m⊗RM is the zero module.

(3) The module m̃⊗RM is the zero module.

(4) The module M is annihilated by ε for every ε ∈ m.

Proof. Note that the multiplication map m ⊗R m → m is surjective as m2 = m. This implies that
we have surjections

m̃⊗RM � m⊗RM � mM.

This shows that (3) implies (2), and (2) implies (1). It is clear that (2) implies (3), and (1) is
equivalent to (4). So the only thing we are left to show is that (1) implies (2).

Suppose that mM ' 0. Pick an arbitrary element a⊗m ∈ m⊗RM with a ∈ m, m ∈ M . Since
m2 = m there is a finite number of elements y1, . . . , yk, x1, . . . , xk ∈ m such that

a =

k∑
i=1

xiyi.



ALMOST COHERENT MODULES AND ALMOST COHERENT SHEAVES 15

Then we have an equality

a⊗m =

k∑
i=1

xiyi ⊗m =

k∑
i=1

xi ⊗ yim = 0.

�

Definition 2.1.2. An R-module M is almost zero, if any of the equivalent conditions of Lemma
2.1.1 is satisfied for M .

Lemma 2.1.3. Under the assumption as above, the “multiplication” morphism m̃ ⊗R m̃ → m̃ is
an isomorphism.

Proof. We consider a short exact sequence

0→ m→ R→ R/m→ 0.

Note that (R/m)⊗R m = m/m2 = 0, so we get a short exact sequence

0→ TorR1 (R/m,m)→ m̃→ m→ 0.

Since TorR1 (R/m,m) is almost zero, Lemma 2.1.1 says that after applying the functor − ⊗R m̃
we get an isomorphism

m̃⊗R m̃ ' m⊗R m̃.

Since m̃ is R-flat, we also see that m ⊗R m̃ injects into m̃. Moreover, it maps isomorphically onto
its image mm̃ = m̃ as m2 = m. Altogether it shows that

m̃⊗R m̃ ' m̃.

It is straightforward to see that the constructed isomorphism is the “multiplication” map. �

We denote by ΣR the category of almost zero R-modules considered as a full subcategory of
ModR.

Corollary 2.1.4. The category ΣR is a Serre subcategory of ModR
4.

Proof. This follows directly from criterion (3) from Lemma 2.1.1, flatness of m̃ and [Sta21, Tag
02MP]. �

This corollary allows us to define the quotient category ModaR := ModR/ΣR that we call as the
category of almost R-modules5. Note that the localization functor

(−)a : ModR →ModaR

is an exact and essentially surjective functor. We refer to elements of ModaR as almost R-modules
or Ra-modules. We will usually denote them by Ma in order to distinguish almost R-modules from
R-modules.

To simplify some notations, we will use the notation ModaR and ModRa interchangeably.

Definition 2.1.5. A morphism f : M → N is called an almost isomorphism (resp. almost injection,
resp. almost surjection) if the corresponding morphism fa : Ma → Na is an isomorphism (resp.
injection, resp. surjection) in ModaR.

4We refer to [Sta21, Tag 02MN] for the discussion of (Weak) Serre categories.
5We refer to [Sta21, Tag 02MS] for the discussion of quotient categories.

https://stacks.math.columbia.edu/tag/02MP
https://stacks.math.columbia.edu/tag/02MP
https://stacks.math.columbia.edu/tag/02MN
https://stacks.math.columbia.edu/tag/02MS
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Remark 2.1.6. For any R-module M , the natural morphism π : m̃ ⊗R M → M is an almost
isomorphism. Indeed, it suffices to show that

m̃⊗R kerπ ' 0 and m̃⊗R Cokerπ ' 0.

Using R-flatness of m̃, we can reduce the question to showing that the the map

m̃⊗R π : m̃⊗R m̃⊗RM → m̃⊗RM
is an isomorphism. This follows from Lemma 2.1.3.

Definition 2.1.7. Two R-modules M and N are called almost isomorphic if Ma is isomorphic to
Na in ModaR.

Lemma 2.1.8. Let f : M → N be a morphism of R-modules, then

(1) The morphism f is an almost injection (resp. almost surjection, resp. almost isomorphism)
if and only if ker(f) (resp. Coker(f), resp. ker(f) and Coker(f)) is an almost zero module.

(2) We have a functorial bijection HomR(m̃⊗RM,N) = HomModaR
(Ma, Na).

(3) Modules M and N are almost isomorphic (not necessary via a morphism f) if and only if
m̃⊗RM ' m̃⊗R N .

Proof. (1) just follows from definition of the quotient category. (2) is discussed in detail in [GR03,
page 12, (2.2.4)].

Now we show that (3) follows from (1) and (2). Remark 2.1.6 implies that M and N are almost
isomorphic if m̃⊗RM ' m̃⊗R N .

Now suppose that there is an almost isomorphism ϕ : Ma → Na. It has a representative
f : m̃⊗RM → N by (2). Now (1) and R-flatness of m̃ imply that m̃⊗Rf : m̃⊗R m̃⊗RM → m̃⊗RN
is an isomorphism. Now m̃⊗R m̃ ' m̃ by Lemma 2.1.3, so m̃⊗R f gives an isomorphism

m̃⊗R f : m̃⊗RM → m̃⊗R N.
�

We now define the functor of almost sections

(−)∗ : ModaR →ModR

as
(Ma)∗ := HomModaR

(Ra,Ma) = HomR(m̃,M)

for any Ra-module Ma with an R-module representative M . The construction is clearly functorial
in Ma, so it does define the functor (−)∗ : ModaR →ModR.

The functor of almost sections is going to be the right adjoint to the almostification functor (-)a.
Before we discuss why this is the case, we need to define the unit and counit transformations.

We start with the unit of the adjunction. For any R-module M , there is a functorial morphism

ηM,∗ : M → HomR(m̃,M) = Ma
∗

that can easily be seen to be an almost isomorphism.
This allows us to define a functorial morphism

εNa,∗ : (Na
∗ )a → Na

for any Ra-module Na. Namely, the map ηN,∗ : N → Na
∗ is an almost isomorphism, so we can

invert it in the almost category and define

εNa,∗ := (ηaN,∗)
−1 : (Na

∗ )a → Na
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Now we define another functor

(−)! : ModaR →ModR

that is going to be a left adjoint to the almostification functor (−)a. Namely, we put

(Ma)! := (Ma)∗ ⊗R m̃
∼←−M ⊗R m̃

for any Ra-module Ma with an R-module representative M . This construction is clearly functorial
in Ma, so it does define a functor. Similarly to the discussion above, for any R-module M , we
define the transformation

εM,! : (Ma)! = m̃⊗RM →M

as the map induces by the the natural morphism m̃ → R. Clearly, εM,! is an almost isomorphism
for any M . So, this actually allows us to define the morphism

ηNa,! : N
a → (m̃⊗R N)a ' (Na

! )a

as ηNa,! = (εaN,!)
−1.

We summarize the main properties of these functors in the lemma below:

Lemma 2.1.9. Let R and m be as above. Then

(1) The functor (−)∗ is the right adjoint to (−)a. In particular, it is left exact.

(2) The unit of the adjunction is equal to ηM,∗, the counit of the adjunction is equal to εNa,∗.
In particular, both of the are isomorphisms.

(3) The functor (−)! is the left adjoint to the localization functor (−)a.

(4) The functor (−)! : ModaR →ModR is exact.

(5) The unit of the adjunction is equal to ηNa,!, the counit of the adjunction is equal to εM,!.
In particular, both are almost isomorphisms.

Proof. This is explained [GR03, Proposition 2.2.13 and Proposition 2.2.21]. �

Corollary 2.1.10. Let R and m be as above. Then (−)a : ModR →ModaR commutes with limits
and colimits. In particular, ModaR is complete and cocomplete, and filtered colimits and (arbitrary)
products are exact in ModaR.

Proof. The first claim follows from the fact that (−)a admits left and right adjoints. The second
claim follows the first claim, exactness of (−)a, and analogous exactness properties in ModR. �

The last thing we need to address in this section is how almost mathematics interacts with base
change. We want to be able to speak about preservation of various properties of modules under
a base change along a map R → S. The issue here is to define the corresponding ideal mS as in
the definition of almost mathematics. It turns out that the most naive ideal mS := mS works well,
but the reason is that the assumptions on the ideal defining almost mathematics are rather weak.
More specifically, we could have required the flatness of the ideal m (instead of m̃), and then the
ideal mS would not serve well for defining almost mathematics on S. The next lemma shows that
everything works well in the current setup.

Lemma 2.1.11. Let f : R→ S be a ring homomorphism, and let mS be the ideal mS ⊂ S. Then
we have an equality m2

S = mS and the S-module m̃S := mS ⊗S mS is S-flat.
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Proof. The equality m2
S = mS follows from the analogous assumption on m and the construction

of mS . As for the flatness issue, we claim that mS ⊗S mS ' (m ⊗R S) ⊗S (m ⊗R S). That would
certainly imply that desired flatness statement. In order to prove this claim, we look at a short
exact sequence

0→ m→ R→ R/m→ 0

We apply −⊗R S to get a short exact sequence

0→ TorR1 (R/m, S)→ m⊗R S → mS → 0.

We observe that TorR1 (R/m, S) is almost zero, so both TorR1 (R/m, S)⊗S mS and TorR1 (R/m, S)⊗S
(m ⊗R S) are zero modules by Lemma 2.1.1. So we use functors − ⊗S (m ⊗R S) and − ⊗S mS to
obtain isomorphisms

(m⊗R S)⊗S (m⊗R S) ' mS ⊗R (m⊗R S) ' (mS)⊗S (mS).

Thus we get the desired equality. �

Lemma 2.1.12. Let f : R → S be a ring homomorphism, and F : ModR → ModS an R-linear
functor (resp. F : ModopR →ModS an R-linear functor). Then F sends almost zero R-modules to
almost zero S-modules.

Proof. Suppose that M is an almost zero R-module, so εM = 0 for any ε ∈ m. Then εF (M) = 0
because F is R-linear, so F (M) is almost zero by Lemma 2.1.1. �

Corollary 2.1.13. Let f : R → S be a ring homomorphism, and F : ModR → ModS a left or
right exact R-linear functor (resp. F : ModopR → ModS a left or right exact R-linear functor).
Then F preserves almost isomorphisms.

Proof. We only show the case of a left exact functor F : ModR → ModS , all other cases are
analogous to the this one.

Choose any almost isomorphism f : M ′ →M ′′, we want to show that F (f) is an almost isomor-
phism. Consider the following exact sequences:

0→ K →M ′ →M → 0,

0→M →M ′′ → Q→ 0.

We know that K and Q are almost zero by our assumption on f . Now, the above short exact
sequences induce the following exact sequences:

0→ F (K)→ F (M ′)→ F (M)→ R1F (K),

0→ F (M)→ F (M ′′)→ F (Q).

Lemma 2.1.12 guarantees that F (K), R1F (K), and F (Q) are almost zero S-modules. Therefore,
the morphisms F (M ′)→ F (M) and F (M)→ F (M ′′) are both almost isomorphisms. In particular,
the composition F (M ′)→ F (M ′′) is an almost isomorphism as well. �

2.2. Basic Functors on the Categories of Almost Modules. The category of almost modules
admits certain natural functors induced from the category of R-modules. It has two versions of
the Hom-functor and the tensor product functor. We summarize properties of these functors in the
following proposition:

Proposition 2.2.1. Let R,m be as above. Then
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(1) We define tensor product functor −⊗Ra − : ModaR ×ModaR →ModaR as

(Ma, Na) 7→ (Ma
! ⊗R Na

! )a .

Then there is a natural transformation of functors

ModR ×ModR ModR

ModaR ×ModaR ModaR

−⊗R−

(−)a×(−)a (−)a
ρ

−⊗Ra−

that makes the diagram (2, 1)-commutative. In particular, there is a functorial isomorphism
(M ⊗R N)a 'Ma ⊗Ra Na for any M,N ∈ModR.

(2) There is a functorial isomorphism

HomRa(Ma, Na) ' HomR(m̃⊗M,N) .

for any M,N ∈ModR. In particular, there is a canonical structure of an R-module on the
group HomRa(Ma, Na); thus defines the functor

HomRa(−,−) : ModopRa ×ModRa →ModR

(3) We define the functor alHomRa(−,−) : ModopRa ×ModRa →ModRa of almost homomor-
phisms as

(Ma, Na) 7→ HomRa(Ma, Na)a .

Then there is a natural transformation of functors

ModopR ×ModR ModR

ModopRa ×ModRa ModRa

HomR(−,−)

(−)a×(−)a ρ (−)a

alHomRa (−,−)

that makes the diagram (2, 1)-commutative. In particular, alHomRa(Ma, Na) ∼=a HomR(M,N)a

for any M,N ∈ModR.

Proof. (1). We define

ρM,N : (Ma
! ⊗R Na

! )a → (M ⊗R N)a

to be the morphism induced by

Ma
! ' m̃⊗RM →M and Na

! ' m̃⊗R N → N.

It is clear that ρM,N is functorial in both variables, so it defines a natural transformation of functors
ρ. We also need to check that ρM,N is an isomorphism for any M and N . This follows from the
following two observations: ρM,N is an isomorphism if and only if ρM,N ⊗R m̃ is an isomorphism;
and ρM,N ⊗R m̃ is easily seen to be an isomorphism as m̃⊗R m̃→ m̃ is an isomorphism.

(2) is just a reformulation of Lemma 2.1.8(2).

In order to show (3), we need to define a functorial morphism

ρM,N : HomR(M,N)a → alHomRa(Ma, Na).

We start by using the functorial identification

alHomRa(Ma, Na) ∼=a HomR(m̃⊗M,N)a
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from (2). Namely, we define ρM,N as the morphism HomR(M,N)a → HomR(m̃⊗M,N)a induced
by the map m̃ ⊗M → M . This is clearly functorial in both variables, so it defines the natural
transformation ρ.

We also need to check that ρM,N is an isomorphism for any M and N . This boils down to the
fact that HomR(−, N) sends almost isomorphisms to almost isomorphisms. This, in turn, follows
from Corollary 2.1.13. �

Remark 2.2.2. It is straightforward to check that if N has a structure of an Sa-module for some
R-algebra S, then the Ra-modules Ma⊗RaNa, alHomRa(Ma, Na) have functorial-in-Ma structures
of Sa-modules. This implies that the functors −⊗RaNa, alHomRa(−, Na) naturally land in ModaS ,
i.e. define functors

−⊗Ra Na : ModaR →ModaS , and alHomRa(−, Na) : Moda,opR →ModaS

Similarly, HomRa(−, Na) defines a functor ModaR →ModS .

The functor of almost homomorphisms is quite important as it turns out to be the inner Hom
functor, i.e. it is right adjoint to the tensor product.

Lemma 2.2.3. Let f : R→ S be a ring homomorphism, and let Ma be an Ra-module and Na,Ka

be Sa-modules. Then there is a functorial S-linear isomorphism

HomSa(Ma ⊗Ra Na,Ka) ' HomRa(Ma, alHomSa(Na,Ka)) .

Proof. This is a consequence of the usual ⊗-Hom-adjunction, Proposition 2.2.1, and the fact that
m̃⊗2 ' m̃. Indeed, we have the following sequence of functorial isomorphisms

HomSa(Ma ⊗Ra Na,Ka) ' HomS(m̃⊗RM ⊗R N,K)

' HomS((m̃⊗RM)⊗R (m̃⊗R N),K)

' HomR(m̃⊗RM,HomS(m̃⊗R N,K))

' HomRa(M, alHomSa(Na,Ka)) .

The first isomomorphism follows from Proposition 2.2.1(1), (2), the second isomorphism follows
from the observation m̃⊗2 ' m̃, the third isomorphism is just the classical ⊗-Hom-adjunction, and
the last isomorphism is a consequence of Proposition 2.2.1(2), (3). �

Corollary 2.2.4. (1) Let N be an Ra-module, then the functor − ⊗Ra Na is left adjoint to
the functor alHomRa(Na,−).

(2) Let R→ S be a ring homomorphism. Then the functor −⊗Ra Sa : ModaR →ModaS is left
adjoint to the forgetful functor.

Proof. Part (1) follows from Lemma 2.2.3 by taking S to be equal to R. Part (2) follows from
Lemma 2.2.3 by taking Na to be equal to Sa. �

We finish the section by introducing the certain types of Ra-modules that will be used throughout
the paper.

Definition 2.2.5. • An Ra-module Ma is flat if the functor Ma⊗Ra − : ModaR →ModaR is
exact.
• An Ra-module Ma is faithfully flat if it is flat and Na ⊗Ra Ma ' 0 if and only if Na ' 0.
• An R-module M is almost flat (resp. almost faithfully flat) if an Ra-module Ma is flat (resp.

faithfully flat)
• An Ra-module Ia is injective if the functor HomRa(−, Ia) : Moda,opR →ModR is exact.
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• An Ra-module P a is almost projective if the functor alHomRa(P a,−) : ModaR →ModaR is
exact.

Lemma 2.2.6. The functor (−)a : ModR →ModaR sends flat (resp. faithfully flat, resp. injective,
resp. projective) R-modules to flat (resp. faithfully flat, resp. injective, resp. almost projective)
Ra-modules.

Proof. The case of flat modules is clear from Lemma 2.2.1(1). Now suppose that M is a faithfully
flat R-module. Recall that M ⊗R − : ModR →ModR is an exact and faithful functor. Therefore,
if M ⊗RN is almost zero, it implies that so is N . Thus Lemma 2.2.1(1) ensures that Ma is almost
faithfully flat.

The case of injective modules follows from the fact that (−)a admits an exact left adjoint functor
(−)!. The case of projective modules is clear from the definition. �

Lemma 2.2.7. The functor (−)! : ModaR →ModR sends flat Ra-modules to flat R-modules.

Proof. This follows from the formula Ma
! ⊗R N ' (Ma ⊗Ra Na)! for any Ra-module Ma and

R-module N . �

Warning 2.2.8. If Ma is a faithfully flat Ra-module, the R-module Ma
! may not be faithfully flat.

For instance, Ra is a faithfully flat Ra-module, but Ra! = m̃ is not. For example, m̃⊗R R/m ' 0.

Corollary 2.2.9. Any bounded above complex C•,a ∈ Comp−(Ra) admits a resolution P •,a → C•

by a bounded above complex of almost projective modules.

Proof. We consider the complex C•,a! ∈ Comp−(R), this complex admits a resolution by complex
of free modules p : P • → C•,a! . Now we apply (−)a to this morphism to get the map

P •,a
pa−→ (C•,a! )a

ε←− C•,a .
The map ε is an isomorphism in Comp(Ra) by Lemma 2.1.9, and pa is a quasi-isomorphism. Thus
ε−1 ◦ pa : P •,a → C•,a is a quasi-isomorphism in Comp(Ra). Now note that each term of P •,a is
almost projective by Lemma 2.2.6. �

2.3. Derived Category of Almost Modules. We define the derived category of almost modules
in two different ways and show that these definitions coincide. Later we define certain derived
functors on the derived category of almost modules. We pay some extra attention to show that the
functors in this section are well-defined on unbounded derived categories.

We start the section by introducing two different notions of the derived category of almost
modules and then show that they are actually the same.

Definition 2.3.1. We define the derived category of almost R-modules as D(Ra) := D(ModaR).

We define the bounded version of derived category of almost R-modules D∗(Ra) for ∗ ∈ {+,−, b}
as the full subcategory consisting of bounded below (resp. bounded above, resp. bounded) com-
plexes.

Definition 2.3.2. We define the almost derived category of R-modules as the Verdier quotient
D(R)a := D(ModR)/DΣR(ModR).

We recall that ΣR is the Serre subcategory of ModR that consists of almost zero modules,
and DΣR(ModR) is the full triangulated category of elements in D(ModR) with almost zero
cohomology modules.
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We note that the functor (−)a : ModR →ModaR is exact and additive. Thus it can be derived
to the functor (−)a : D(R)→ D(Ra). Similarly, the functor (−)! : ModaR →ModR is additive and
exact, thus it can be derived to the functor (−)! : D(Ra) → D(R). The standard argument shows
that (−)! is a left adjoint functor to the functor (−)a as this already happens on the level of abelian
categories. Now we also want to derive the functor (−)∗ : ModaR →ModR. In order to do this on
the level of unbounded derived categories, we need to show that D(Ra) has “enough K-injective
objects”.

Definition 2.3.3. We say that a complex of Ra-module I•,a is K-injective if HomK(Ra)(C
•,a, I•,a) =

0 for any acyclic complex C•,a of Ra-modules.

Remark 2.3.4. We remind the reader that K(Ra) stands for the homotopy category of Ra-
modules.

The first thing we need to show is that Comp(Ra) has “enough” K-injective objects. This will
allow us derive many functors.

Lemma 2.3.5. The functor (−)a : Comp(R) → Comp(Ra) sends K-injective R-complexes to
K-injective Ra-complexes.

Proof. We note that (−)a admits an exact left adjoint (−)! thus [Sta21, Tag 08BJ] ensures that
(−)a preserves K-injective complexes. �

Corollary 2.3.6. Every object M•,a ∈ Comp(Ra) is quasi-isomorphic to a K-injective complex.

Proof. We know that the complex M• ∈ Comp(R) is quasi-isomorphic to a K-injective complex
I• by [Sta21, Tag 090Y] (or [Sta21, Tag 079P]). Now we use Lemma 2.3.5 to say that I•,a is a
K-injective complex that is quasi-isomorphic to M•,a. �

Now as the first application of Corollary 2.3.6 we define the functor (−)∗ : D(Ra) → D(R) as
the derived functor of (−)∗ : ModaR →ModR. This functor exists by [Sta21, Tag 070K].

Lemma 2.3.7. (1) The functors D(R) D(Ra)
(−)a

(−)!

are adjoint. Moreover, the unit (resp.

counit) morphism

(Ma)! →M (resp. N → (N!)
a)

is an almost isomorphism (resp. isomorphism) for any M ∈ D(R), N ∈ D(Ra). In particu-
lar, the functor (−)a is essentially surjective.

(2) The functors D(R) D(Ra)
(−)a

(−)∗

are adjoint. Moreover, the unit (resp. counit) morphism

M → (Ma)∗ (resp. (N∗)
a → N)

is an almost isomorphism (resp. isomorphism) for any M ∈ D(R), N ∈ D(Ra).

Proof. We start the proof by showing (1). Firstly we note that the functors (−)! and (−)a are
adjoint by the discussion above. Now we show the cone of the counit map is always in DΣR(R).
As both functors (−)a and (−)! are exact on the level of abelian categories, it suffices to show the
claim for M ∈ModaR. But then the statement follows from Lemma 2.1.9(5). The same argument
shows that the unit map N → (N!)

a is an isomorphism for any N ∈ D(Ra).

https://stacks.math.columbia.edu/tag/08BJ
https://stacks.math.columbia.edu/tag/090Y
https://stacks.math.columbia.edu/tag/079P
https://stacks.math.columbia.edu/tag/070K
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Now we go to (2). We define the functor (−)∗ : D(Ra) → D(R) as the right derived functor of
the left exact additive functor (−)∗ : ModaR → ModR. This functor exists by [Sta21, Tag 070K]
and Corollary 2.3.6. The functor (−)∗ is right adjoint to (−)a by [Sta21, Tag 0DVC].

We check that the natural map M → (Ma)∗ is an almost isomorphism for any M ∈ D(R). We

choose some K-injective resolution M
∼−→ I•. Then Lemma 2.3.5 guarantees that Ma → I•,a is a

K-injective resolution of the complex Ma. The map M → (Ma)∗ has a representative

I• → (I•,a)∗ .

This map is an almost isomorphism of complexes by Lemma 2.1.9(2). Thus the map M → (Ma)∗ is
an almost isomorphism. A similar argument shows that the counit map (N∗)

a → N is an (almost)
isomorphism for any N ∈ D(Ra). �

Theorem 2.3.8. The functor (−)a : D(R) → D(Ra) induces an equivalence of triangulated cate-
gories (−)a : D(R)a → D(Ra).

Proof. We recall that the Verdier quotient is constructed as the localization of D(R) along the
morphisms f such that cone(f) ∈ DΣR(R). For instance, this is the definition of Verdier quotient
at [Sta21, Tag 05RI]. Now we see that a morphism fa : Ca → C ′a is invertible in D(Ra) if and
only if cone(f) ∈ DΣR(R) by the definition of ΣR and exactness of (−)a. Moreover, (−)a admits a
right adjoint such that (−)a ◦ (−)∗ → Id is an isomorphism of functors. Thus we can apply [GZ67,
Proposition 1.3] to say that the induced functor (−)a : D(R)a → D(Ra) must be an equivalence. �

Remark 2.3.9. Theorem 2.3.8 shows that the two notions of the derived category of almost
modules are the same. In what follows, we do not distinguish D(Ra) and D(R)a anymore.

2.4. Basic Functors on the Derived Categories of Almost Modules. Now we can “derive”
certain functors constructed in previous section. We start with defining the derived versions of
different Hom functors, after that we move to the case of the derived tensor product functor.

Definition 2.4.1. We define the derived Hom functor

RHomRa(−,−) : D(Ra)op ×D(Ra)→ D(R)

as it is done in [Sta21, Tag 0A5W] using the fact that Comp(Ra) has enough K-injective complexes.
We define the Ext modules as R-modules defined as

ExtiRa(Ma, Na) := Hi(RHomRa(Ma, Na))

for Ma, Na ∈ModaR.

Explicitly, for any Ma, Na ∈ D(Ra), the construction of the complex RHomRa(Ma, Na) goes as
follows. We pick a representative C•,a → Ma and a K-injective resolution Na → I•,a. Then we
set RHomRa(Ma, Na) = Hom•Ra(C•,a, I•,a). This construction is independent of the choices and
functorial in both variables. We are not going to review this theory here, but rather refer to [Sta21,
Tag 0A5W] for the details.

Remark 2.4.2. We see that [Sta21, Tag 0A64] implies that there is a functorial isomorphism

Hi (RHomRa (Ma, Na)) ' HomD(R)a (Ma, Na[i]) .

Lemma 2.4.3. (1) There are functorial isomorphisms

HomD(R)a(Ma, Na) ' HomD(R)(M
a
! , N) and RHomRa(Ma, Na) ' RHomR(Ma

! , N)

for any M,N ∈ D(R).

https://stacks.math.columbia.edu/tag/070K
https://stacks.math.columbia.edu/tag/0DVC
https://stacks.math.columbia.edu/tag/05RI
https://stacks.math.columbia.edu/tag/0A5W
https://stacks.math.columbia.edu/tag/0A5W
https://stacks.math.columbia.edu/tag/0A64
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(2) For any chosen Ma ∈ModaR, the functor RHomRa(Ma,−) : D(R)a → D(R) is isomorphic
to the (right) derived functor of HomRa(Ma,−).

Proof. The first claim easily follows from the fact (−)a is a right adjoint to the exact functor (−)!.
We leave the details to the reader.

The second claim follows from [Sta21, Tag 070K] and Corollary 2.3.6. �

Definition 2.4.4. We define the derived functor of almost homomorphisms

RalHomRa(−,−) : D(Ra)op ×D(Ra)→ D(Ra)

as

RalHomRa(Ma, Na) := RHomRa(Ma, Na)a = RHomR(Ma
! , N)a .

We define the almost Ext modules as Ra-modules defined by

alExtiRa(Ma, Na) := Hi(RalHomRa(Ma, Na))

for Ma, Na ∈ModaR.

Definition 2.4.5. We define the the complex of almost homomorphisms alHom•Ra(K•,a, L•,a) for
K•,a, L•,a ∈ Comp(Ra) as follows:

alHomn
Ra(K•,a, L•,a) :=

∏
n=p+q

alHomRa(K−q,a, Lp,a)

with the differential

d(f) = dL•,a ◦ f − (−1)nf ◦ dK•,a .

Lemma 2.4.6. Let P •,a be a bounded above complex of Ra-modules with almost projective co-
homology modules. Suppose that M•,a → N•,a is an almost quasi-isomorphism of bounded below
complex of Ra-modules. Then the natural morphism

alHom•Ra(P •,a,M•,a)→ alHom•Ra(P •,a, N•,a)

is an almost quasi-isomorphism.

Proof. We note that as in the case of the usual Hom-complexes, there are convergent6 spectral
sequences

Ei,j1 = Hj
(
alHom•Ra(P−i,a,M•,a)

)
⇒ Hi+j (alHom•Ra (P •,a,M•,a))

E′
i,j
1 = Hj

(
alHom•Ra(P−i,a, N•,a)

)
⇒ Hi+j (alHom•Ra (P •,a, N•,a))

Moreover, there is a natural morphism of spectral sequences Ei,j1 → E′i,j1 . Thus it suffices to show
that the associated map on the first page is an almost isomorphism on each entry. Now we use the
fact that alHomRa(P−i,a,−) is exact to rewrite the first page of this spectral sequence as

Ei,j1 = alHomRa
(
P−i,a,Hj(M•,a)

)
and the same for E′i,j1 . So the question boils down to show that the natural morphisms

alHomRa
(
P−i,a,Hj(M•,a)

)
→ alHomRa

(
P−i,a,Hj(N•,a)

)
are almost isomorphisms. But this is clear as M•,a → N•,a is an almost quasi-isomorphism. �

6Here we use that P •,a is bounded above, M•,a and N•,a are bounded below

https://stacks.math.columbia.edu/tag/070K
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Lemma 2.4.7. Let P •,a1 → P •,a2 be an almost quasi-isomorphism of bounded above complexes
with almost projective cohomology modules. Suppose that M•,a is a bounded below complex of
Ra-modules. Then the natural morphism

alHom•Ra(P •,a2 ,M•,a)→ alHom•Ra(P •,a1 ,M•,a)

is an almost quasi-isomorphism.

Proof. We choose some injective resolution M•,a → I•,a of the bounded below complex M•,a. Then
we have a commutative diagram

alHom•Ra(P •,a2 ,M•,a) alHom•Ra(P •,a1 ,M•,a)

alHom•Ra(P •,a2 , I•,a) alHom•Ra(P •,a1 ,M•,a).

The bottom horizontal arrow is an almost quasi-isomorphism by the standard categorical argument
with injective resolutions. The vertical maps are almost quasi-isomorphism by Lemma 2.4.6. �

Proposition 2.4.8. (1) There is a natural transformation of functors

D(R)op ×D(R) D(R)

D(Ra)op ×D(Ra) D(Ra)

RHomR(−,−)

(−)a×(−)a (−)aρ

RalHomRa (−,−)

that makes the diagram (2, 1)-commutative. In particular,

RalHomRa(Ma, Na) ∼=a RHomR(M,N)a

for any M,N ∈ D(R).

(2) For any chosen Ma ∈ModaR, the functor RalHomRa(Ma,−) : D(Ra) → D(Ra) is isomor-
phic to the (right) derived functor of alHomRa(Ma,−).

(3) For any chosen Na ∈ ModaR, the functor RalHomRa(−, Na) : D−(Ra)op → D(Ra) is iso-
morphic to the (right) derived functor of alHomRa(−, Na).

Proof. In order to show Part (1), we construct functorial morphisms

ρM,N : RHomR(M,N)a → RalHomRa(Ma, Na) .

for any M,N ∈ D(R). We recall that there is a functorial identification

RalHomRa(Ma, Na) ∼=a RHomR(Ma
! , N)a ∼=a RHomR(m̃⊗RM,N)a.

So we define

ρM,N : RHomR(M,N)a → RHomR(m̃⊗RM,N)a

as the morphism induced by the canonical map m̃ ⊗R M → M . This is clearly functorial, so it
defines the natural transformation of functors. The only thing we are left to show is that ρM,N is
an almost isomorphism for any M,N ∈ D(R).

Let us recall that the way we compute RHomR(M,N). It is isomorphic to Hom•R(C•, I•) for

any choice of a K-injective resolution of N
∼−→ I• and any resolution M

∼−→ C•. Since m̃ ⊗R C• is
a resolution of m̃⊗RM by R-flatness of m̃, we reduce the question to show that the natural map

Hom•R(C•, I•)→ Hom•R(m̃⊗R C•, I•)
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is an almost quasi-isomorphism of complexes. We actually show more, we show that it is an almost
isomorphism of complexes. Indeed, the degree n part of this map is the map∏

p+q=n

HomR(C−q, Ip)→
∏

p+q=n

HomR(m̃⊗R C−q, Ip) .

Since the (infinite) product is an exact functor in ModaR, and any (infinite) product of almost zero
modules is almost zero, it is actually sufficient to show that each particular map HomR(C−q, Ip)→
HomR(m̃⊗R C−q, Ip) is an almost isomorphism. This follows from Proposition 2.2.1(3).

Part (2) is similar to that of Proposition 2.4.3.

Part (3) is also similar to Part (2) of Proposition 2.4.3, but there are some subtleties due to
the fact that ModaR does not have enough projective objects. We fix this issue by using instead
[Sta21, Tag 06XN] of [Sta21, Tag 070K]. We apply it to the subset P being the set of bounded
above complexes with almost projective terms. This result is indeed applicable in our situation due
to Corollary 2.2.9 and Lemma 2.4.7. �

Now we deal with the case of the derived tensor product functor.

Definition 2.4.9. We say that a complex of Ra-module K•,a is almost K-flat if the naive tensor
product complex C•,a ⊗•Ra K•,a is acyclic for any acyclic complex C•,a of Ra-modules

Lemma 2.4.10. The functor (−)a : Comp(R)→ Comp(Ra) sends K-flat R-complexes to almost
K-flat Ra-complexes.

Proof. Suppose that C•,a is an acyclic complex of Ra-modules and K• is a K-flat compelx. Then
we see that

C•,a ⊗•Ra K•,a ∼=a (C• ⊗•R K•)a ∼=a (m̃⊗R C• ⊗•R K•)a ∼=a ((m̃⊗R C•)⊗•R K•)
a .

The latter complex is acyclic as m̃⊗ C• is acyclic and K• is K-flat. �

Corollary 2.4.11. Every object M•,a ∈ Comp(Ra) is quasi-isomorphic to an almost K-flat com-
plex.

Proof. We know that the complex M• ∈ Comp(R) is quasi-isomorphic to a K-flat complex K• by
[Sta21, Tag 06Y4]. Now we use Lemma 2.4.10 to say that K•,a is almost K-flat complex that is
quasi-isomorphic to M•,a. �

Definition 2.4.12. We define the derived tensor product functor

−⊗LRa − : D(R)a ×D(R)a → D(R)a

by the rule (Ma, Na) 7→ (M! ⊗LR N!)
a for any Ma, Na ∈ D(R)a.

Proposition 2.4.13. (1) There is a natural transformation of functors

D(R)×D(R) D(R)

D(R)a ×D(R)a D(R)a

−⊗LR−

(−)a×(−)a (−)a

−⊗LRa−

ρ

that makes the diagram (2, 1)-commutative. In particular, there is a functorial isomorphism
(M ⊗LR N)a 'Ma ⊗LRa Na for any M,N ∈ D(R).

https://stacks.math.columbia.edu/tag/06XN
https://stacks.math.columbia.edu/tag/070K
https://stacks.math.columbia.edu/tag/06Y4
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(2) For any chosen Ma ∈ModaR, the functor Ma⊗LRa − : D(R)a → D(R)a is isomorphic to the
(left) derived functor of Ma ⊗Ra −.

Proof. The proof of Part (1) is similar to that of Lemma 2.2.1(1). We leave details to the reader.

The proof of Part (2) is similar to that of Proposition 2.4.8(2). The claim follows by applying
[Sta21, Tag 06XN] with P being the subset of almost K-flat complexes. This result is indeed
applicable in our situation due to Corollary 2.4.11 and the almost version of [Sta21, Tag 064L]. �

Lemma 2.4.14. Let Ma, Na,Ka ∈ D(R)a, then we have a functorial isomorphism

RHomRa(Ma ⊗LRa Na,Ka) ' RHomRa(Ma,RalHomRa(Na,Ka)) .

In particular, the functors RalHomRa(Na,−) : D(R)a D(R)a : −⊗LRaNa are adjoint.

Proof. The claim follows from the following sequence of canonical identifications:

RHomRa(Ma ⊗LRa Na,Ka) ' RHomR((m̃⊗RM)⊗LR (m̃⊗R N),K) Lemma 2.4.3(1)

' RHomR(m̃⊗RM,RHomR(m̃⊗R N,K)) [Sta21, Tag 0A5W]

' RHomRa(Ma,RHomR(m̃⊗R N,K)a) Lemma 2.4.3(1)

' RHomRa(Ma,RalHomRa(Na,Ka)) . Definition 2.4.4

�

Definition 2.4.15. Let f : R→ S be a ring homomorphism. We define the base change functor

−⊗LRa Sa : D(R)a → D(S)a

by the rule Ma 7→ (M! ⊗LR S)a for any Ma ∈ D(R)a.

Proposition 2.4.16. (1) There is a natural transformation of functors

D(R) D(S)

D(R)a D(S)a

−⊗LRS

(−)a (−)a

−⊗LRaS
a

ρ

that makes the diagram (2, 1)-commutative. In particular, there is a functorial isomorphism
(M ⊗LR S)a 'Ma ⊗LRa Sa for any M ∈ D(R).

(2) The functor − ⊗LRa Sa : D(R)a → D(S)a is isomorphic to the (left) derived functor of
−⊗LRa Sa.

Proof. The proof is identical to Proposition 2.4.13. �

Lemma 2.4.17. Let R → S be a ring homomorphism, and let Ma ∈ D(R)a, Na ∈ D(S)a. Then
we have a functorial isomorphism

RHomSa(Ma ⊗LRa Sa, Na) ' RHomRa(Ma, Na) .

In particular, the functors Forget : D(S)a D(R)a : −⊗LRaSa are adjoint.

Proof. The proof is similar to that of Lemma 2.4.14. �

https://stacks.math.columbia.edu/tag/06XN
https://stacks.math.columbia.edu/tag/064L
https://stacks.math.columbia.edu/tag/0A5W
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2.5. Almost Finitely Generated and Almost Finitely Presented Modules. We discuss the
notions of almost finitely generated and almost finitely presented modules in section. The discussion
follows [GR03] closely. The main difference is that we avoid any use of “uniform structures” in our
treatment, we think that it simplifies the exposition. We recall that we fixed some “base” ring R
with an ideal m such that m2 = m and m̃ = m⊗R m is flat, and we always do almost mathematics
with respect to this ideal.

Definition 2.5.1. An R-module M is called almost finitely generated, if for any ε ∈ m there is an
integer nε and an R-homomorphism

Rnε
f−→M

such that Coker(f) is killed by ε.

Definition 2.5.2. An R-module M is called almost finitely presented, if for any ε, δ ∈ m there are
integers nε,δ, mε,δ and a complex

Rmε,δ
g−→ Rnε,δ

f−→M

such that Coker(f) is killed by ε and δ(ker f) ⊂ Im g.

Remark 2.5.3. Clearly, any almost finitely presented R-module is almost finitely generated.

Remark 2.5.4. A typical example of an almost finitely presented module that is not finitely
generated is M = ⊕n≥1OC/p

1/nOC for an algebraically closed non-archimedean field C of mixed
characteristic (0, p).

The next few lemmas discuss the most basic properties of almost finitely generated and almost
finitely presented modules. For example, it is not entirely obvious that these notions transfer across
almost isomorphisms. We show that this is actually the case, so these notions descend to ModaR.
We also show that almost finitely generated and almost finitely presented modules have many good
properties that we have for the usual finitely generated and finitely presented modules. Although
all proofs below are elementary, they require some accuracy to rigorously prove them.

Our first main goal is to get some other useful criteria for a module to be almost finitely generated
(resp. almost finitely presented) and finally show that this notion does not depend on a class of
almost isomorphism.

Lemma 2.5.5. Let M be an R-module, then M is almost finitely generated if and only if for any

finitely generated ideal m0 ⊂ m there a morphism Rn
f−→M such that m0(Coker f) = 0.

Proof. The “if” part is clear, so we only need to deal with the “only if” part. We choose a set of
generators (ε0, . . . , εn) for an ideal m0. Then we have R-morphisms

fi : R
nεi →M

such that εi(Coker fi) = 0 for all i. Then the sum of these morphisms

f :=
n⊕
i=1

fi : R
∑
nεi →M

defines a map such that m0(Coker f) = 0. Since m0 was an arbitrary morphism, this finishes the
proof. �
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Lemma 2.5.6. Let M be an almost finitely presented R-module, and let ϕ : Rn → M be an
R-homomorphism such that m1(Cokerϕ) = 0 for some ideal m1 ⊂ m. Then for every finitely
generated ideal m0 ⊂ m1m there is morphism ψ : Rm →M such that

Rm
ψ−→ Rn

ϕ−→M

is a three-term complex and m0(Kerϕ) ⊂ Im(ψ).

Proof. Since M is almost finitely presented, for any two elements ε1, ε2 ∈ m, we can find a complex

Rm2
g−→ Rm1

f−→M

such that ε1(Coker f) = 0 and ε2(ker f) ⊂ Im g. Now we choose some element δ ∈ m1, and we shall
define morphisms

α : Rm1 → Rn and β : Rn → Rm1

such that ϕ ◦ α = δf and f ◦ β = ε1ϕ. Here is the corresponding picture:

Rm2 Rm1 M

Rn

g f

αβ
ϕ

We define α and β in the following way: we fix a basis e1, . . . , em1 of Rm1 and a basis e′1, . . . , e
′
n

of Rn, then we define

α(ei) = yi ∈ Rn for some yi such that ϕ(yi) = δf(ei),

β(e′j) = xj ∈ Rm1 for some xj such that f(xj) = ε1ϕ(e′j)

and then extend these maps by linearity. It is clear that ϕ ◦ α = δf and f ◦ β = ε1ϕ as it holds on
basis elements.

Now we can define a morphism ψ : Rn ⊕Rm2 → Rn by the rule

ψ(x, y) = α ◦ β(x)− (ε1δ)x+ α ◦ g(y).

We now show that

ϕ ◦ ψ = 0 and ε1ε2δKerϕ ⊂ Imψ.

We start by showing that ϕ ◦ ψ = 0: it suffices to prove that

(α ◦ g)(y) ∈ Kerϕ for y ∈ Rm2 , and (α ◦ β)(x)− (ε1δ)x ∈ Kerϕ for x ∈ Rn

We note that we have an equality

(ϕ ◦ α ◦ g)(y) = δ(f ◦ g)(y) = δ0 = 0,

so (α ◦ g)(y) ∈ Ker(ϕ). We also have an equality

(ϕ ◦ (α ◦ β − ε1δ)) (x) = (ϕ ◦ α ◦ β)(x)− ε1δϕ(x)

= δ(f ◦ β)(x)− ε1δϕ(x)

= δε1ϕ(x)− ε1δϕ(x)

= 0.

this shows that (α ◦ β)(x)− (ε1δ)x ∈ Ker(ϕ) as well.
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We show that (ε1ε2δ) Kerϕ ⊂ Im(ψ): we observe that for any x ∈ Kerϕ we have β(x) ⊂ Ker f
as f ◦ β = ε1ϕ. This implies that ε2β(x) ∈ Im g since ε2 Ker f ⊂ Im g. Thus there is y ∈ Rm2 such
that g(y) = ε2β(x), so (α ◦ g)(y) = ε2α ◦ β(x). This shows that

ψ(−ε2x, y) = −ε2(α ◦ β)(x) + ε1ε2δx+ (α ◦ g)(y) =

−ε2(α ◦ β)(x) + ε1ε2δx+ ε2(α ◦ β)(x) = ε1ε2δx

We conclude that ε1ε2δx ∈ Im(ψ) for any x ∈ Ker(ϕ).

Finally, we recall that m0 is a finitely generated ideal, and that m0 ⊂ m1m = m1m
2 ⊂ m1. This

means that we can find a finite set I, and a finite set of elements εi,1, εi,2 ∈ m, δi ∈ m1 such that m0

is contained in the ideal J := (εi,1εi,2δi)i∈I (the ideal generated by all the products εi,1εi,2δi). The

previous discussion implies that for each i ∈ I, we have a map ψi : Rki → Rn such that ϕ ◦ ψi = 0
and (εi,1εi,2δi)(Kerϕ) ⊂ Imψi. By passing to the homomorphism

ψ :=
⊕
i∈I

ψi : R
∑
ki → Rn

we get a map ψ such that ϕ ◦ ψ = 0 and m0(Kerϕ) ⊂ Im(ψ). Therefore ψ does the job. �

Lemma 2.5.7. Let M be an R-module. Then the following conditions are equivalent:

(1) The R-module M is almost finitely presented.

(2) For any finitely generated ideal m0 ⊂ m there exist a finitely presented R-module N and a
homomorphism f : N →M such that m0(ker f) = 0 and m0(Coker f) = 0.

(3) For any finitely generated ideal m0 ⊂ m there exist integers n,m and a three-term complex

Rm
g−→ Rn

f−→M

such that m0(Coker f) = 0 and m0(Ker f) ⊂ Im g.

Proof. It is clear that the condition (3) implies both conditions (1) and (2).

We show that (1) implies (3). Since M is an almost finitely generated R-module, Lemma 2.5.5

guarantees that for any finitely generated ideal m′ ⊂ m there is a morphism Rn
f−→ M such that

m′(Coker f) = 0.
We know that m0 ⊂ m = m2, this easily implies that there is a finitely generated ideal m1 ⊂ m

such that m0 ⊂ m1m ⊂ m1. So, using m′ = m1, we can find a homomorphism Rn
ϕ−→ M such that

m1(Cokerϕ) = 0. Lemma 2.5.6 claims that we can also find a homomorphism ψ : Rm → Rn such
that

Rm
ψ−→ Rn

ϕ−→M

is a three-term complex and m0(kerϕ) ⊂ Imψ. Since m0 ⊂ m1 and m1(Cokerϕ) = 0, we get
that m0(Cokerϕ) = 0 as well. This finishes the proof since m0 was an arbitrary finitely generated
sub-ideal of m.

Now we show that (2) implies (3). We pick an arbitrary finitely generated ideal m0 ⊂ m, and
we try to find a three-term complex

Rm
g−→ Rn

f−→M
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such that m0(Coker f) = 0 and m0(ker f) ⊂ Im(g). In order to achieve this we use the assumption
(2) to find a morphism h : N →M such that N is a finitely presented R-module, m0(Cokerh) = 0,
and m0(kerh) = 0. Since N is finitely presented we can find a short exact sequence

Rm
g−→ Rn

f ′−→ N → 0

It is straightforward to see that a three-term complex

Rm
g−→ Rn

f :=h◦f ′−−−−−→M

satisfies the condition that m0(Coker f) = 0 and m0(ker f) ⊂ Im(g). �

Lemma 2.5.8. Let M be an R-module, and suppose that for any finitely generated ideal m0 ⊂ m
there exists a morphism f : N → M such that m0(ker f) = 0, m0(Coker f) = 0 and N is almost
finitely generated (resp. almost finitely presented). Then M is also almost finitely generated (resp.
almost finitely presented).

Proof. We give a proof only in the almost finitely presented case; the other case is easier. We pick
an arbitrary finitely generated ideal m0 ⊂ m and another finitely generated ideal m1 ⊂ m such that
m0 ⊂ m2

1. Then we use the assumption to get a morphism

f : N →M

such that m1(Ker f) = 0,m1(Coker f) = 0 and N is an almost finitely presented R-module.
Lemma 2.5.7 guarantees that there is a three-term complex

Rm
h−→ Rn

g−→ N

such that m1(Coker g) = 0 and m1(Ker g) ⊂ Imh. Then we can consider a three-term complex

Rm
h−→ Rn

f ′:=f◦g−−−−−→M,

it is easily seen that m2
1(Coker f ′) = 0 and m2

1(ker f ′) ⊂ Im(h). Since m0 ⊂ m2
1 we conclude that

m0(Coker f ′) = 0 and m0(ker f ′) ⊂ Im(h). This shows that M is almost finitely presented. �

Lemma 2.5.9. Let M be an R-module, and {Ni}i∈I is a filtered diagram of R-modules. Then

(1) The natural morphism

γ0
M : colimI HomR(M,Ni)→ HomR(M, colimI Ni)

is almost injective for an almost finitely generated M ;

(2) The natural morphism

γ0
M : colimI HomR(M,Ni)→ HomR(M, colimI Ni)

is an almost isomorphism and

γ1
M : colim Ext1

R(M,Ni)→ Ext1
R(M, colimNi)

is almost injective for an almost finitely presented M .

Proof. We give a proof for an almost finitely presented M , the case of an almost finitely generated
M is similar.

Step 1: The case of finitely presented M . If M is finitely presented, γ0
M is an isomorphism and

γ1
M is injective. This follows from [Sta21, Tag 064T] and [Sta21, Tag 0G8W].

Step 2: General case. We fix a finitely generated ideal m0 ⊂ m. Since m0 ⊂ m = m4, there is
a finitely generated ideal m1 such that m0 ⊂ m4

1. Now we use Lemma 2.5.7(2) to find a finitely

https://stacks.math.columbia.edu/tag/064T
https://stacks.math.columbia.edu/tag/0G8W
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presented module M ′ and a morphism f : M ′ →M such that ker(f) and Coker(f) are annihilated
by m1. We denote the image of f by M ′′ and consider the short exact sequences

0→ K →M ′ →M ′′ → 0 ,

0→M ′′ →M → Q→ 0

with K and Q being annihilated by m1. After applying the functors colimI HomR(−, Ni) and
HomR(−, colimI Ni) and considering the associated long exact sequences, we see that

bi : colimI ExtiR(M,Ni)→ colimI ExtiR(M ′, Ni)

and

ci : ExtiR(M, colimI Ni)→ ExtiR(M ′, colimI Ni)

have kernels and cokernels annihilated by m2
1 for any i ≥ 0. Now we consider a commutative

diagram

colimI ExtiR(M ′, Ni) ExtiR(M ′, colimI Ni)

colimI ExtiR(M,Ni) ExtiR(M, colimI Ni)

γi
M′

bi

γiM

ci

By Step 1, we know that γiM ′ is an isomorphism for i = 0 and injective for i = 1. Moreover, we
know that bi and ci have kernels and cokernels annihilated by m2

1. Then it is easy to see that
Coker(γ0

M ), ker(γ0
M ), and ker(γ1

M ) are annihilated by m4
1. In particular, they are annihilated by

m0 ⊂ m4
1. Since m0 was arbitrary finitely generated sub-ideal m0 ⊂ m, we conclude that γ0

M is an
almost isomorphism and γ1

M is almost injective. �

Lemma 2.5.10. Let M be an R-module.

(1) If, for any filtered diagram of R-modules {Ni}i∈I , the natural morphism

colimI HomR(M,Ni)→ HomR(M, colimI Ni)

is almost injective, then M is almost finitely generated.

(2) If, for any filtered system of R-modules {Ni}, the natural morphism

colimI HomR(M,Ni)→ HomR(M, colimI Ni)

is an almost isomorphism, then M is almost finitely presented.

Proof. (1) : Note that M ' colimIMi is a filtered colimit of its finitely generated submodules.
Therefore, we see that

colimI HomR(M,M/Mi) 'a HomR (M, colimI(M/Mi)) ' 0.

Consider an element α of colimI HomR(M,M/Mi) that has a representative the quotient morphism
M →M/Mi (for some choice of i ∈ I). Then, for every ε ∈ m, εα = 0 in colimI HomR(M,M/Mi).
Explicitly this means that there is j ≥ i such that εM ⊂Mj . Now we choose a surjection Rnj →Mj

to see that the composition f : Rnj → M gives a map with ε(Coker f) = 0. Now note that this
property is preserved by choose any j′ > j. Therefore, for any m0 = (ε1, . . . , εn), we can find
a finitely generated submodule Mi ⊂ M such that m0M ⊂ Mi. Therefore, M is almost finitely
generated.
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(2) : Fix any finitely generated sub-ideal m0 = (ε1, . . . , εn) ⊂ m. We use [Sta21, Tag 00HA]
to write M ' colimΛMλ as a filtered colimit of finitely presented R-modules. By assumption, the
natural morphism

colimΛ HomR(M,Mλ)→ HomR(M, colimΛMλ) = HomR(M,M)

is an almost isomorphism. In particular, εiIdM is in the image of this map for every i = 1, . . . , n.
This means that, for every εi, there is λi ∈ Λ and a morphism gi : M → Mλi such that the
composition

fλi ◦ gi = εiIdM ,

where fλi : Mλi → M . Note that existence of such gi is preserved by replacing λi by any λ′i ≥ λi.
Therefore, using that {Mλ} is a filtered diagram, we can find one index λ with maps

gi : M →Mλ

such that fλ ◦ gi = εiIdM . Now we consider a morphism

Fi := gi ◦ fλ − εiIdMλ
: Mλ →Mλ.

Note that Im(Fi) ⊂ ker(fλ) because

fλ ◦ gi ◦ fλ − fλεiIdMi = εifλ − εifλ = 0.

We also have that εi ker(fλ) ⊂ Im(Fi) because Fi|ker(fλ) = εiId. Therefore,
∑

i Im(Fi) is a finite
R-module such that

m0(ker fλ) ⊂
∑
i

Im(Fi) ⊂ ker(fλ).

Therefore, f : M ′ := Mλ/(
∑

i Im(Fi)) → M is morphism such that M ′ is finitely presented,
m0(ker f) = 0, and m0(Coker f) = 0. Since m0 ⊂ m was an arbitrary finitely generated sub-ideal,
we conclude that M is almost finitely presented. �

Corollary 2.5.11. Let M be an R-module. Then

(1) M is almost finitely generated if and only if, for every filtered diagram {Na
i }i∈I of Ra-

modules, the natural morphism

colimI alHomR(Ma, Na
i )→ alHomR(Ma, colimI N

a
i )

is injective in ModaR;

(2) M is almost finitely presented if and only if, for every filtered diagram {Na
i }i∈I of Ra-

modules, the natural morphism

colimI alHomR(Ma, Na
i )→ alHomR(Ma, colimI N

a
i )

is an isomorphism in ModaR;

Proof. It formally follows from Lemma 2.5.9, Lemma 2.5.10, Proposition 2.2.1 (3), and Corol-
lary 2.1.10. �

Corollary 2.5.12. Let M and N be two almost isomorphic R-modules (see Definition 2.1.7). Then
M is almost finitely generated (resp. almost finitely presented) if and only if so is N .

Proof. Corollary 2.5.11 implies that M is almost finitely generated (resp. almost finitely presented)
if and only if Ma

! is. Since Ma
! ' Na

! , we get the desired result. �

Corollary 2.5.13. Let R → S be an almost isomorphism of rings. Then the forgetful functor
Mod∗Sa →Mod∗Ra is an equivalence for ∗ ∈ {“ ”, aft, afp}.

https://stacks.math.columbia.edu/tag/00HA
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Proof. Corollary 2.5.11 ensures that it suffices to prove the claim for ∗ = “ ” as the property of
being almost finitely generated (resp. almost finitely presented) depends only on the category
ModRa and not on the ring R itself.

Corollary 2.2.4 (2) guarantee that the forgetful functor admits a right adjoint−⊗RaSa : ModaR →
ModaS . Therefore, it suffices to show that the natural morphisms

Ma ⊗Ma ⊗Ra Sa

and

Na ⊗Ra Sa → Na

are isomorphisms for any M ∈ModaR and N ∈ModaS . This is obvious from the fact that Ra → Sa

is an isomorphism of Ra-modules. �

Definition 2.5.14. We say that an Ra-module Ma ∈ ModaR is almost finitely generated (resp.
almost finitely presented) if its representative M ∈ModR is almost finitely generated (resp. almost
finitely presented). This definition does not depend on a choice of representative by Lemma 2.5.12

We now want to establish certain good properties of almost finitely presented modules in short
exact sequences. This will be crucial later to develop a good theory of almost coherent modules.

Lemma 2.5.15. Let 0→M ′
ϕ−→M

ψ−→M ′′ → 0 be an exact sequence of R-modules, then

(1) If M is almost finitely generated, then so is M ′′.

(2) If M ′ and M ′′ are almost finitely generated (resp. finitely presented), then so is M .

(3) If M is almost finitely generated and M ′′ is almost finitely presented, then M ′ is almost
finitely generated.

(4) If M is almost finitely presented and M ′ is almost finitely generated, then M ′′ is almost
finitely presented.

Proof. The previous version of this manuscript contained a direct (but very tedious) proof of
this claim. However, now we only note that it can be easily deduced from Lemma 2.5.9 and
Lemma 2.5.10 via the five lemma (or diagram chase). We only note that the Ext1 part of
Lemma 2.5.9 (2) is crucial to make the argument work. �

Corollary 2.5.16. Let 0 → M ′a
ϕ−→ Ma ψ−→ M ′′a → 0 be an exact sequence of Ra-modules. Then

all the conclusions of Lemma 2.5.15 still hold.

Proof. We use Lemma 2.1.9(4),(5) to see that the sequence

0→ (M ′a)!
ϕ!−→ (Ma)!

ψ!−→ (M ′′a)! → 0

is exact and almost isomorphic to the original one. Moreover, Corollary 2.5.12 says that each of
those modules Na

! is almost finitely generated (resp. almost finitely presented) if and only if so is
the corresponding Na. Thus the problem is reduced to Lemma 2.5.15. �

Lemma 2.5.17. Let Ma, Na be two almost finitely generated (resp. almost finitely presented)
Ra-modules, then so is Ma ⊗Ra Na. Similarly, M ⊗R N is almost finitely generated (resp. almost
finitely presented) for any almost finitely generated (resp. almost finitely presented) R-modules M
and N .
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Proof. We show the claim only in the case of almost finitely presented modules, the case of almost
finitely generated modules is significantly easier. Moreover, we use Proposition 2.2.1(1) to reduce
the question to show that the tensor product of two almost finitely presented R-modules is almost
finitely presented.

Step 1. The case of finitely presented modules: If both M and N are finitely presented, then this
is a standard fact proven in [Bou98, II, §3.6, Proposition 6].

Step 2. The case of M being finitely presented: Now we deal with the case of a finitely presented
R-module M and merely almost finitely presented N . We fix a finitely generated ideal m0 ⊂ m and
a finitely generated ideal m1 such that m0 ⊂ m2

1. Now we use Lemma 2.5.7(2) to find a finitely
presented module N ′ and a morphism f : N ′ → N such that ker(f) and Coker(f) are annihilated
by m0. We denote the image of f by N ′′ and consider the short exact sequences

0→ K → N ′ → N ′′ → 0 ,

0→ N ′′ → N → Q→ 0

with K and Q being annihilated by m0. After applying the functor M ⊗R −, we get the following
exact sequences:

M ⊗R K →M ⊗R N ′ →M ⊗R N ′′ → 0 ,

TorR1 (M,Q)→M ⊗R N ′′ →M ⊗R N →M ⊗R Q→ 0 .

We note that M ⊗RK,TorR1 (M,Q), and M ⊗RQ are annihilated by m0. Now it is straightforward
to conclude that the map

M ⊗R f : M ⊗N ′ →M ⊗N
has kernel and cokernel annihilated by m1 ⊂ m2

0. Moreover, M ⊗N ′ is a finitely presented module
by Step 1. Since m1 was an arbitrary finitely generated subideal of m, we conclude that M ⊗N is
almost finitely presented by Lemma 2.5.7(2).

Step 3. The general case: Repeat the argument of Step 2 once again using Step 2 in place of
Step 1 at the end, and Lemma 2.5.8 in place of Lemma 2.5.7(2). �

Lemma 2.5.18. Let M be an almost finitely presented R-module, let N be any R-module, and let
P be an almost flat R-module. Then the natural map HomR(M,N) ⊗R P → HomR(M,N ⊗R P )
is an almost isomorphism.

Similarly, HomRa(Ma, Na)⊗Ra P a → HomRa(Ma, Na⊗Ra P a) is an almost isomorphism for any
almost finitely presented Ra-module Ma, any Ra-module Na, and an almost flat Ra-module P a.

Proof. Proposition 2.2.1(1) and (3) ensure that it suffices to prove the claim for the case of honest
R-modules M , N , and P .

Step 1. The case of a finitely presented module M : We choose a presentation of M :

Rn → Rm →M → 0

Then we use that P is almost flat to get a morphism of almost exact sequences:

0 HomR(M,N)⊗R P HomR(Rm, N)⊗R P HomR(Rn, N)⊗R P

0 HomR(M,N ⊗R P ) HomR(Rm,⊗RP ) HomR(Rn, N ⊗R P ).
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Clearly, the second and third vertical arrows are (almost) isomorphisms, so the first vertical arrow
is an almost isomorphism as well.

Step 2. The General Case: The case of almost finitely presented module M follows from the
finitely presented case by approximating it by finitely presented ones. This is similar to the strategy
used in Lemma 2.5.17, we leave the details to the reader. �

The last thing that we will need is the interaction between properties of an R-module M and its
“reduction” M/I for some finitely generated ideal I ⊂ m. For example, we know that for an ideal
I ⊂ rad(R) and a finite module M , Nakayama’s lemma states that M/I = 0 if and only if M = 0.
Another thing is that an I-adically complete module M is R-finite if and only if M/I is R/I-finite.
It turns out that both facts have their “almost” analogues.

Lemma 2.5.19. Let I ⊂ m ∩ rad(R) be a finitely generated ideal. If M is an almost finitely
generated R-module such that M/IM ' 0. Then M ' 0. If M/IM ∼=a 0, then M ∼=a 0.

Proof. We use a definition of an almost finitely generated module to find a finite submodule N that
contains IM . If M/IM is isomorphic to the zero module, then the containment IM ⊂ N ⊂ M
implies that N = M . Thus M is actually finitely generated, now we use the usual Nakayama’s
Lemma to finish the proof.

If M/IM is merely almost isomorphic to the zero module, then we see that the inclusion IM ⊂M
is an almost isomorphism. In particular, mM is contained in IM . Using that m2 = m, we obtain
an equality

mM = m2M = m(IM) = I(mM)

Thus we can apply the argument from above to conclude that mM = 0. This finishes the proof as
mM ∼=a M . �

Lemma 2.5.20. Let R be I-adically complete for some finitely generated I ⊂ m. Then an I-
adically complete R-module M is almost finitely generated if and only if M/IM is almost finitely
generated.

Proof. [GR03, Lemma 5.3.18] �

2.6. Almost Coherent Modules and Almost Coherent Rings. This section is devoted to
the study of “almost coherent” modules. They are supposed to be “almost” analogues of usual
coherent modules. We show that they always form a Weak Serre subcategory in ModR. Then we
study the special case of almost coherent modules over an almost coherent ring, and show that in
this case almost coherent modules are the same as almost finitely presented modules. We recall
that we fixed some “base” ring R with an ideal m such that m2 = m and m̃ = m⊗R m is flat, and
always we do almost mathematics with respect to this ideal.

Definition 2.6.1. We say that an (almost) R-module M is almost coherent if it is almost finitely
generated and every almost finitely generated almost submodule Na ⊂ Ma is almost finitely pre-
sented.

Remark 2.6.2. An almost submodule f : Na ↪→Ma does not necessarily give rise to a submodule
N ′ ⊂M for some (N ′)a ' N . The most we can say is that there is an injection f! : (Na)! ↪→ (Ma)!

whose almostification is equal to the the morphism f (this follows from Lemma 2.1.8(2)).

Lemma 2.6.3. Let R → S be an almost isomorphism of rings. Then the forgetful functor
Modacoh

Sa →Modacoh
Ra is an equivalence.

Proof. It directly follows from Corollary 2.5.13 and Definition 2.6.1. �
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Lemma 2.6.4. Let Ma be an almost R-module with a representative M ∈ ModR. Then the
following are equivalent

(1) The almost module Ma is almost coherent.

(2) The actual R-module (Ma)∗ is almost finitely generated, and any almost finitely generated
R-submodule of (Ma)∗ is almost finitely presented.

(3) The actual R-module (Ma)! is almost finitely generated, and any almost finitely generated
R-submodule of (Ma)! is almost finitely presented.

Proof. First of all, we note that Corollary 2.5.12 guarantees that M is almost finitely generated
if and only if so is (Ma)∗. Secondly, Lemma 2.1.9 implies that the functor (−)∗ is left exact.
Therefore, any almost submodule Na ⊂ Ma gives rise to an actual submodule (Na)∗ ⊂ (Ma)∗
that is almost isomorphic to N . In reverse, any submodule N ⊂ (Ma)∗ gives rise to an almost
submodule of Ma. Hence, we see that all almost finitely generated almost submodules of Ma are
almost finitely presented if and only if all actual almost finitely generated submodules of M∗ are
almost finitely presented (here we again use Corollary 2.5.12). This shows the equivalence of (1)
and (2). The same argument shows that (1) is equivalent to (3). �

Note that it is not that clear whether a coherent R-module is almost coherent. The issue is
that in the definition of almost coherent modules we need to be able to handle all almost finitely
generated almost submodules and not only finitely generated. The lemma below is a useful tool to
deal with such problems, in particular, it turns out (Corollary 2.6.7) that all coherent modules are
indeed almost coherent, but we do not know a direct way to see it.

Lemma 2.6.5. Let M be an R-module. Then M is an almost coherent module if one of the
following holds:

(1) For any finitely generated ideal m0 ⊂ m there exists a coherent R-module N and morphism
f : N →M such that m0(ker f) = 0 and m0(Coker f) = 0.

(2) For any finitely generated ideal m0 ⊂ m there exists an almost coherent R-module N and
morphism f : N →M such that m0(ker f) = 0 and m0(Coker f) = 0.

Proof. We start the proof by noting that M comes with the natural almost isomorphism M →Ma
∗ ,

so both of the assumptions on M pass through this almost isomorphism. Thus, Lemma 2.6.4 implies
that it suffices to show that M∗ := Ma

∗ is almost coherent.

Lemma 2.5.7 guarantees that M∗ is almost finitely generated. Thus we only need to check
the second condition from Definition 2.6.1. So we pick an arbitrary almost finitely generated R-
submodule M1 ⊂M∗, we want to show that it is almost finitely presented. We choose an arbitrary
finitely generated ideal m0 ⊂ m and another finitely generated ideal m1 ⊂ m such that m0 ⊂ m2

1.
We use Lemma 2.5.8 to find a morphism ϕ : Rn →M1 such that m1(Cokerϕ) = 0. Let e1, . . . , en

be the standard basis in Rn, and define xi := ϕ(ei) to be their images. We also choose some set of
generators (ε1, . . . , εm) for the ideal m1.

Now we recall that by our assumption there is a morphism f : N → M∗ with a(n) (almost)
coherent R-module N such that m1(Coker f) = 0 and m1(ker f) = 0. This implies that εixj is
in the image of f for any i = 1, . . . ,m, j = 1, · · ·n. Let us choose some yi,j ∈ N such that
f(yi,j) = εixj , and we define an R-module N ′ as the submodule of N generated by all yi,j , this is
a finite R-module by the construction. Since N is a (almost) coherent module, we conclude that
N ′ is actually (almost) finitely presented.
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We observe that f ′ := f |N ′ naturally lands in M1, and we have m1(ker f ′) = 0 and m2
1(Coker f ′) =

0. Since m0 ⊂ m2
1 this shows that the morphism

N ′
f ′−→M1

has a kernel and cokernel killed by m0. Lemma 2.5.8 shows that M1 is almost finitely presented. �

Question 2.6.6. Does the converse of this Lemma hold?

Corollary 2.6.7. Any coherent R-module M is almost coherent.

The next thing that we want to show is that almost coherent modules from a Weak Serre
subcategory of ModR. This is an almost analogue of the corresponding statement in the classical
case.

Lemma 2.6.8. Let R and m as above. Then

(1) An almost finitely generated almost submodule of an almost coherent module is almost
coherent.

(2) Let ϕ : Na →Ma be an almost homomorphism from an almost finitely generatedRa-module
to an almost coherent Ra-module, then kerϕ is almost finitely generated Ra-module.

(3) Let ϕ : Na → Ma be an injective almost homomorphism of almost coherent Ra-modules,
then Cokerϕ is almost coherent Ra-module.

(4) Let ϕ : Na →Ma be an almost homomorphism of almost coherent Ra-modules, then kerϕ
and Cokerϕ are almost coherent Ra-modules.

(5) Given a short exact sequence of Ra-modules 0 → M ′a → Ma → M ′′a → 0 if two out of
three are almost coherent so is the third.

Proof. (1): This is evident from the definition of an almost coherent almost module.

(2): Let us define N ′′a := Imϕ and N ′a := kerϕ, then Corollary 2.5.16 implies that N ′′a is an
almost finitely generated almost submodule of Ma. It is actually almost finitely presented since
Ma is almost coherent, we use Corollary 2.5.16 to get that N ′ is almost finitely generated as well.

(3): We denote Cokerϕ by M ′′a, then we have a short exact sequence

0→ Na →Ma →M ′′a → 0.

Corollary 2.5.16 implies that M ′′a is almost finitely generated. Let us choose any almost finitely
generated almost submodule M ′′a1 ⊂M ′′a and denote its pre-image in Ma by Ma

1 . Then we have a
short exact sequence

0→ Na →Ma
1 →M ′′a1 → 0.

Corollary 2.5.16 guarantees that Ma
1 is an almost finitely generated almost submodule of Ma.

Since Ma is almost coherent, we see that Ma
1 is an almost finitely presented Ra-module. Therefore,

Corollary 2.5.16 implies that M ′′a1 is also almost finitely presented. Hence, the Ra-module M ′′a is
almost coherent.

(4): We know that N ′a := kerϕ is almost finitely generated by (2). Since Na is almost coherent,
we conclude that N ′a is almost coherent by (1). We define N ′′a := Imϕ and M ′′a := Cokerϕ, then
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we note that we have two short exact sequences

0→ N ′a → Na → N ′′a → 0,

0→ N ′′a →Ma →M ′′a → 0.

We observe that (3) shows that N ′′a is almost coherent, then we use (3) once more to conclude
that M ′′a is also almost coherent.

(5): The only thing that we are left to show is that if M ′a and M ′′a are almost coherent so is
Ma. It is almost finitely generated by Corollary 2.5.16. Now to check the second condition from
Definition 2.6.1, we choose an almost finitely generated almost submodule Ma

1 ⊂Ma. Let us denote
by M ′′a1 its image in M ′′a, and by M ′a1 the kernel of this map. So we have a short exact sequence

0→M ′a1 →Ma
1 →M ′′a1 → 0.

Corollary 2.5.16 guarantees that M ′′a1 is an almost finitely generated almost submodule of the
almost coherent Ra-module M ′′a. Hence, (1) implies that M ′′a1 is almost coherent, in particular,
it is almost finitely presented. Moreover, we can now use (2) to get that M ′a1 is an almost finitely
generated almost submodule of M ′a. Since M ′a is almost coherent, we conclude that M ′a1 is actually
almost finitely presented. Finally, Corollary 2.5.16 shows that Ma

1 is almost finitely presented as
well. This finishes the proof of almost coherence of the Ra-module M . �

Corollary 2.6.9. Let Ma be an almost finitely presented Ra-modules and let Na be an almost
coherent Ra-module. Then Ma ⊗Ra Na and alHomRa(Ma, Na) are almost coherent.

Proof. We use Proposition 2.2.1(1),(3) to reduce the question to show thatM⊗RN and HomR(M,N)
are almost coherent R-modules for any almost finitely presented R-module M and almost coherent
R-module N .

Step 1. The case of finitely presented module M : In this case we pick a presentation of M as the
quotient

Rn → Rm →M → 0 .

Then we have short exact sequences

Nn → Nm →M ⊗R N → 0

and
0→ HomR(M,N)→ Nm → Nn .

We note that Lemma 2.6.8(5) implies that Nm and Nn are almost coherent. Thus Lemma 2.6.8(5)
guarantees that both M ⊗R N and HomR(M,N) are almost coherent as well.

Step 2. The General Case: The argument is similar to the one used in Step 2 of the proof of
Lemma 2.5.17. We approximate M with finitely presented R-modules. This gives us an approx-
imations of Ma ⊗Ra Na and alHomRa(Ma, Na) by almost coherent modules. Now Lemma 2.6.5
guarantees that these modules are actually almost coherent. We leave details to the interested
reader. �

We define ModacohR (resp. ModacohRa ) to be the strictly full7 subcategoty of ModR (resp. ModRa)
consisting of almost coherent R-modules (resp. Ra-modules).

Corollary 2.6.10. The category Modacoh
R (resp. Modacoh

Ra ) is a Weak Serre subcategory of ModR
(resp. ModRa).

7i.e. full subcategory that is closed under isomorphisms.
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Corollary 2.6.10 and the discussion in [Sta21, Tag 06UP] ensure that Dacoh(R) and Dacoh(R)a8

are strictly full saturated9 triangulated subcategories of D(R) and D(R)a respectively. We define
D+
acoh(R) := Dacoh(R) ∩D+(R) and similarly for all other bounded versions.

Lemma 2.6.11. Let M ∈ D(R) be a complex of R-modules. Then M ∈ Dacoh(R) if one of the
following holds:

(1) For every finitely generated ideal m0 ⊂ m, there is N ∈ Dcoh(R) and a morphism f : N →M
such that m0

(
Hi (cone (f))

)
= 0 for every i ∈ Z,

(2) For every finitely generated ideal m0 ⊂ m, there is N ∈ Dacoh(R) and a morphism f : N →
M such that m0

(
Hi (cone (f))

)
= 0 for every i ∈ Z.

Proof. This is an easy consequence of Lemma 2.6.5 and the definition of Dacoh(R). �

The last part of this subsection is dedicated to the study of almost coherent rings and almost
coherent modules over almost coherent rings. Recall that coherent modules over a coherent ring
coincide with finitely presented ones. Similarly, we will show that almost coherent modules over an
almost coherent ring turn out to be the same as almost finitely presented ones.

Definition 2.6.12. We say that a ring R is almost coherent if the rank-1 free module R is almost
coherent as an R-module.

Lemma 2.6.13. A coherent ring R is almost coherent.

Proof. Apply Corrollary 2.6.7 to a rank-1 free module R. �

Lemma 2.6.14. If R is an almost coherent ring, then any almost finitely presented R-module M
is almost coherent.

Proof. Step 1: If M is finitely presented over R, then we can write it as a cokernel of a map be-
tween free finite rank modules. A free finite rank module over an almost coherent ring is almost
coherent by Lemma 2.6.8(5). A cokernel of a map of almost coherent modules is almost coherent
by Lemma 2.6.8(4). Therefore, any finitely presented M is almost coherent.

Step 2: Suppose that M is merely almost finitely presented. Lemma 2.5.7 guarantees that, for
any finitely generated m0 ⊂ m, we can find a finitely presented module N and a map f : N → M
such that ker f and Coker f are annihilated by m0. N is almost coherent by Step 1. Therefore,
Lemma 2.6.5(2) implies that M is almost coherent as well. �

Corollary 2.6.15. Let R be an almost coherent ring. Then an R-module M is almost coherent if
and only if it is almost finitely presented.

Proof. The “only if” part is clear from the definition, the “if” part follows from Lemma 2.6.14. �

Our next big goal is to show that bounded above almost coherent complexes over an almost
coherent ring are exactly ”almost pseudo-coherent complexes” in some precise way. More precisely,
that any element M ∈ D−acoh(R) can be “approximated” up to any small torsion by complexes of
finite free modules.

8These are full subcategories of D(R) and D(R)a of complexes with almost coherent cohomology modules,
respectively.

9A strictly full subcategory D′ of a triangulated category D is saturated if X ⊕ Y ∈ D′ implies X,Y ∈ D′.

https://stacks.math.columbia.edu/tag/06UP
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Proposition 2.6.16. Let R be an almost coherent ring and M ∈ D−(R). Then M ∈ D−acoh(R) if
and only if, for every finitely generated ideal m0 ⊂ m, there is a complex F • of finite free R-modules,
and a morphism

f : F • →M

such that m0

(
Hi(cone(f))

)
= 0 for every i ∈ Z. Moreover, if M ∈ D≤0

coh(R) one can choose

F • ∈ Comp≤0(R).

Proof. The “if” direction is Lemma 2.6.11. So we only need to prove the “only if” direction. For
this direction, we fix a finitely generated ideal m0 ⊂ m and another finitely generated ideal m1 ⊂ m
such that m0 ⊂ m2

1.

Without loss of generality, we may and do assume that M ∈ D≤0(R), and we choose a complex
M• ∈ Comp≤0(R) that represents M . Now we prove a slightly more precise claim:

Claim: For every n ∈ Z, there is a complex of finite free modules F •n with a morphism fn : F •n →
M• such that

(1) F •n ∈ Comp[−n,0](R);

(2) σ≥n−1F •n = F •n−1 and σ≥n−1fn = fn−1, where σ≥n−1 is the naive truncation;

(3) kernels and cokernels of Hi(fn) are annihilated by m1 for i ≥ n+ 1;

(4) the cokernel of Hn(fn) is annihilated by m1;

Proof of the claim: We argue by descending induction on n. If n ≥ 1, F • = 0 works. Now
we suppose that we can construct F •n , and wish to construct F •n−1. Consider the morphism fn
presented as a commutative diagram

0 0 Fnn Fn+1
n . . .

Mn−2 Mn−1 Mn Mn+1 . . .

dnF

fnn

dn+1
F

fn+1
n

dn−2
M dn−1

M dnM dn+1
M

Firstly, ker(dnF ) is almost coherent as a kernel between finitely presented modules over an almost
coherent ring. Secondly, the R-module

Bn := ker (ker (dnF )→ Hn (M)) ,

is also almost coherent as a kernel between almost coherent modules. Therefore, there is a finite
free R-module F ′n−1 and a morphism

d′ : F ′n−1 → Bn

such that m1(Coker d′) = 0. Since Hn−1(M) is almost coherent, we can find a finite free R-module
F ′′n−1 and a morphism

λ : F ′′n−1 → Hn−1(M)

such that m1(Cokerλ) = 0. Let ν : F ′′n−1 → Zn−1(M•) be any lift of λ to the module of closed
elements Zn−1(M•) = ker(dn−1

M ). We define

f ′′n−1 : F ′′n−1 →Mn−1

be the composition of ν with the inclusion Zn−1(M•)→Mn−1.

Now we wish to define F •n−1 and fn−1. We start with F •n−1; we put Fmn−1 = Fmn if m ≥ n,

Fmn−1 = 0 if m < n− 1, Fn−1
n−1 = F ′n−1 ⊕ F ′′n−1, and define the only non-evident differential

dn−1
F : Fn−1

n−1 = F ′n−1 ⊕ F ′′n−1 → Fnn
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to be zero on F ′′n−1 and equal to d′ on F ′n−1. It is evident that dnF ◦ dn−1
F = 0, so this structure

defines us a complex F •n−1 of finite free R-modules.

We are only left to define fn−1. We must put fmn−1 = fmn if m > n−1 and fmn−1 = 0 if m < n−1,

so the only question is to define fn−1
n−1 . By construction fnn (d′F ′n−1) ⊂ dn−1

M Mn−1, so we can find

f ′n−1 : F ′n−1 →Mn−1

such that dn−1 ◦ f ′n−1 = fnn ◦ d′. Thus we define

fn−1
n−1 : Fn−1

n−1 = F ′n−1 ⊕ F ′′n−1 →Mn−1

to be f ′n−1 on F ′n−1 and f ′′n−1 on F ′′n−1. Then it is evident from the construction that f•n−1 is a
morphism of complexes, i.e. the diagram

0 Fn−1
n−1 Fnn−1 Fn+1

n−1 . . .

Mn−2 Mn−1 Mn Mn+1 . . .

dn−1
F

fn−1
n−1

dnF

fnn−1

dn+1
F

fn+1
n−1

dn−2
M dn−1

M dnM dn+1
M

By construction, kernel and cokernel of Hn(fn−1) are annihilated by m1, and cokernel of Hn−1(fn−1)
is annihilated by m1. So this finishes the proof of the claim.

Now the morphism f : F • →M• simply comes as the colimit of fn, i.e.

f = colim fn : F • := colimF •n →M•.

It is easy to see that cohomology groups of cone(f) are annihilated by m0 ⊂ m2
1. �

Corollary 2.6.17. Let R be a coherent ring and M ∈ Db(R). Then M ∈ Db
acoh(R) if and only

if, for every finitely generated ideal m0 ⊂ m, there is a complex N ∈ Db
coh(R) and a morphism

f : N →M such that m0(Hi(cone(f))) = 0 for all i.

Proof. The “if” direction is Lemma 2.6.11. So we only need to deal with the “only if” direction.
Assume that M ∈ Db(R). Then Proposition 2.6.16 implies that there is F ∈ D−coh(R) and a

morphism f : F → M such that m0(Hi(cone(f))) = 0 for all i. Now replace F by F ′ := τ≥aF to
get the desired approximation with F ′ ∈ Db

coh(R). �

Proposition 2.6.18. LetR be an almost coherent ring, and letMa, Na be two objects in D−acoh(R)a.

Then Ma ⊗LRa Na ∈ D−acoh(R)a.

Proof. Proposition 2.4.13 ensures that it suffices to show that M ⊗LR N ∈ D−acoh(R) for M , N ∈
D−coh(R). Clearly, we can cohomologically shift both M and N to assume that they lie D≤0

coh(R).

Now we fix a finitely generated ideal m1 ⊂ m and use Proposition 2.6.16 to find an exact triangle

F • →M → Q

where F • ∈ D≤0(R) a complex of finite free modules and Hi(Q) are all annihilated by m1. Then it
is easy to see that kernel and cokernel of the map

H−i(F • ⊗LR N)→ H−i(M ⊗LR N)

are annihilated by mi+1
1 . Now we note that, clearly,

F • ⊗LR N ' F • ⊗•R N
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lies in D−coh(R) because F • is a complex of finite free modules. For each pair of an integer i ≥ 0

and a finitely generated ideal m0 ⊂ m = mi+1, we can find another finitely generated ideal m1 such
that m0 ⊂ mi+1

1 . Therefore, the map

H−i(F • ⊗LR N)→ H−i(M ⊗LR N)

is a morphism with an almost coherent source and m0-torsion kernel and cokernel. Therefore,
Lemma 2.6.5 (2) implies the claim. �

Proposition 2.6.19. Let R be an almost coherent ring, and let Ma ∈ D−acoh(R)a, Na ∈ D+
acoh(R)a.

Then RalHomRa(Ma, Na) ∈ D+
acoh(R)a.

Proof. The proof is similar to that of Proposition 2.6.18. We use Proposition 2.4.8 and the same
approximation argument to reduce to the case M = F • is a bounded above complex of a finite
free modules. In this case the claim is essentially obvious due to the explicit construction of the
Hom-complex Hom•R(F •, N). �

Proposition 2.6.20. Let R be an almost coherent ring, let M ∈ D−acoh(R), N ∈ D+(R), and let P
be an almost flat R-module. Then the natural map RHomR(M,N)⊗R P → RHomR(M,N ⊗R P )
is an almost isomorphism.

Similarly, RHomRa(Ma, Na)⊗LRa P a → RHomRa(Ma, Na⊗LRa P a) is an almost isomorphism for
any Ma ∈ D−acoh(R)a, Na ∈ D+(R)a, and let P a a flat Ra-module.

Proof. The proof is similar to that of the lemmas above. �

Corollary 2.6.21. Let R be an almost coherent ring, let Ma ∈ D−acoh(R)a, N ∈ D+(R)a, and let
P a be an almost flat Ra-module. Then the natural map

RalHomRa(Ma, Na)⊗LRa P a → RalHomRa(Ma, Na ⊗Ra P a)
is an isomorphism in D(Ra).

2.7. Almost Noetherian Rings. The main goal of this section is to define the almost analogue of
the noetherianness property and verify some of its basic properties. However, we want to emphasize
that Hilbert’s Nullstellensatz seems much more subtle in the almost world (see Warning 2.7.9). We
are able to establish it only in a very particular situation in Section 2.11.

As in the previous sections, we fix a ring R with an ideal m such that m2 = m and m̃ = m⊗R m
is flat, and always we do almost mathematics with respect to this ideal.

Definition 2.7.1. A ring R is almost noetherian if every ideal I ⊂ R is almost finitely generated.

The main goal is to show that every almost finitely generated module over an almost noetherian
ring is almost finitely presented. In particular, an almost noetherian ring is almost coherent.

Lemma 2.7.2. Let R be an almost noetherian ring, and M ⊂ Rn an R-submodule. Then M is
almost finitely generated.

Proof. We argue by induction on n. The base of induction is n = 1, where the claim follows from
the definition of an almost noetherian ring.

Suppose we know the claim for n−1, so we deduce the claim for n. Denote by Rn−1 ⊂ Rn a free
R-module spanned by first n − 1 standard basis elements of Rn, and denote by M ′ := M ∩ Rn−1

the intersection of M with Rn−1. Then we have a short exact sequence

0→M ′ →M →M ′′ → 0,
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where M ′′ is naturally an R-submodule of R ' Rn/Rn−1. By the induction hypothesis, M ′ is almost
finitely generated. M ′′ is almost finitely generated by almost noetherianness of R. Therefore, M is
almost finitely generated by Lemma 2.5.15 (2). �

Lemma 2.7.3. Let R be an almost noetherian ring. Then any almost finitely generated R-module
M is almost finitely presented.

Proof. Pick any finitely generated sub-ideal m0 ⊂ m. By Lemma 2.5.5, there is an R-linear homo-
morphism

f : Rn →M

such that m0(Coker f) = 0. Consider N := ker(f). Lemma 2.7.2 ensures that N is also almost
finitely generated, so there is an R-linear homomorphism

g′ : Rm → N

such that m0(Coker g′) = 0. Therefore, the composition

Rm
g−→ Rn

f−→M

is a three-term complex with m0(Coker f) = 0 and m0(ker f) ⊂ Im(g). Since m0 was an ar-
bitrary finitely generated sub-ideal in m, we conclude that M is almost finitely presented by
Lemma 2.5.7 (3). �

Corollary 2.7.4. A ring R is almost noetherian if and only if any almost finitely generated R-
module M is almost finitely presented.

Proof. If R is almost noetherian, then any almost finitely generated R-module is almost finitely
presented due to Lemma 2.7.3.

Now we suppose that every almost finitely generated R-module is almost finitely presented, and
we wish to show that R is almost noetherian. Consider an ideal I ⊂ R. Then R/I is clearly a
finitely generated R-module, in particular, it is almost finitely generated. Therefore, it is almost
finitely presented by our assumption on R. Now the short exact sequence

0→ I → R→ R/I → 0

and Lemma 2.5.15 (3) imply that I is almost finitely generated. �

Corollary 2.7.5. Let R→ R′ be an almost isomorphism of rings. Then R is almost noetherian if
and only if R′ is.

Corollary 2.7.6. Let R be an almost noetherian ring, and M an almost finitely generated R-
module. Then any submodule N ⊂M is almost finitely generated.

Proof. Consider the short exact sequence

0→ N →M →M/N → 0.

By construction, M/N is almost finitely generated and, therefore, almost finitely presented by
Lemma 2.7.3. So Lemma 2.5.15 (3) implies that N is almost finitely generated. �

Corollary 2.7.7. Let R be an almost noetherian ring. Then R is almost coherent.

Proof. Lemma 2.6.4 guarantees that it suffices to show that every finitely generated sub-module of
R! is almost finitely presented R! ' m̃ is almost finitely generated and every finitely generated sub-
module of R! is almost finitely presented. The first property is trivial since R! is almost isomorphic
to R, and the second one follows from Lemma 2.7.3. �
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Corollary 2.7.8. Let R be an almost noetherian ring. Then an R-module M (resp. an Ra-module
Ma) is almost coherent if and only if it is almost finitely generated.

Proof. It suffices to prove the claim for an honest R-module M . Corollary 2.7.7 and Corollary 2.6.15
imply that M is almost coherent if and only if it is almost finitely presented. Now Lemma 2.7.3
says that M is almost finitely presented if and only if it is almost finitely generated. This finishes
the proof. �

Warning 2.7.9. Unlike the case of usual noetherian rings, Hilbert’s Nullstellensatz seems as a much
more subtle problem in the almost world. In particular, we do not know if a polynomial algebra
in a finite number of variables over an almost noetherian ring is almost noetherian. However, we
show that Hilbert’s Nullstellensatz holds for perfectoid valuation rings in Section 2.11.

2.8. Base Change for Almost Modules. The last topic that we want to discuss about almost
modules over general rings is their behavior with respect to base change. Recall that given a ring
homomorphism ϕ : R → S we always do almost mathematics on S-modules with respect to the
ideal mS := mS; look at Lemma 2.1.11 to see why m̃S is flat.

Lemma 2.8.1. Let ϕ : R→ S be a ring homomorphism, and let Ma be an almost finitely generated
(resp. almost finitely presented) Ra-module. Then the module Ma

S := Ma⊗Ra Sa is almost finitely
generated (resp. almost finitely presented).

Proof. The claim follows from Lemma 2.5.7(2) and the fact that for any finitely generated ideal
m′0 ⊂ mS there is a finitely generated ideal m0 ⊂ m such that m′0 ⊂ m0S. We only give a complete
proof in the case of finitely presented modules as the other case is an easier version of the same.

Firstly, we note that it suffices to show that M ⊗R S is almost finitely presented. Now the
observation above implies that it suffices to check the condition of Lemma 2.5.7(2) only for ideals
of the form m0S for a finitely generated subideal m0 ⊂ m. Then we choose some finitely generated
ideal m1 ⊂ m such that m0 ⊂ m2

1 and we use Lemma 2.5.7(2) to find a finitely presented module
N and a map f : N →M such that m1(Ker f) = m1(Coker f) = 0. Consider an exact sequence

0→ K → N
f−→M → Q→ 0

and denote the image f by M ′. Then we have the following exact sequences:

K ⊗R S → N ⊗R S →M ′ ⊗R S → 0

TorR1 (Q,S)→M ′ ⊗R S →M ⊗R S → Q⊗R S
Since K ⊗R S, TorR1 (Q,S) and Q ⊗R S are killed by m1S, we conclude that Coker(f ⊗R S) and
ker(f ⊗R S) are annihilated by m2

1S. In particular, they are killed by m0S. Since N ⊗R S is finitely
presented over S, Lemma 2.5.7 finishes the proof. �

Corollary 2.8.2. Let R → S be a ring homomorphism of almost coherent rings, and let Ma be
an object of D−acoh(R)a. Then Ma ⊗LRa Sa ∈ D−acoh(S)a.

Proof. The proof is similar to that of Proposition 2.6.18. We use Proposition 2.4.16 and a similar
approximation argument based on Proposition 2.6.16 to reduce to the case M ' F •, where F • is a
bounded above complex of finite free modules. In this case, the claim is essentially obvious. �

Lemma 2.8.3. Let S be a R-algebra that is finite (resp. finitely presented) as an R-module, and
let Ma be an Sa-module. Then Ma is almost finitely generated (resp. almost finitely presented)
over Ra if and only if it is almost finitely generated (resp. almost finitely presented) over Sa.
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Proof. As always, we firstly reduce the question to the case of an honest S-module M . Now we
use the observation that it suffices to check the condition of Lemma 2.5.7(2) only for the ideals of
the form m0S for some finitely generated ideal m0 ⊂ m ⊂ R. Then the only non-trivial direction is
to show that M is almost finitely presented over S if it is almost finitely presented over R. This is
proven in a more general situation in Lemma 2.8.4 �

Lemma 2.8.4. Let S be a possibly non-commutative R-algebra that is finite as a left (resp. right)
R-module, and let M be a left (resp. right) S-module that is almost finitely presented over R.
Then M is almost finitely presented over S (i.e. for every finitely generated ideal m0 ⊂ m, there
exists a finitely presented left (resp. right) S-module N and a map N → M such that ker f and
Coker f are annihilated by m0).

Remark 2.8.5. This lemma will actually be used for a non-commutative ring S in the proof of
Theorem 5.2.1 that, in turn, will be used in the proof of formal GAGA for almost coherent sheaves
Theorem 5.3.2. Namely, we will apply to result to S = EndPN (O⊕ O(1)⊕ . . .O(N)).

Besides this application, Lemma 2.8.4 will be mostly used for almost coherent commutative rings
R and S, where the proof can be significantly simplified.

Proof. We give a proof for left S-modules, the proof for right S-modules is the same. We start
the proof by choosing some generators x1, . . . , xn of S as an R-module. Then we pick a finitely
generated ideal m0 ⊂ m and another finitely generated ideal m1 such that m0 ⊂ m2

1. And we also
choose some generators (ε1, . . . , εk) = m1 and find a three-term complex

Rt
g−→ Rm

f−→M

such that m1(Coker f) = 0 and m1(ker f) ⊂ Im g. We consider the images yi := f(ei) ∈ M of the
standard basis elements in Rm. Then we can find some βi,j,s,r ∈ R such that

εsxiyj =
m∑
r=1

βi,j,s,r · yr with βi,j,s,r ∈ R

for any s = 1, . . . k; i = 1, . . . , n; j = 1, . . . ,m. Moreover, we have t “relations”
m∑
j=1

αi,jyj = 0 with αi,j ∈ R

such that for any relation
∑m

i=1 biyi = 0 with bi ∈ R and any ε ∈ m1, we have that the vector
{εbi}mi=1 ∈ Rm lives in the R-subspace generated by vectors {αi,j}mi=1 for j = 1, . . . , t. Or, in other
words, if

∑m
j=1 αi,jyj = 0 then ε(

∑m
j=1 αi,jej) ∈ Im(g) for any ε ∈ m1.

Now we are finally ready to define a three-term complex

Snmk+t ψ−→ Sm
ϕ−→M

We define the map ϕ as the unique S-linear homomorphism such that ϕ(ei) = yi for the standard
basis in Sm. We define ψ as the unique S-linear homomorphism such that

ψ(fi,j,s) = εsxiej −
m∑
r=1

βi,j,s,r · er and ψ(f ′l ) =
m∑
j=1

αl,jej

for the standard basis {
fi,j,s, f

′
l

}
i≤n,j≤m,s≤k,l≤t ∈ S

nmk+t

Then we clearly have that ϕ ◦ ψ = 0 and that m1(Cokerϕ) = 0. We claim that m2
1(kerϕ) ⊂ Imψ.
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Let ϕ(
∑m

i=1 ciei) = 0 for some elements ci ∈ S. We can write each

ci =
n∑
j=1

ri,jxj with ri,j ∈ R (2.1)

because x1, . . . , xn are R-module generators of S. Thus, the condition that ϕ(
∑m

i=1 ciei) = 0 is
equivalent to

∑
i,j ri,jxjyi = 0. Now recall that for any s = 1, . . . k we have

εsxjyi =
m∑
r=1

βj,i,s,r · yr.

Therefore, multiplying equation 2.1 by εs, we get an equality

0 = εs

∑
i,j

ri,jxjyi

 =
∑
i,j

ri,j

(
m∑
r=1

βj,i,s,r · yr

)
=

m∑
r=1

∑
i,j

ri,jβj,i,s,r

 yr

This means that for any s′ = 1, . . . , k the vector {εs′(
∑

i,j ri,jβj,i,s,r)}mr=1 ∈ Rm lives in an R-

subspace generated by vectors {αi,j}mi=1. In particular, for any r and s′, εs′(
∑

i,j ri,jβj,i,s,rer) is

equal to ψ (some sum of f ′l ) by definition of ψ.
After unwinding all the definitions we get the following:

εs′εs

(
m∑
i=1

ciei

)
= εs′εs

∑
i,j

ri,jxjei


= εs′

∑
i,j

ri,j

(
εsxjei −

∑
r

βj,i,s,rer +
∑
r

βj,i,s,rer

)
= εs′

∑
i,j

ri,j

(
εsxjei −

∑
r

βj,i,s,rer

)+ εs′

∑
r

∑
i,j

ri,jβj,i,s,r

 er


= ψ

εs′∑
i,j

ri,jfj,i,s

+ ψ
(
some sum of f ′l

)
So we see that m2

1 ker(ϕ) ⊂ Imψ. In particular, we have m0 ker(ϕ) ⊂ Imψ. Now we replace the
map ϕ : Sn →M with the induced map

ϕ : Coker(ψ)→M

to get a map from a finitely presented left S-module such that ker(ϕ) and Coker(ϕ) are annihillated
by m0. �

2.9. Almost Faithfully Flat Algebras. This section is devoted to the notion of almost faithfully
flat morphism of algebras. This notion is a bit subtle in the almost context. Similar to the case of the
usual commutative algebra, one defines R→ S to be almost (faithfully) flat if Sa is a (faithfully) flat
Ra-module. Note that this implies that Sa! is a flat R-module, but Sa! is not necessarilly faithfully
flat as an R-module if Sa is faithfully flat as an Ra-module (see Warning C.1.8).

Another subtlety of this definition is that Sa! is not longer an R-algebra. So it seems difficult
to relate almost faithful flatness of an R-algebra to some actual faithful flatness from this point of
view. However, it turns out that things get better if we change the definition of the (−)!-functor.
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We introduce a different functor (−)!! : AlgR → AlgR. However, this functor will not in general
send almost flat morphisms to flat morphisms, but it will send almost faithfully flat morphisms to
faithfully flat morphisms. So it will be very usefull to deduce certain properties of almost faithfully
flat morphisms from the analogous properties of classically faithfully flat morphisms.

We follows the exposition in [GR03] pretty closely here.

For the rest of the section, we fix a ring R with an ideal of almost mathematics m.

Definition 2.9.1. A homomorphism of R-algebras A → B is almost flat (resp. almost faithfully
flat) if Ba is a flat (resp. faithfully flat) Aa-module (see Definition 2.2.5).

Lemma 2.9.2. Any (faithfully) flat A-algebra B is almost (faithfully) flat.

Proof. It follows directly from Lemma 2.2.6. �

Lemma 2.9.3. Let A be an R-algebra and f : A→ B a morphism of R-algebras. Then B is almost
faithfully flat over A if and only if Ba is a flat Aa-module and Aa → Ba is universally injective,
i.e., for any Aa-module Ma, the natural morphism Ma →Ma ⊗Aa Ba is injective in ModaA.

Proof. Suppose that B is almost faithfully flat. Then Ba is a flat Aa-module by definition. So we
only need to show that Aa → Ba is universally injective. Pick any Ma ∈ModaA and consider an
Aa-module

Na := ker(Ma →Ma ⊗Aa Ba).

It comes with a short exact sequence

0→ Na →Ma →M ′a → 0,

where M ′a = Ma/Na. Flatness of Ba implies that we have a short exact sequence

0→ Na ⊗Aa Ba →Ma ⊗Aa Ba →M ′a ⊗Aa Ba → 0.

Now we see that the morphism

Na ⊗Aa Ba →Ma ⊗Aa Ba

is equal to zero by our choice of Na. But it is also injective (in ModaA), so Na ⊗Aa Ba ' 0. Since
Ba is faithfully flat over Aa, we conclude that Na ' 0.

Now we suppose that Ba is a flat Aa-module and Aa → Ba is universally injective. Thus, for
any Aa-module Ma, we have an injection Ma → Ma ⊗Aa Ba. So if Ma ⊗Aa Ba ' 0, we conclude
that Ma ' 0. Thus Ba is faithfully flat over Aa. �

Corollary 2.9.4. Let A be an R-algebra and f : A→ B is a morphism of R-algebras. Then B is
almost faithfully flat over A if and only if Ba and Coker(fa) are flat Aa-modules.

Proof. By Lemma 2.9.3, it suffices to show that fa is universally injective if and only if Coker(fa) is
Aa-flat. We note that, for any Aa-module Ma, ker(Ma →Ma⊗Aa Ba) ' H−1(Ma⊗LAa Coker(fa)).
In particular,

H−1
(
Ma ⊗LAa Coker(fa)

)
' 0

for any Aa-module Ma if and only if the functor − ⊗Aa Coker(fa) : ModaA →ModaA is exact. In
other words, Aa → Ba is universally injective if and only if Coker(fa) is flat over Aa. �

Now we define the functor (−)!! : AlgR → AlgR. We start by constructing an R-algebra structure
on R⊕Aa! = R⊕ (m̃⊗R A) by defining the multiplication as

(r ⊕ a) · (r′ ⊕ a′) = (rr′)⊕ (ra′ + r′a+ aa′)
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and the summation law is the usual one. One easily checks that this is a well-defined (unital,
commutative) R-algebra structure on R⊕Aa! . We consider the R-submodule IA of R⊕A! generated
by elements of the form (mn,−m⊗ n⊗ 1A) for m, n ∈ m.

Lemma 2.9.5. The R-module IA ⊂ R⊕Aa! is an ideal.

Proof. It suffices to show that, for any element (r, x⊗ y ⊗ a) in R⊕Aa! , the product

(r ⊕ x⊗ y ⊗ a) · (mn⊕−m⊗ n⊗ 1A)

lies in IA for any m, n ∈ m. By definition,

(r ⊕ x⊗ y ⊗ a) · (mn⊕−m⊗ n⊗ 1A) = (rmn)⊕ (−rm⊗ n⊗ 1A + xm⊗ yn⊗ a− xm⊗ yn⊗ a)

= r(mn⊕−m⊗ n⊗ 1A) ∈ IA.
�

Definition 2.9.6. The functor (−)!! : AlgR → AlgR is defined as

A 7→ (R⊕Aa! )/IA

with the induced R-algebra structure.

For any R-algebra A, there is a functorial R-algebra homomorphism R⊕Aa! → A defined by

r ⊕ (m⊗ n⊗ a) 7→ r +mna.

Clearly, this homomorphism is zero on IA so it descends to an R-algebra homomorphism η : A!! → A.

Lemma 2.9.7. (1) For any R-algebra A, the natural morphism η : A!! → A is an almost iso-
morphism.

(2) A morphism of R-algebras f : A → B is almost injective (as a morphism of R-modules) if
and only if f!! : A!! → B!! is injective.

(3) For any morphism of R-algebras f : A→ B, there is a canonical isomorphism of A!!-modules
Coker(f!!) ' Coker(f)!.

(4) The functor (−)!! : AlgR → AlgR commutes with tensor products.

Proof. (1) : We recall that the morphism A! → A is almost isomorphism. In particular, it is almost
surjective. Thus A!! → A is also almost surjective. Now we check almost injectivity. Suppose

η(a) = 0 where a = r ⊕
∑k

i=1mi ⊗ ni ⊗ ai ∈ R ⊕ m̃⊗ A and a ∈ A!! is the class of a in A!!. Then
the condition η(a) = 0 implies that there is an equality

r +
k∑
i=1

miniai = 0

in A. In particular, for every ε ∈ m, we have εr =
∑k

i=1(−mi)(εniai) in A. Thus, we see that

εa =εr ⊕
k∑
i=1

mi ⊗ ni ⊗ εai

=

k∑
i=1

(−mi)(εniai)⊕
k∑
i=1

mi ⊗ niεai ⊗ 1A

=

k∑
i=1

((−mi) (εniai)⊕mi ⊗ εniai ⊗ 1A) ∈ IA.
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Therefore, εa = 0 for every ε ∈ m. In particular, η is almost injective.

(2) and (3) : Consider a commutative diagram

A!! B!!

A B.

f!!

ηA ηB

f

Since ηA and ηB are almost isomorphism, we see that f is almost injective if and only if f!! is
almost injective. So we are left to show that f!! is injective if f is almost injective, and Coker(f!!) =
Coker(f)!. For this, we consider a commutative diagram of short exact sequences

0 IA R⊕A! A!! 0

0 IB R⊕B! B!! 0.

α Id⊕f! f!!

Clearly, α is surjective, ker(Id⊕f!) = ker(f!) = ker(f)!, and Coker(Id⊕f!) = Coker(f!) = Coker(f)!.
Thus, the Snake Lemma implies that

ker(f)! → ker(f!!)

is surjective and

Coker(f!!)→ Coker(f)!

is an isomorphism. Thus f!! is injective if f is almost injective, and Coker(f!!) = Coker(f)!.

(4) : This is an elementary but pretty tedious computation. We leave it to the interested reader.
�

Corollary 2.9.8. For any R-algebra A, the forgetful functor Mod∗Aa →Mod∗Aa!!
is an equivalence

for ∗ ∈ {“ ”, aft, afp, acoh}.

Proof. For ∗ = “ ”,the claim follows from Lemma 2.9.7 (1), Corollary 2.5.13, and Lemma 2.6.3. �

Corollary 2.9.9. Let f : A → B be an almost faithfully flat morphism of R-algebras. Then
f!! : A!! → B!! is faithfully flat.

Proof. Denote by Q the cokernel f as an A-module. Then Lemma 2.9.3 and Lemma 2.9.7 (2),
(3) ensure that f!! : A!! → B!! is injective and Coker(f!!) = Coker(f)!. Now Corollary 2.9.4 and
Lemma 2.2.7 applied to Aa!! ' Aa imply that Coker(f!!) = Coker(f)! is a flat A!!-module. This
already implies that B is a flat A!!-module as an extension of two flat A!!-modules. To see that it
is faithfully flat, we note that flatness of Coker(f!!) implies that

M →M ⊗A!!
B!!

is injective for any A!!-module M . So M ⊗A!!
B!! ' 0 if and onlyif M ' 0. In other words, B!! is a

faithfully flat A!!-module. �

Warning 2.9.10. The functor (−)!! does not send flat A-algebras to flat A!!-algebras. See [GR03,
Remark 3.1.3].

For the future reference, we also show that the base change functor interacts especially well with
the Hom-functor in the almost flat situation.
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Lemma 2.9.11. Let R→ S be an almost flat morphism, M an almost finitely presented R-module,
and N an R-module. Then the natural map

HomR(M,N)⊗R S → HomS(M ⊗R S,N ⊗R S)

is an almost isomorphism.

Proof. This follows from the classical ⊗-Hom adjunction and Lemma 2.5.18. �

Lemma 2.9.12. Let R be an almost coherent ring, R → S be an almost flat map, and M ∈
D−acoh(R), N ∈ D+(R). Then the natural map

RHomR(M,N)⊗LR S → RHomS(M ⊗LR S,N ⊗LR S)

is an almost isomorphism.

Proof. We recall that we always have a canonical isomorphism RHomR(K,L) ' RHomS(K⊗LRS,L)
for any K ∈ D−(R) and any L ∈ D+(S). This implies that it suffices to show that the natural map

RHomR(M,N)⊗LR S → RHomR(M,N ⊗LR S)

is an almost isomorphism. This follows from Proposition 2.6.20. �

2.10. Almost Faithfully Flat Descent. The main goal of this section is to show almost faithfully
flat descent for almost modules.

For the rest of the section, we fix a ring R with an ideal of almost mathematics m.

In this section, for any morphism A → B of R-algebras, we denote the tensor product functor
−⊗Aa Ba simply by

f∗ : ModaA →ModaB.

In particular, if A → B is a morphism of R-algebras, the canonical “co-projection” morphisms
pi : B → B ⊗A B induce morphisms

p∗i : ModaB →ModaB⊗AB

for i ∈ {1, 2}. The same applies to the “co-projections”

p∗i,j : ModaB⊗AB →ModaB⊗AB⊗AB

for i 6= j ∈ {1, 2}.

Definition 2.10.1. An almost descent category DescaB/A for a morphism of R-algebras A→ B is

a category whose objects are pairs (Ma, φ), where Ma ∈ModaB and

φ : p∗1(Ma)→ p∗2(Ma)

in an isomorphism of (B⊗AB)a-modules such that p∗1,3(φ) = p∗2,3(φ) ◦ p∗1,2(φ). Morphisms between

(Ma, φM ) and (Na, φN ) are defined to be Ba-linear homomorphisms f : Ma → Na such that the
diagram

p∗1(Ma) p∗2(Ma)

p∗1(Na) p∗2(Na)

φM

p∗1(f) p∗2(f)

φN

commutes.

Remark 2.10.2. Explicitly, an object of the descent category DescaB/A is a Ba-module Ma with a

(B ⊗A B)a-linear homomorphism φ : Ma ⊗Aa Ba → Ba ⊗Aa Ma satisfying the “cocycle condition”.
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There is a natural functor
Ind: ModaA → DescaB/A

that sends Ma to f∗(Ma) = Ma ⊗Aa Ba with a canonical identification φ : p∗1f
∗ (Ma) ' p∗2f∗ (Ma)

coming from the equality f ◦ p1 = f ◦ p2.

To define a functor in the other direction, we note that we have natural Ba-module morphisms
ιi : M

a → p∗i (Ma) for i ∈ {1, 2}. Explicitly, they are defined as morphisms induced by ι1(m) = m⊗1
and ι2(m) = 1⊗m. Therefore, given a descent data (Ma, φ) ∈ DescaB/A, we can define

ker(Ma, φ) := ker(Ma i1−φ−1i2−−−−−−→Ma ⊗Aa Ba).

This is an Aa-module, and it is not difficult to check that this association is functorial in DescaB/A.

Therefore, it defines a functor
ker : DescaB/A →ModaA.

We show that ker and Ind are quasi-inverse to each other and induce an equivalence between
DescaB/A and ModaA for an almost faithfully flat morphism f : A→ B.

Theorem 2.10.3. Let f : A→ B be an almost faithfully flat morphism. Then

Ind: ModaA → DescaB/A

is an equivalence, and its quasi-inverse is given by the functor ker : DescaB/A →ModaA.

Proof. Corollary 2.9.8 and Corollary 2.9.9 imply that we may replace f with f!! to assume that
f is faithfully flat. Then the claim follows from the classical faithfully flat descent (see [BLR90,
Theorem 6.1/4]) and the observation that the non-almost versions of Ind and ker carry almost
isomorphisms to almost isomorphisms. �

On a similar note, we show that the Amitsur complex for an almost faithfully flat morphism is
acyclic.

Lemma 2.10.4. Let f : A → B be an almost faithfully flat morphism of R-algebras, and M ∈
ModaB. Then the Amitsur complex

0→Ma →Ma ⊗Aa Ba →Ma ⊗Aa Ba ⊗Aa Ba →
is an exact complex of ModaB-modules (see the discussion around [Sta21, Tag 023K] for the precise
definition of differentials in this complex).

Proof. Corollary 2.9.8 and Corollary 2.9.9 imply that we may replace f with f!! to assume that f
is faithfully flat. Then the claim follows from [Sta21, Tag 023M]. �

Now we show that some properties of Aa-modules can be verified after a faithfully flat base
change.

Lemma 2.10.5. Let f : A → B be an almost faithfully flat morphism of R-algebras, and let Ma

be an Aa-module. Then Ma is an almost finitely generated (resp. almost finitely presented) Aa-
module if and only if Ma ⊗Aa Ba is an almost finitely generated (resp. almost finitely presented)
Ba-module.

Proof. Corollary 2.9.8 and Corollary 2.9.9 imply that we may replace f with f!! to assume that f
is a faithfully flat morphism. Then a standard argument reduces the questions to the case of an
honest A-module M , i.e. we show that an A-module M is almost finitely generated (resp. almost
finitely presented) if so is the B-module M ⊗A B.

https://stacks.math.columbia.edu/tag/023K
https://stacks.math.columbia.edu/tag/023M
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We start with the almost finitely generated case. So we suppose that M ⊗A B is almost finitely
generated, thus given any ε ∈ m we can choose a morphism g : Bn →M⊗AB such that ε(Coker g) =
0. Let us consider the standard basis e1, . . . , en of Bn, and we write

g(ei) =
∑
j

mi,j ⊗ bi,j with mi,j ∈M, bi,j ∈ B.

We define an A-module F to be a finite free A-module with a basis ei,j . Then we define morphism

h : F →M

as a unique A-linear homomorphism with h(ei,j) = mi,j . It is easy to see that ε(Coker(h⊗AB)) = 0.
Since f is faithfully flat, this implies that ε(Cokerh) = 0. We conclude that M is almost finitely
generated as ε was an arbitrary element of m.

Now we deal with the almost finitely presented case. We pick some finitely generated ideal
m0 ⊂ m, and another finitely generated ideal m1 ⊂ m such that m0 ⊂ m1m. We try to find a
three-term complex

Am
g−→ An

f−→M

such that m0(Coker f) = 0 and m0(ker f) ⊂ Im g.
The settled almost finitely generated case implies that M is at least almost finitely generated.

In particular, we have some morphism

An
f−→M

such that m1(Coker f) = 0, thus m1(Coker(f ⊗A B)) = 0 as well. Therefore, we can apply Lemma
2.5.6 to find a homomorphism g′ : Bm → Bn such that m0(ker(f⊗AB)) ⊂ Im(g′) and (f⊗AB)◦g′ =
0. This implies that g′ actually lands inside ker(f ⊗A B) = ker(f)⊗A B by A-flatness of B.

Now we do the same trick as above: we write

g(ei) =
∑
j

mi,j ⊗ bi,j with mi,j ∈ ker(f), bi,j ∈ B.

We define an R-module F to be a finite free A-module with a basis ei,j . Then we define a morphism

g : F → ker(f)

as the unique A-linear morphism such that g(ei,j) = mi,j . Then we see that m0(ker(f ⊗A B)) ⊂
Im(g⊗AB). Since B is faithfully flat we conclude that m0(ker f) ⊂ Im(g) as well. This shows that
a three-term complex

F
g−→ An

f−→M

does the job. Therefore, M is an almost finitely presented A-module. �

Corollary 2.10.6. Let f : A→ B be an almost faithfully flat morphism of R-algebras, let Ma be
an Aa-module. Suppose that Ma ⊗Aa Ba is an almost coherent Ba-module. Then so is Ma.

Proof. This follows directly from Lemma 2.6.3 and Lemma 2.10.5. �

Lemma 2.10.7. Let f : A → B be an almost faithfully flat morphism of R-algebras, and let Ma

be an Aa-module. Then Ma is a flat (resp. faithfully flat) Aa-module if and only if Ma ⊗Aa Ba is
a flat (resp. faithfully flat) Ba-module.

Proof. The classical proof works verbatim in the almost world. We leave details to the reader. �
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2.11. (Topologically) Finite Type K+-Algebras. This section is devoted to the proof that
(topologically) finite type algebras over a perfectoid valuation ring K+ are almost noetherian. We
refer to Appendix B.1 for the relevant background on perfectoid valuation rings.

For the rest of the section we fix a perfectoid valuation ring K+ (see Definition B.2) with
perfectoid fraction field K, associated rank-1 valuation ring OK = K◦ (see Remark B.3), and ideal
of topologically nilpotent elements m = K◦◦ ⊂ K+. Lemma B.6 ensures that m is flat over K+

and m̃ ' m2 = m. Therefore, it makes sense to do almost mathematics with respect to the pair
(K+,m). In what follows, we always do almost mathematics on K+-modules with respect to this
ideal.

Warning 2.1. The ideal m ⊂ K+ is not the maximal ideal of K+. Instead, it is the maximal ideal
of the associated rank-1 valuation ring OK .

Lemma 2.11.1. Let K+ be a perfectoid valuation ring. Then the natural inclusion ι : K+ → OK
is an almost isomorphism.

Proof. Clearly, the map ι : K+ → OK is injective, so it suffices to show that its cokernel is almost
zero, i.e. annihilated by any ε ∈ m. Pick an element x ∈ OK , then εx ∈ m ⊂ K+. Therefore we
conclude that ε(Coker ι) = 0 finishing the proof. �

The first main result of this section is that any (topologically) finite type algebra over K+ is
almost noetherian.

Lemma 2.11.2. Let K+ be a perfectoid valuation ring, and n ≥ 0 an integer. Then the Tate
algebra K+〈T1, . . . , Tn〉 is almost noetherian.

Proof. Firstly, we note that OK〈T1, . . . , Tn〉 ' K+〈T1, . . . , Tn〉 ⊗K+ OK . Therefore, Lemma 2.11.1
implies that the natural morphism

K+〈T1, . . . , Tn〉 → OK〈T1, . . . , Tn〉
is an almost isomorphism. So Corollary 2.7.5 ensures that it suffices to show that OK〈T1, . . . , Tn〉
is almost noetherian.

Pick any ideal I ⊂ OK〈T1, . . . , Tn〉 = K〈T1, . . . , Tn〉◦ and 0 6= ε ∈ m. Now [Bos14, Lemma 6.4/5]
applied to B = K〈T1, . . . , Tn〉, E = OK〈T1, . . . , Tn〉, E′ = I, and α = |ε|K guarantees that there is
a finite submodule E′′ ⊂ I such that εI ⊂ E′′. Since ε was an arbitrary element of m, we conclude
that I is indeed almost finitely generated. �

Corollary 2.11.3. Let K+ be a perfectoid valuation ring, $ ∈ m, and n ≥ 0 an integer. Then the
polynomial algebra (K+/$m)[T1, . . . , Tn] is almost noetherian for any m ≥ 1.

Proof. It easily follows from Lemma 2.11.2, Corollary 2.7.4, and Lemma 2.8.3. �

Theorem 2.11.4. Let K+ be a perfectoid valuation ring, and A a topologically finite type K+-
algebra. Then A is almost noetherian.

Proof. Since A is topologically finite type over K+, there exists a surjection

f : K+〈T1, . . . , Tn〉 → A→ 0.

Pick an ideal I ⊂ A and consider its preimage J = f−1(I). Then J is almost finitely generated over
K+〈T1, . . . , Tn〉 by Lemma 2.11.2. Therefore, Lemma 2.5.15 (1) ensures that I is almost finitely
generated over K+〈T1, . . . , Tn〉. Finally, Lemma 2.8.3 ensures that I is therefore also almost finitely
generated over A. �
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Now we are going to show that any finite type K+-algebra is almost noetherian. Before doing
this, we need a couple of preliminary lemmas.

Lemma 2.11.5. Let R be a rank-1 valuation ring with a non-zero topologically nilpotent element
$ ∈ R, and M a finite R[T1, . . . , Tn]-module. Then M [$∞] = M [$c] for some c ≥ 0.

Proof. The R[T1, . . . , Tn]-module M ′ := M/M [$∞] is finitely generated. Moreover M ′ is R-flat
because it is torsion-free (and R is a valuation ring). Therefore, [Sta21, Tag 053E] ensures that
M ′ is finitely presented over R[T1, . . . , Tn]. Thus we conclude that M [$∞] is finitely generated. In
particular, M [$∞] = M [$c] for some N . �

Lemma 2.11.6. Let R be a rank-1 valuation ring with a non-zero topologically nilpotent element
$ ∈ R, M a finite R[T1, . . . , Tn]-module, and N ⊂M an R[T1, . . . , Tn]-submodule. Then there is c
such that

N ∩$m+cM = $m(N ∩$cM)

for every m ≥ 0.

Proof. Lemma 2.11.5 ensures that there c such that (M/N)[$∞] = (M/N)[$c]. Therefore, [FK18,
Lemma 0.8.2.14] guarantees that, indeed,

N ∩$m+cM = $m(N ∩$cM)

for every m ≥ 0. �

Lemma 2.11.7. Let K+ be a perfectoid valuation ring, and n ≥ 0 an integer. Then the polynomial
algebra K+[T1, . . . , Tn] is almost noetherian.

Proof. Similar to the proof of Lemma 2.11.2, it suffices to treat the case K+ = OK a perfectoid
valuation ring of rank-1 with a pseudo-uniformizer $.

Now we fix an ideal I ⊂ A := OK [T1, . . . , Tn] and wish to show that I is almost finitely gener-
ated. Recall that the polynomial algebra K[T1, . . . , Tn] is noetherian by Hilbert’s Nullstellensatz.
Therefore, the ideal

I

[
1

$

]
⊂ K[T1, . . . , Tn]

is finitely generated. So we can choose a finitely generated sub-ideal J ⊂ I such that any element
of I/J is annihilated by a power of $, i.e. (I/J)[$∞] = I/J . Clearly I/J is a submodule of a
finite A-module A/J , so Lemma 2.11.5 easily implies that

I/J = (I/J)[$∞] = (I/J)[$c]

for some c ≥ 0. In other words, $cI ⊂ J . Now we use Lemma 2.11.6 to get an integer c′ such that

I ∩$c′A ⊂ $cI ⊂ J.

We note that I/(I ∩$c′A) is an ideal in A/$c′A, and therefore it is almost finitely generated over

A/$c′A by Corollary 2.11.3. Lemma 2.8.3 guarantees that it is also almost finitely generated over
A.

The inclusion I ∩ $c′A ⊂ J implies that I/J is a quotient of an almost finitely generated

A/(I ∩$c′A), and so is also almost finitely generated. Finally, the short exact sequence

0→ J → I → I/J → 0

and Lemma 2.5.15 (2) imply that I is almost finitely generated as well. �

https://stacks.math.columbia.edu/tag/053E
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Theorem 2.11.8. Let K+ be a perfectoid valuation ring, and A a finite type K+-algebra. Then
A is almost noetherian.

Proof. It follows from Lemma 2.11.7 similar to how Theorem 2.11.4 follows from Lemma 2.11.2. �

2.12. Almost Finitely Generated Modules over Adhesive Rings. This section discusses
some basic aspects of almost finitely generated modules over adhesive rings. The motivation for
this discussion will be the notion of almost coherent sheaves on formal schemes that we develop
in Section 4.5. The results of this Section would be crucial in verifying certain good properties
of adically quasi-coherent, almost coherent sheaves on “good” formal schemes. One of the main
ingredients that we would need is the “Weak” version of the Artin-Rees Lemma (Lemma 2.12.6)
and Lemma 2.12.7. Recall that these properties are already known for finite modules over the
so-called “adhesive” rings. This is explained in a beautiful paper [FGK11]. The main goal of this
section is to extend these result to the case of almost finitely generated modules.

That being said, let us introduce the Setup for this section. We start with the definition of an
adhesive ring:

Definition 2.12.1. [FGK11, Definition 7.1.1] An adically topologized ring R endowed with the
adic topology defined by a finitely generated ideal I ⊂ R is said to be (I-adically) adhesive if it is
Noetherian outside10 I and satisfies the following condition: for any finitely generated R-module
M , its I∞-torsion part M [I∞] is finitely generated.

Remark 2.12.2. Following the convention of [FGK11] we do not require a ring R with adic
topology to be either I-adically complete or separated.

Set-up 2.12.3. We fix an I-adically adhesive ring R with an ideal m such that I ⊂ m, m2 = m
and m̃ := m⊗R m is flat. We always do almost mathematics with respect to the ideal m.

The main example of an adhesive ring is a (topologically) finitely presented algebra over a
complete microbial valuation ring. This follows from [FGK11, Proposition 7.2.2] and [FGK11,
Theorem 7.3.2]. For example, any topologically finitely presented algebra over a complete rank-1
valuation ring is adhesive.

Lemma 2.12.4. Let R be as in the Setup 2.12.3, and let M be an I-torsionfree almost finitely
generated module. Then M is almost finitely presented. Similarly, any saturated submodule11 of
an almost finitely generated R-module is almost finitely generated.

Proof. As M is almost finitely generated, we can find a finitely generated submodule N ⊂M that
contains m0M for a choice of a finitely generated ideal m0 ⊂ m. Since N is a submodule of M , it
is itself I-torsionfree. Then [FGK11, Proposition 7.1.2] shows that N is finitely presented. Then
Lemma 2.5.7(2) implies that M is almost finitely presented.

Now let M be an almost finitely generated R-module, and let M ′ ⊂M be a saturated submodule.
Then M/M ′ is almost finitely generated by Lemma 2.5.15(1) and it is I-torsionfree. Therefore, it
is almost finitely presented by the argument above. Then Lemma 2.5.15(3) guarantees that M ′ is
almost finitely generated. �

Lemma 2.12.5. Let R be as in the Setup 2.12.3, and let M be an almost finitely generated
R-module. Then the I∞-torsion module M [I∞] is bounded (i.e. there is an integer n such that
M [In] = M [I∞]).

10By definition, this means that the scheme SpecA \ V (I) is noetherian.
11A submodule N ⊂M is saturated if M/N [I∞] = 0.
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Proof. Since M is almost finitely generated and the ideal I ⊂ m is finitely generated, we conclude
that there exists a finitely generated submodule N ⊂ M such that IM ⊂ N . Then I(M [I∞]) ⊂
N [I∞], and N [I∞] is finitely generated by adhesiveness of the ring R. In particular, there is
an integer n such that N [I∞] is annihilated by In. This implies that any element of M [I∞] is
annihilated by n+ 1. �

Lemma 2.12.6. Let R be as in the Setup 2.12.3, and let M be an almost finitely generated R-
module. Suppose that N ⊂M is a submodule of M . For any integer n, there is an integer m such
that N ∩ ImM ⊂ InN . In particular, the induced topology on the module N coincides with the
I-adic one.

Proof. If M is finitely generated, then this is [FGK11, Theorem 4.2.2]. In general we use the
definition of almost finitely generated module to find a submodule M ′ ⊂M such that M ′ is finitely
generated and IM ⊂ M ′. We define N ′ := N ∩M ′ as the intersection of those modules. Then
the established “weak” form of the Artin-Rees Lemma for finitely generated R-modules provides
us with an integer m such that N ′ ∩ ImM ′ ⊂ InN ′. In particular, we have

Im+1M ∩N ′ ⊂ ImM ′ ∩N ′ ⊂ InN ′ ⊂ InN.

Then we conclude that

Im+2M ∩N ⊂ Im+1M ∩M ′ ∩N ⊂ Im+1M ∩N ′ ⊂ InN.

Since n was arbitrary, we conclude the claim. �

Lemma 2.12.7. Let R be as in the Setup 2.12.3, and let M be an almost finitely generated R-

module. Then the natural morphism M ⊗R R̂ → M̂ is an isomorphism. In particular, any almost
finitely generated module over a complete adhesive ring is complete.

Proof. We know that the claim holds for finitely generated modules by [FGK11, Proposition 4.3.4].
Now we deal with the almost finitely generated case. We choose a finitely generated submodule
N ⊂M such that IM ⊂ N . Lemma 2.12.6 implies that the induced topology on N coincides with
the I-adic topology on N . Thus the short exact sequence

0→ N →M →M/N → 0

remains exact after completion. Since R → R̂ is flat by [FGK11, Proposition 4.3.4], we conclude
that we have a morphism of short exact sequences

0 N ⊗R R̂ M ⊗R R̂ (M/N)⊗R R̂ 0

0 N̂ M̂ M̂/N 0

ϕN ϕM ϕM/N

Note that ϕN is an isomorphism as N is finitely generated, and ϕM/N is isomorphism since it is

an I-torsion module so M/N ' (M/N) ⊗R R̂ ' M̂/N . The five-lemma implies that ϕM is an
isomorphism as well. �

Corollary 2.12.8. Let R be as in the Setup 2.12.3, and let M ∈ Dacoh(R). Suppose that R is
I-adically complete. Then M is I-adically derived complete12.

12Look at [Sta21, Tag 091N] for the definition of derived completeness (or Definition A.1 in case of a principal
ideal I).

https://stacks.math.columbia.edu/tag/091N
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Proof. First of all, we note that [Sta21, Tag 091P] implies that M is derived complete if and only if
so are Hi(M) for any integer i. So it suffices to show that any almost coherent R-module is derived
complete. Lemma 2.12.7 gives that any such module is classically complete, and [Sta21, Tag 091T]
ensures that any classically complete module is derived complete. �

2.13. Modules Over Topologically Finite Type K+-Algebras. The main goal of this section
is to show that almost coherentness of derived complete modules over a topologically finite type
K+-algebras can be checked modulo the pseudo-uniformizer.

For the rest of the section we fix a valuation perfectoid ring K+ (see Definition B.2) with
perfectoid fraction field K, associated rank-1 valuation ring OK = K◦ (see Remark B.3), and
ideal of topologically nilpotent elements m = K◦◦ ⊂ K+ with a pseudo-uniformizer $ ∈ m as in
Lemma B.5 (in particular, m =

⋃
n$

1/pnK+). Lemma B.6 ensures that m is flat over K+ and
m̃ ' m2 = m. Therefore, it makes sense to do almost mathematics with respect to the pair (K+,m).
In what follows, we always do almost mathematics on K+-modules with respect to this ideal.

Lemma 2.13.1. Let R be a topologically finite type K+-algebra, and M an R-module that is
$-adically derived complete. Suppose that M/$M is almost coherent, then M is almost coherent
as well.

Proof. Theorem 2.11.4 ensures that R is almost noetherian, and so Corollary 2.7.8 implies that it
suffices to check that M is almost finitely generated. Recall that m =

⋃
n$

1/pnK+ for a pseudo-
uniformizer $ as in Lemma B.5.

The assumption on M says that M/$M is almost coherent. Therefore, there is a morphism

g : (R/$R)c →M/$M

such that $1/p(Coker g) = 0. We denote its cokernel by Q := Coker(g). Now we lift g to a morphism

g : Rc →M

and denote is cokernel by Q := Coker(g).

Step 1: Q is annihilated by $1/p. Suppose that $1/pQ 6= 0, so there is x0 ∈ Q such that
$1/px0 6= 0. Firstly, we note that Q/$ ' Q is annihilated by $1/p, so

$1/px0 = $x1 = $1−1/p($1/px1)

Now we apply the same thing to x1 to get

$1/px0 = $1−1/p($1/px1) = ($1−1/p)2($1/px2).

Keep going, to get a sequence of elements xn ∈ Q such that

$1−1/p($1/pxn) = $1/pxn−1.

The sequence {$1/pxi} gives an element of

T 0(Q,$1−1/p) := lim
n

(. . .
$1−1/p

−−−−→ Q
$1−1/p

−−−−→ Q)

that is non-trivial because $1/px0 6= 0. Now we note that Rc is derived $-adically complete since R
is classically $-adically complete by [Bos14, Corollary 7.3/9] and any classically complete module
is derived complete by [Sta21, Tag 091T]. Therefore, Q is $-adically derived complete derived
complete as a cokernel of derived complete modules (see [Sta21, Tag 091U]). Now [Sta21, Tag

091S], Remark A.2, and [Sta21, Tag 091Q] imply that T 0(Q,$1−1/p) must be zero leading to the
contradiction.

https://stacks.math.columbia.edu/tag/091P
https://stacks.math.columbia.edu/tag/091T
https://stacks.math.columbia.edu/tag/091T
https://stacks.math.columbia.edu/tag/091U
https://stacks.math.columbia.edu/tag/091S
https://stacks.math.columbia.edu/tag/091S
https://stacks.math.columbia.edu/tag/091Q
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Step 2: M is almost coherent. Note that Q ' Q/$Q and Q is $1/p-torsion, so Q ' Q. We
know that Q is almost finitely generated over R/$R because it is a quotient of an almost finitely
generated module M/$M . Therefore, Q ' Q is almost finitely generated over R by Lemma 2.8.3.
Now M is an extension of a finite R-module Im(g) by an almost finitely generated R-module Q, so
it is also almost finitely generated by Lemma 2.5.15 (2). In particular, it is almost coherent since
R is almost noetherian. �

Theorem 2.13.2. Let R be a topologically finite type K+-algebra, and M ∈ D(R) a $-adically

derived complete complex. Suppose that [M/$] ∈ D
[c,d]
acoh(R/$), then M ∈ D

[c,d]
acoh(R).

Proof. Lemma A.3 guarantees that M ∈ D[c,d](R), so we only need to show that cohomology groups
of M are almost coherent over R.

We argue by induction on d − c. If c = d, then Hd(M)/$ ' Hd([M/$]) is almost coherent.
Therefore, M ' Hd(M)[−d] is almost coherent by Lemma 2.13.1.

If d > c, we consider an exact triangle

τ≤d−1M →M → Hd(M)[−d].

We see that both τ≤d−1M and Hd(M) are derived complete by [Sta21, Tag 091P] and [Sta21, Tag
091S]. Moreover, we know that Hd(M)/$ ' Hd([M/$]) is almost coherent. Therefore, Hd(M) is
almost coherent by Lemma 2.13.1. Finally,

[τ≤d−1M/$] ' cone
(

[M/$]→ [Hd(M)/$][−d]
)

[1]

is a (shifted) cone of a morphism in Db
acoh(R/$), therefore, [τ≤d−1M/$] also lies in Db

acoh(R/$).

By the induction hypothesis, we conclude that τ≤d−1M ∈ D
[c,d−1]
acoh (R). So M ∈ D

[c,d]
acoh(R). �

Corollary 2.13.3. Let R be a topologically finite type K+-algebra, and M ∈ D(R) a $-adically

derived complete complex. Suppose that [Ma/$] ∈ D
[c,d]
acoh(R/$)a, then Ma ∈ D

[c,d]
acoh(R)a.

Proof. Note that m ⊗ M is derived complete by Lemma A.4. So the claim follows from Theo-
rem 2.13.2 applied to m⊗M . �

3. Almost Mathematics on Ringed Sites

The main goal of this Chapter is to “globalize” results from Chapter 2. The two main cases
of interest are almost coherent sheaves on schemes and “good” formal schemes. In order to treat
those case somewhat uniformly we define some notions in the most general set-up of locally ringed
spaces and check their basic properties. This is the content of Section 3.1. Sections 4.1 are 4.5 are
devoted to the setting up foundations of almost coherent sheaves on schemes and formal schemes,
respectively. In particular, we show that the notion of almost finitely generated (resp. presented,
resp. coherent) module globalizes well on schemes and some “good” formal schemes. We prove
the Proper Mapping Theorems in Section 5.1 both in the algebraic and formal Setups. Finally, we
show the formal GAGA Theorem for adically quasi-coherent, almost coherent sheaves in Section 5.3.
This is perhaps the most surprising result in this chapters as almost coherent sheaves are usually
not finite type sheaves, so the “classical” proofs of Formal GAGA Theorem cannot really work in
that situation.

https://stacks.math.columbia.edu/tag/091P
https://stacks.math.columbia.edu/tag/091S
https://stacks.math.columbia.edu/tag/091S
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3.1. The Category of OaX-modules. We start this section by fixing a ring R with an ideal m
such that m = m2 and m̃ = m ⊗R m is R-flat. We always do almost mathematics with respect to
this ideal. The main goal of this section is to globalize the notion of almost mathematics on ringed
R-sites.

The main object of our study in this Section will be a ringed site (X,OX) with OX being a sheaf of
R-algebras. We call such sites as ringed R-sites. Note that any ringed site (X,OX) is, in particular,
a ringed OX(X)-site. On each open U , it makes sense to speak about almost mathematics on
OX(U)-modules with respect to the ideal mOX(U)13. Usually definitions of many notions in almost
mathematics involve tensoring against the module m̃. We globalize this procedure in the following
definition:

Definition 3.1.1. Let (X,OX) be a ringed R-site, and let F be any OX -module. Then we define
the sheaf m̃⊗ F as the sheafification of the the presheaf that is defined as

U 7→ m̃⊗R F(U)

Remark 3.1.2. We note that this definition coincides with the tensor product m̃ ⊗R F, where m̃
is the constant sheaf associated with the R-module m. Using flatness of the R-module m̃, it is easy
to see that the functor −⊗ m̃ is exact and descends to a functor on the derived categories:

−⊗ m̃ : D(X)→ D(X)

where we denote by D(X) the derived category of OX -modules. Another way to think about it is
to introduce the sheaf m̃X := m̃⊗R OX . Then one easily see that there is a functorial isomorphism
m̃⊗ F ' m̃X ⊗OX F for any OX -module F.

Definition 3.1.3. We say that an OX -module F is almost zero if m̃ ⊗ F is zero. We denote the
category of almost zero OX -modules by ΣX .

Remark 3.1.4. Since m̃ is an R-flat module, we easily see that the category of almost zero OX -
modules form a Serre subcategory of ModOX = ModX .

Lemma 3.1.5. Let (X,OX) be a ringed R-site, and let F be an OX -module. Suppose that U is a
base of topology on X. Then the following conditions are equivalent:

(1) F ⊗ m̃ is the zero sheaf.

(2) For any ε ∈ m, εF = 0.

(3) For any U ∈ U, the module m̃⊗ F(U) is zero.

(4) For any U ∈ U, the module m⊗ F(U) is zero.

(5) For any U ∈ U, the module m (F(U)) is zero.

Proof. We firstly show that (1) implies (2). We pick an element ε ∈ m = m2 and write it as
ε =

∑
xi · yi for some xi, yi ∈ m. So the multiplication by ε map can be decomposed as

F
s 7→s⊗

∑
xi⊗yi−−−−−−−−−→ F ⊗ m̃

m−→ F

where the last map is induced by the multiplication by m̃ → R. Then if F ⊗ m̃ = 0, then the
multiplication by ε map is zero for any ε ∈ m. Now (2) easily implies (5). Lemma 2.1.1 ensures
that (3), (4), and (5) are equivalent. Finally, (3) clearly implies (1). �

Lemma 3.1.6. Let (X,OX) be a ringed R-site, and let F be an almost zero OX -module. Then
Hi(U,F) ∼=a 0 for any open U ∈ X14 and any i ≥ 0.

13look at Lemma 2.1.11 for the reason why this makes sense.
14An open U ∈ X is by definition an object U ∈ Ob(X) of the category underlying the site X.
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Proof. If F is almost zero, then εF = 0 for any ε ∈ m by Lemma 3.1.5. Since the functors
Hi(X,−) are R-linear, we conclude that εHi(U,F) = 0 for any open U and any ε ∈ m, i ≥ 0. Thus
Lemma 2.1.1 ensures that Hi(U,F) ∼=a 0. �

Definition 3.1.7. We say that a homomorphism ϕ : F → G of OX -modules is an almost isomor-
phism if ker(ϕ) and Coker(ϕ) are almost zero.

Lemma 3.1.8. A homomorphism ϕ : F → G of OX -modules is an almost isomorphism if and only
if ϕ(U) : F(U)→ G(U) is an almost isomorphism of OX(U)-modules for any open U ∈ X.

Proof. The ⇐ implication is clear from the definitions. We give a proof of the ⇒ implication.

Suppose that ϕ is an almost isomorphism. We define the auxillary OX -modules: K := ker(ϕ),F′ :=
Im(ϕ),Q := Coker(ϕ). Lemma 3.1.6 implies that the maps

F(U)→ F′(U) and F′(U)→ G(U)

are almost isomorphisms. In particular, the composition F(U) → G(U) must also be an almost
isomorphism. �

Now we discuss the notion of almost OX -modules on a ringed R-site (X,OX). This notion can
be defined in two different ways: either as the quotient of the category of OX -modules by the Serre
subcategory of almost zero modules or as modules over the almost structure sheaf OaX . We need to
explain these two notions in more detail now.

Definition 3.1.9. We define the category of almost OX-modules as the quotient category

ModaOX := ModOX/ΣX .

Now we want to define the category ModOaX
of OaX -modules that we will show to be equivalent

to ModaOX . We recall that the almostification functor (−)a is exact on the level of modules and
commutes with arbitrary products. This allows us to define the almost structure sheaf:

Definition 3.1.10. The almost structure sheaf OaX is the sheaf15 of Ra-modules OaX : (Ob(X))op →
ModaR defined as U 7→ OX(U)a.

Definition 3.1.11. We define the category of OaX-modules ModOaX
as the category of the modules

over OaX ∈ Shv(X,Ra) in the categorical sense. More precisely, the objects are sheaves of Ra-
modules F with a map F⊗RaOaX → F over Ra satisfying the usual axioms for a module. Morphisms
are defined in the evident way.

We now define the functor
(−)a : ModOX →ModOaX

that sends a sheaf to its “almostification”, i.e. it applies the functor (−)a : ModR → ModaR
section-wise. Since the almostification functor (−)a is exact and commutes with arbitrary product,
it is evident that Fa is actually a sheaf for any OX -module F. Moreover, it is clear that Fa ' 0 for
any almost zero OX -module F. Thus, it induces the functor

(−)a : ModaOX →ModOaX
.

The claim is that this functor induces the equivalence of categories. The first step towards the
proof is to construct the right adjoint to (−)a : ModOX →ModOaX

. Our construction of the right
adjoint functor will use the existence of the left adjoint functor. So we slightly postpone the proof
of the mentioned above equivalence and discuss adjoints to (−)a.

15It is a sheaf exactly because (−)a is exact and commutes with arbitrary products.
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We start with the definition of the left adjoint functor. The idea is to apply the functor
(−)! : ModaR → ModaR section-wise, though this strategy does not quite work as (−)! does not
commute with infinite products.

Definition 3.1.12. • We define the functor (−)p! : ModOaX
→ModpOX

16 as

F 7→ (U 7→ F (U)!)

• We define the functor (−)! : ModOaX
→ ModOX as the composition (−)! := (−)# ◦ (−)p! ,

where (−)# is the sheafification functor.

Lemma 3.1.13. Let (X,OX) be a ringed R-site. Then

(1) The functor
(−)! : ModOaX

→ModOX

is the left adjoint to the localization functor (−)a : ModOX → ModOaX
. In particular, we

have a functorial isomorphism

HomOaX
(F,Ga) ' HomOX (F!,G)

for any F ∈ModOaX
,G ∈ModOX .

(2) The functor (−)! : ModOaX
→ModOX is exact.

(3) The counit morphism (Fa)! → F is an almost isomorphism for any F ∈ModOX . The unit
morphism G → (G!)

a is an isomorphism for any G ∈ ModOaX
. In particular, the functor

(−)a is essentially surjective.

Proof. (1) follows from Lemma 2.1.9(3) and the adjunction between sheafication and the forgetful
functor. More precisely, we have the following functorial isomorphisms

HomOaX
(F,Ga) ' HomModp

OX

(Fp! ,G) ' HomOX (F!,G) .

We show (2). It is easy to see that (−)! is left exact from Lemma 2.1.9(4) and the exactness of
the sheafification functor. It is also right exact since it is a left adjoint functor to (−)a.

Now we show (3). Lemma 2.1.9(5) ensures that the kernel and cokernel of the counit map of
presheaves (Fa)p! → F are annihilated by any ε ∈ m. Then the same holds after sheafification,
proving the (Fa)p! → F is an almost isomorphism by Lemma 3.1.5.

We consider the unit map G→ (G!)
a, we note that using the adjuction ((−)!, (−)a) section-wise,

we can refine this map
G→ (Gp! )a → (G!)

a .

It suffices to show that both maps are isomorphisms, the first map is an isomorphism by Lemma 2.1.9(5).
In particular, this implies that (Gp! )a is already a sheaf of almost Ra-modules, but then we see that
the natural map (Gp! )a → (G!)

a must also be an isomorphism as it coincides with the sheafification
in the category of presheaves of Ra-modules. �

Remark 3.1.14. In what follows, we denote the objects of ModOaX
by Fa to distinguish OX and

OaX -modules. This notation does not cause any confusion as (−)a is indeed essentially surjective.

Now we construct the right adjoint functor to (−)a. The naive idea of applying (−)∗ section-wise
works well in this case. The only thing we emphasize here is that essential surjectivity of (−)a is
used in our definition of (−)∗.

16ModpOX
stands for the category of modules over OX in the category of presheaves
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Definition 3.1.15. The functor of almost sections (−)∗ : ModOaX
→ModOX is defined as

Fa 7→ (U 7→ HomR (m̃,F (U)))

with the structure of OX -module coming from the structure of OX -module on F.

Remark 3.1.16. The functor (−)∗ is well-defined, i.e. is independent of a choice of F and defines
a sheaf of OX -modules. The first claim follows from Lemma 2.1.8(2) and Lemma 3.1.8, the second
claim follows from the fact that HomR (m̃,−) commutes with arbitrary products.

Lemma 3.1.17. Let (X,OX) be a ringed R-site. Then

(1) The functor (−)∗ : ModOaX
→ModOX is the right adjoint to the exact localization functor

(−)a : ModOX →ModOaX
. In particular, it is left exact.

(2) The unit morphism F → (Fa)∗ is an almost isomorphism for any F ∈ModOX . The counit
morphism (Ga∗)

a → Ga is an isomorphism for any Ga ∈ModOaX
.

Proof. It is sufficient to check both claims section-wise. This, in turn, follow from Lemma 2.1.9(1)
and Lemma 2.1.9(2) respectively. �

Corollary 3.1.18. The functor (−)a : ModOX →ModOaX
commutes with limits and colimits. In

particular, ModOaX
is complete and cocomplete, and filtered colimits and (finite) products are exact

in ModOaX
.

Proof. The first claim follows from the fact that (−)a admits left and right adjoints. The second
claim follows the first claim, exactness of (−)a, and analogous exactness properties in ModR. �

Corollary 3.1.19. Let (X,OX) be a ringed R-site. Then the functor

(−)a : ModOX →ModOaX

is exact.

Proof. The functor (−)a is exact as it has both left and right adjoints. �

Theorem 3.1.20. Let (X,OX) be a ringed R-site. Then the functor

(−)a : ModaOX →ModOaX

is an equivalence of categories.

Proof. Lemma 3.1.17 implies that the functor (−)a : ModOX →ModOaX
has right adjoint functor

(−)∗ such that the counit morphism (−)a ◦ (−)∗ → Id is an isomorphism of functors. Moreover,
exactness of (−)a implies that a morphism ϕ : F → G is an almost isomorphism if and only if
ϕa : Fa → Ga is an isomorphism. Thus [GZ67, Proposition 1.3] guarantees that the induced functor
(−)a : ModaOX →ModOaX

is an equivalence. �

Remark 3.1.21. In what follows, we do not distinguish ModOaX
and ModaOX . Moreover, we

sometimes denote both categories by ModaX or ModXato simplify the notation.

3.2. Basic Functors on the Category Of OaX-Modules. We discuss how to define certain
basic functors on ModaX . Our main functors of interest are Hom, alHom, ⊗, f∗, and f∗. We define
their almost analogues and their relation with the original functors. As a by-product we give a
slightly more intrinsic definition of (−)∗ : ModaX →ModX along the lines of the definition of the
ModaR-version of this functor.

For the rest of the section we fix a ringed site (X,OX) that we consider as a ringed OX(X)-site.
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Definition 3.2.1. • The global Hom functor

HomOaX
(−,−) : ModopXa ×ModXa →ModOX(X)

is defined as (Fa,Ga) 7→ HomOaX
(Fa,Ga).

• The local Hom functor

HomOaX
(−,−) : ModopXa ×ModXa →ModX

is defined as (Fa,Ga) 7→
(
U 7→ HomOaU

(Fa|U ,Ga|U )
)

. The standard argument shows that

this functor is well-defined, i.e. HomOaX
(F,G) is indeed a sheaf of OX -modules.

Lemma 3.2.2. Let U be an open in X, and let Fa,Ga be OaX -modules. Then the natural map

Γ
(
U,HomOaX

(Fa,Ga)
)
→ HomOaU

(Fa|U ,Ga|U )

is an isomorphism of OX(U)-modules.

Proof. This is evident from the definition. �

Lemma 3.2.3. Let (X,OX) be a ringed R-site. Then there is a functorial isomorphism of OX -
modules

HomOaX
(Fa,Ga)

∼−→ HomOX
((Fa)!,G)

for Fa ∈ModaX and G ∈ModX .

Proof. Lemma 3.2.2 and Lemma 3.1.13 ensure that the desired isomorphism exists section-wise. It
glues to a global isomorphism of sheaves since these section-wise isomorphisms are functorial in
U . �

Now we move on to show a promised more intrinsic definition of the functor (−)∗. As a warm-up
we need the following result:

Lemma 3.2.4. Suppose that the ringed R-site (X,OX) has a final object. By slightly abusing the
notation, we also denote the final object by X. Then the evaluation map

evX : HomOaX
(OaX ,G

a)→ HomOX(X)a (OaX (X) ,Ga (X))

ϕ 7→ ϕ(X)

is an isomorphism of OX(X)-modules for any Ga ∈ModaX .

Proof. As (−)a is essentially surjective by Lemma 3.1.13(3), there actually exists some OX -module
G with almostification being equal to Ga. Now we recall that the data of an OaX -linear ho-
momorphism ϕ : OaX → Ga is equivalent to the data of OX(U)a-linear homomorphisms ϕU ∈
HomOX(U)a (OaX(U),Ga(U)) for each open U in X such the diagram

OX(U)a G(U)a

OX(V )a G(V )a

ϕU

rOa
X
|UV rGa |UV

ϕV
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commutes for any V ⊂ U . Now we note that an OX(U)a-linear homomorphism ϕU uniquely
determines an OX(V )a-linear homomorphism ϕV in such a diagram. Indeed, this follows from the
equality

HomOX(V )a (OX (V )a ,G (V )a) = HomOX(V ) (m̃⊗ OX (V ) ,G (V ))

= HomOX(V )

(
m̃⊗ OX (U)⊗OX(U) OX (V ) ,G (V )

)
= HomOX(U) (m̃⊗ OX (U) ,G (V ))

= HomOX(U)a (OX (U)a ,G (V )a) .

Now we use the assumption that X is the final object to conclude that any homomorphism ϕ : OaX →
Ga is uniquely defined by ϕ(X). �

Corollary 3.2.5. Let (X,OX) be an R-ringed site, and let U ∈ X be an open. Then the evaluation
map

evU : HomOaU
(OaU ,G|aU )→ HomOU (U)a (OaU (U) ,Ga (U))

ϕ 7→ ϕ(U)

is an isomorphism of OX(U)-modules for any Ga ∈ModaX .

Proof. For the purpose of the proof, we can change the site X by the slicing site X/U of objects
over U . Then U automatically becomes the final object in X/U , so we can just apply Lemma 3.2.4
to finish the proof. �

Now we are ready to prove a new description of the sheaf version of the functor (−)∗.

Lemma 3.2.6. Let (X,OX) be a ringed R-site. Then there is a functorial isomorphism of OX -
modules

HomOaX
(OaX ,F

a)→ Fa∗

for Fa ∈ModaX .

Proof. Lemma 3.2.2 and Corollary 3.2.5 imply that there is an isomorphism of OX(U)-modules

Γ
(
U,HomOaX

(OaX ,F
a)
)
∼−→ HomOU (U)a (OaU (U) ,Fa (U))

that is functorial in both U and Fa. Now we use the functorial isomorphism of OX(U)

HomOU (U)a (OU (U)a ,Fa (U)) ' HomRa (Ra,Fa (U)) = (Fa)∗(U)

to construct a functorial isomorphism

Γ
(
U,HomOaX

(OaX ,F
a)
)
∼−→ (Fa)∗(U) .

Functoriality in U ensures that it glues to the global isomorphism of OX -modules

HomOaX
(OaX ,F

a)
∼−→ Fa∗ .

�

Now we discuss the functor of almost homomorphisms.

Definition 3.2.7. • The global alHom functor

alHomOaX
(−,−) : ModopXa ×ModXa →ModRa

is defined as

(Fa,Ga) 7→ HomOaX
(Fa,Ga)a ' HomOX ((Fa)! ,G)a .
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• The local alHom functor

alHomOaX
(−,−) : ModopXa ×ModXa →ModXa

is defined as

(Fa,Ga) 7→
(
U 7→ alHomOaU

(Fa|U ,Ga|U )a
)
.

Remark 3.2.8. At this point we have not checked that alHomOaX
(Fa,Ga) is actually a sheaf.

However, this follows from the following lemma.

Lemma 3.2.9. The natural map

HomOX
(m̃⊗ F,G)a → alHomOaX

(Fa,Ga)

is an almost isomorphism of OaX -modules for any Fa,Ga ∈ModaX . In particular, alHomOaX
(Fa,Ga)

is a sheaf of OaX -modules.

Proof. This follows from the sequence of functorial in U isomorphisms:

HomOX
(m̃⊗ F,G)(U)a 'a HomOU (m̃⊗ F|U ,G|U )a

'a alHomOaU
(Fa|U ,Ga|U )

'a alHomOaX
(Fa,Ga)(U)

�

In order to make Definition 3.2.7, we need to show that these functors can actually be computed
by using any representative for Fa and Ga.

Proposition 3.2.10. Let (X,OX) be a ringed R-site. Then:

(1) There is a natural transformation of functors

ModopX ×ModX ModX

ModopXa ×ModXa ModXa

HomOX
(−,−)

(−)a×(−)a ρ (−)a

alHomOa
X

(−,−)

that makes the diagram (2, 1)-commutative. In particular, alHomOaX
(Fa,Ga) ' HomOX (F,G)a

for any F,G ∈ModX .

(2) Then there is a natural transformation of functors

ModopX ×ModX ModX

ModopXa ×ModXa ModXa

HomOX
(−,−)

(−)a×(−)a ρ (−)a

alHomOa
X

(−,−)

that makes the diagram (2, 1)-commutative. In particular, alHomOaX
(Fa,Ga) ' HomOX

(F,G)a

for any F,G ∈ModX .

Proof. The proof is similar to the proof of Proposition 2.2.1(3). The only new thing is that we need
to prove an analogue of Corollary 2.1.13, i.e. that the functors alHomOX (−,G), alHomOX

(−,G)

preserve almost isomorphisms. It essentially boils down to showing that ExtiOX (K,G) ∼=a 0 and

ExtiOX (K,G) ∼=a 0 for any K ∈ ΣX ,G ∈ModX , and an integer i ≥ 0.
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Now Lemma 3.1.5 implies that εK = 0 for any ε ∈ m. Thus we see that ExtiOX (K,G) and

ExtiOX (K,G) are also annihilated by any ε ∈ m since the functors ExtiOX (−,G), ExtiOX (−,G) are

R-linear. Thus ExtiOX (K,G) and ExtiOX (K,G) are almost zero by Lemma 2.1.1 and Lemma 3.1.5
respectively. �

Definition 3.2.11. The tensor product functor − ⊗OaX
− : ModaX ×ModaX → ModaX is defined

as
(Fa,Ga) 7→ Fa! ⊗OX Ga! .

Proposition 3.2.12. There is a natural transformation of functors

ModX ×ModX ModX

ModaX ×ModaX ModaX

−⊗OX
−

(−)a×(−)a (−)a
ρ

−⊗Oa
X
−

that makes the diagram (2, 1)-commutative. In particular, there is a functorial isomorphism

(F ⊗OX G)a ' Fa ⊗OaX
Ga

for any F,G ∈ModX .

Proof. The proof is absolutely analogous to that of Propisition 2.2.1(1). �

The tensor product is adjoint to Hom as it happens in the case of Ra-modules. We give a proof
of the local version of this statement.

Lemma 3.2.13. Let (X,OX) be a ringed R-site, and let Fa,Ga,Ha be OaX -modules. Then there
is a functorial isomorphism

HomOaX
(Fa ⊗OaX

Ga,Ha) ' HomOaX
(Fa, alHomOaX

(Ga,Ha)) .

After passing to the global sections, this gives the isomorphism

HomOaX
(Fa ⊗OaX

Ga,Ha) ' HomOaX
(Fa, alHomOaX

(Ga,Ha)) .

And after passing to the almostifications, it gives an isomorphism

alHomOaX
(Fa ⊗OaX

Ga,Ha) ' alHomOaX
(Fa, alHomOaX

(Ga,Ha)) .

Proof. We compute Γ(U,HomOaX
(Fa⊗OaX

Ga,Ha)) by using Lemma 3.2.2 and the standard ⊗-Hom

adjunction. Namely,

Γ
(
U,HomOaX

(
Fa ⊗OaX

Ga,Ha
))
' HomOaU

(
Fa|U ⊗OaU

Ga|U ,Ha|U
)

Lemma 3.2.2

' HomOaU
((F|U ⊗OU G|U )a ,Ha|U ) Proposition 3.2.12

' HomOU (m̃⊗ (F|U ⊗OU G|U ) ,H|U ) Lemma 3.1.13

' HomOU ((m̃⊗ F|U )⊗OU (m̃⊗ G|U ) ,H|U ) m̃⊗2 ' m̃

' HomOU

(
m̃⊗ F|U ,HomOU

(m̃⊗ G|U ,H|U )
)
⊗−Hom adjunction

' HomOaU

(
Fa|U , alHomOU

(m̃⊗ G|U ,H|U )
)

Lemma 3.1.13

' Γ
(
U,HomOaX

(
Fa, alHomOaX

(Ga,Ha)
))

Lemma 3.2.2

Since these identifications are functorial in U , we can glue them to a global isomorphism

HomOaX
(Fa ⊗OaX

Ga,Ha) ' HomOaX
(Fa, alHomOaX

(Ga,Ha)) .
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This finishes the proof. �

Corollary 3.2.14. Let (X,OX) be a ringed R-site, and let Fa be an OaX -module. Then the functor
−⊗OaX

Fa is left adjoint to alHomOaX
(Fa,−).

For what follows, we fix a map f : (X,OX) → (Y,OY ) of ringed R-sites. We are going to define
the almost version of the pullback and pushforward functors.

Definition 3.2.15. The pullback functor f∗a : ModaX →ModaY is defined as

Fa 7→ (f∗ (Fa! ))a .

In what follows, we will often abuse notation and simply write f∗ instead of f∗a . This is “allowed”
by Proposition 3.2.19.

As always, we want to show that this functor can be actually computed by applying f∗ to any
representative of Fa. The main ingredient is to show that f∗ sends almost isomorphisms to almost
isomorphisms. The following lemma shows slightly more, and will be quite useful later on.

Lemma 3.2.16. Let f : (X,OX) → (Y,OY ) be a morphism of ringed R-sites. Then for any OX -
module F, there is a natural isomorphism ϕf (F) : f∗(m̃⊗ F)→ m̃⊗ f∗F functorial in F.

Proof. We use Remark 3.1.2 to say that m̃ ⊗ F is functorially isomorphic to m̃Y ⊗OY F, where
m̃Y := m̃⊗ROY . Now we note that f∗(m̃Y ) ' m̃X as can be easily seen (using the m̃ is R-flat) from
the very definitions. Therefore, ϕf (F) comes from the fact that the pullback functor commutes
with the tensor product. More precisely, we define it as the composition

f∗(m̃⊗ F)
∼−→ f∗(m̃Y ⊗OY F)

∼−→ f∗(m̃Y )⊗OX f
∗(F)

∼−→ m̃X ⊗OX f
∗(F) .

�

We now also show a derived version of Lemma 3.2.16 that will be used later in the text.

Lemma 3.2.17. Let f : (X,OX) → (Y,OY ) be a morphism of ringed R-sites. Then for any
F ∈ D(X), there is a natural isomorphism

ϕf (F) : Lf∗(m̃⊗ F)→ m̃⊗ Lf∗F

functorial in F.

Proof. Similarly, we use Remark 3.1.2 to say that m̃ ⊗ F is functorially isomorphic to m̃Y ⊗OY F,
where m̃Y := m̃ ⊗R OY . Now we note that Lf∗(m̃Y ) ' f∗(m̃Y ) ' m̃X as m̃ is R-flat. The rest of
the proof is the same using the Lf∗ functorially commutes with the derived tensor product. �

Corollary 3.2.18. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed R-sites, and let ϕ : F → G

be an almost isomorphism of OY -modules. Then the homomorphism f∗(ϕ) : f∗(F) → f∗(G) is an
almost isomorphism.

Proof. The question boils down to show that the homomorphism

m̃⊗ f∗(F)→ m̃⊗ f∗(G)

is an isomorphism. Lemma 3.2.16 ensures that it is sufficient to prove that the map

f∗(m̃⊗ F)→ f∗(m̃⊗ G)

is an isomorphism. But this is clear as the map m̃⊗ F → m̃⊗ G is already an isomorphism. �
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Proposition 3.2.19. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed R-sites. Then there is a
natural transformation of functors

ModY ModX

ModaY ModaX

f∗

(−)a (−)a
ρ

f∗a

that makes the diagram (2, 1)-commutative. In particular, there is a functorial isomorphism
(f∗F)a ' f∗a (Fa) for any F ∈ModX .

Proof. The proof is similar to Proposition 2.2.1. We define ρF : f∗(m̃ ⊗ F)a → f∗(F)a as the map
induced by the natural homomorphism m̃ ⊗ F → F. It is clearly functorial in F, and it is an
isomorphism by Corollary 3.2.18. �

Definition 3.2.20. The pushforward functor fa∗ : ModaX →ModaY is defined as

Fa 7→ (f∗ (Fa! ))a .

In what follows, we will often abuse the notations and simply write f∗ instead of fa∗ . This is
“allowed” by Proposition 3.2.24.

Definition 3.2.21. The global sections functor Γa(X,−) : ModaX →ModaR is defined as

Fa 7→ Γ(X,Fa! )a .

In what follows, we will often abuse the notations and simply write Γ instead of Γa. This is also
“allowed” by Proposition 3.2.24.

Remark 3.2.22. The global section functor can be realized as the pushforward along the map
(X,OX)→ (∗, R).

Lemma 3.2.23. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed R-sites, and let ϕ : F → G be
an almost isomorphism. Then the morphism f∗(ϕ) : f∗(F)→ f∗(G) is an almost isomorphism.

Proof. The standard argument with considering the kernel and cokernel of ϕ shows that it is
sufficient to prove that f∗K ∼=a 0, R1f∗K ∼=a 0 for any almost zero OX -module K. This follows
from R-linearity of f∗ and Lemma 3.1.5. �

Proposition 3.2.24. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed R-spaces. Then there is
a natural transformation of functors

ModX ModY

ModaX ModaY

f∗

(−)a (−)a
ρ

fa∗

that makes the diagram (2, 1)-commutative. In particular, there is a functorial isomorphism
(f∗F)a ' fa∗ (Fa) for any F ∈ModX . The same results hold true for Γa(X,−).

Proof. We define ρF : f∗(m̃ ⊗ F)a → f∗(F)a as the map induced by the natural homomorphism
m̃⊗ F → F. It is clearly functorial in F, and it is an isomorphism by Lemma 3.2.23. �

Lemma 3.2.25. Let (X,OX) be a ringed R-site, and let F,G be OaX -modules. Then there is a
natural morphism

Γ
(
U, alHomOaX

(Fa,Ga)
)
→ alHomOaU

(Fa|U ,Ga|U )

is an isomorphism of Ra-modules for any open U ⊂ X.
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Proof. The claim easily follows from Lemma 3.2.2, Proposition 3.2.10(2), and Proposition 3.2.24
�

Lemma 3.2.26. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed R-site, and let Fa ∈ModaY ,
and Ga ∈ModaX . Then there is a functorial isomorphism of OY -modules

f∗HomOaX
(f∗(Fa),Ga) ' HomOaY

(Fa, f∗(G
a)) .

After passing to the global sections, this gives the isomorphism of OY (Y )-modules

HomOaX
(f∗(Fa),Ga) ' HomOaY

(Fa, f∗(G
a)) .

And after passing to the almostifications, it gives the isomorphism of OaY -modules

f∗alHomOaX
(f∗(Fa),Ga) ∼=a alHomOaY

(Fa, f∗(G
a)) .

Proof. This is a combination of the classical (f∗, f∗)-adjunction, Lemma 3.1.13, Lemma 3.2.16,
Proposition 3.2.19, and Proposition 3.2.24. Indeed, we choose an open U ⊂ Y and denote its
preimage by V := f−1(U). We also define FaU := Fa|U and GaV := Ga|V . The claim follows from the
sequence of functorial isomorphisms

Γ
(
U,HomOaY

(Fa, f∗ (Ga))
)
' HomOaU

(FaU , f∗ (GaV )) Lemma 3.2.2

' HomOaU
(FaU , f∗ (GV )a) Proposition 3.2.24

' HomOU (m̃⊗ FU , f∗ (GV )) Lemma 3.1.13

' HomOV (f∗ (m̃⊗ FU ) ,GV ) (f∗, f∗)-adjunction

' HomOV (m̃⊗ f∗ (FU ) ,GV ) Lemma 3.2.16

' HomOaV
(f∗ (FU )a ,GaV ) Lemma 3.1.13

' HomOaV
(f∗ (FaU ) ,GaV ) Proposition 3.2.19

' Γ
(
U, f∗HomOaX

(f∗ (Fa) ,Ga)
)
. Lemma 3.2.2

Since these identifications are functorial in U , we can glue them to a global isomorphism

f∗HomOaX
(f∗(Fa),Ga) ' HomOaY

(Fa, f∗(G
a)) .

�

Corollary 3.2.27. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed R-site. Then the functors

ModaX ModaY
f∗

f∗

are adjoint.

3.3. The Projection Formula. The definition of OX -modules behaves especially nicely on locally
spectral spaces17. For instance, we show that we can explicitly describe sections of m̃⊗F on a basis of
opens for such spaces. Moreover, we show that the projection formula holds for spectral morphisms
of locally spectral spaces.

Remark 3.3.1. We mention one problem of working with locally spectral spaces that we deliber-
ately avoid in all of our proofs. Suppose that X is a locally ringed space and U ⊂ X is an open
spectral subspace then the natural map U → X need not be quasi-compact. In particular, an
intersection of two open spectral subspaces in X need not be spectral itself.

In order to get such examples, one can consider X to a scheme that is not quasi-separated and
U an open affine subscheme. Then the inclusion map U → X is usually not quasi-compact.

17We refer to [Sta21, Tag 08YF] and [Wed19, §3] for a comprehensive discussion of (locally) spectral spaces

https://stacks.math.columbia.edu/tag/08YF
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Lemma 3.3.2. Let (X,OX) be a locally spectral, locally ringed R-space. Then for any spectral18

open subset U ⊂ X the natural morphism

m̃⊗R F(U)→ (m̃⊗ F)(U)

is an isomorphism of OX(U)-modules.

Proof. As spectral subspaces form a basis of topology on X, it suffices to show that the functor

U → m̃⊗R F(U)

restricted to spectral open subsets satisfy the sheaf condition. In particular, we can assume that
X itself is spectral.

As any open spectral U is quasi-compact, we conclude that any open covering U =
⋃
i∈I Ui

admits a refinement by a finite one. Thus, it is sufficient to check the sheaf condition for finite
coverings of a spectral spaces by spectral open subspaces. Thus, we need to show that, for any
finite covering U =

⋃
i∈I Ui, the sequence

0→ m̃⊗R F(U)→
n∏
i=1

(m̃⊗R F(Ui))→
n∏

i,j=1

(m̃⊗R F(Ui ∩ Uj)).

is exact. But this follows from flatness of m̃ and the fact that tensor product commutes with finite
direct products. �

Now we want to show a version of the projection formula for the functor m̃⊗−, it will take some
time to rigorously prove it. We recall that a map of locally spectral spaces is called spectral, if the
pre-image of any spectral open subset is spectral.

Lemma 3.3.3. Let (X,OX) be a spectral locally ringed R-space. Then for any injective OX -module
I the OX -module m̃⊗ I is an H0(X,−)-acyclic.

Proof. We start the proof by noting that [Sta21, Tag 01EV] guarantees that it suffices to show that
the Čech cohomology groups Ȟi(U, m̃⊗ I) vanish for all open subsets U ⊂ X and i > 0. Since any
open subset of a locally spectral space is locally spectral, it suffices to show that Ȟi(U, m̃⊗ I) = 0
for i > 0.

We note that quasi-compact opens form a basis for the topology on X. Since X is quasi-compact,
finite coverings by quasi-compact opens form a cofinal subsystem in the system of coverings of X.
Thus it is enough to check vanishing of higher Ȟi(U, m̃⊗ I) for any such coverings U of X.

We pick such a covering U : X = ∪ni=1Ui and observe that all the intersections Ui1,...,im = ∩mk=1Uik
are again quasi-compact by spectrality of X. In particular, they are spectral. Now we invoke [Sta21,
Tag 0A36] to say that it suffices to show that

(m̃⊗ I)(V )
rm̃⊗I|VU−−−−→ (m̃⊗ I)(U)

is surjective for any inclusion of any spectral open subsets U ↪→ V . Lemma 3.3.2 says that this map
rm̃⊗I|VU is identified with the map

m̃⊗R I(V )
m̃⊗RrI|VU−−−−−−→ m̃⊗R I(U).

But now we note that rI|VU is surjective since any injective OX -module is flasque by [Sta21, Tag
01EA], and therefore the map m̃⊗R rI|VU is surjective as well. �

18We remind the reader that actually any quasi-compact quasi-separated open subset of a locally spectral space
is spectral. This can be easily seen from the definitions.

https://stacks.math.columbia.edu/tag/01EV
https://stacks.math.columbia.edu/tag/0A36
https://stacks.math.columbia.edu/tag/01EA
https://stacks.math.columbia.edu/tag/01EA
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Corollary 3.3.4. Let f : (X,OX) → (Y,OY ) be a spectral morphism of locally spectral, locally
ringed R-spaces, and let I be an injective OX -module. Then m̃⊗ I is an f∗(−)-acyclic

Proof. It suffices to show that for any open spectral U ⊂ Y the higher cohomology groups

Hi(XU , (m̃⊗ I)|XU )

vanish. This follows from Lemma 3.3.3 since XU is spectral by the assumption on f . �

Lemma 3.3.5. Let f : (X,OX)→ (Y,OY ) be a spectral morphism of locally spectral, locally ringed
R-spaces, and let F be an OX -module. Then there is an isomorphism

β : m̃⊗ f∗F → f∗(m̃⊗ F)

functorial in F.

Proof. It suffices to define a morphism on a basis of spectral open subspaces U ⊂ Y . For any such
U ⊂ Y we define

βU : (m̃⊗ f∗F)(U)→ f∗(m̃⊗ F)(U)

as the composition of isomorphisms

(m̃⊗ f∗F)(U)
α−1
U−−→ m̃⊗R (f∗F)(U) = m̃⊗R F(XU )

αXU−−−→ (m̃⊗ F)(XU ) = f∗(m̃⊗ F)(U)

with αU and αXU isomorphisms from Lemma 3.3.2. Since the construction of α was functorial in
U we conclude that β defines a morphism of sheaves. It is an isomorphism because we constructed
βU to be isomorphism an a basis of Y . �

Lemma 3.3.6. Let f : (X,OX)→ (Y,OY ) be a spectral morphism of locally spectral, locally ringed
R-spaces. Then for any F ∈ D(X), there is a morphism

ρf (F) : m̃⊗Rf∗F → Rf∗(m̃⊗ F)

functorial in F. This map is an isomorphism in either of the following cases:

• The complex F is bounded below, i.e. F ∈ D+(X), or
• The space X is locally of uniformly bounded Krull dimension and F ∈ D(X).

Proof. We start the proof by constructing the map ρf (F). Note that by the adjunction, it suffices
to construct a map

Lf∗(m̃⊗Rf∗F)→ m̃⊗ F

We also denote the counit of the adjunction between Lf∗ and Rf∗ by

ηF : Lf∗Rf∗F → F

Then we define the map
Lf∗(m̃⊗Rf∗F)→ m̃⊗ F

as the composition

Lf∗(m̃⊗Rf∗F)
ϕf (Rf∗F)
−−−−−−→ m̃⊗ Lf∗Rf∗F

m̃⊗ηF−−−→ m̃⊗ F

where the first map is the isomorphism coming from Lemma 3.2.17 and the second map comes from
the adjunction morphism εF.

Now we show that ρf (F) is an isomorphism for F ∈ D+(X). We choose an injective resolution
F → I•. In this case we use Corollary 3.3.4 to note that β is the natural map

m̃⊗ f∗(I•)→ f∗(m̃⊗ I•)
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that is an isomorphism by Lemma 3.3.5.

The last thing we need to show is that ρf (F) is an isomorphism for any F ∈ D(X) if X is locally
of uniformly bounded Krull dimension. The claim is local, so we may and do assume that both
X and Y are spectral spaces. As X is quasi-compact (as it is spectral now) and locally of finite
Krull dimension, we conclude that X has finite Krull dimension, say N := dimX. Then [Sch92,
Corollary 4.6] (another reference is [Sta21, Tag 0A3G]) implies that Hi(U,G) = 0 for any open
spectral U ⊂ X, G ∈ModX , and i > N . In particular, Rif∗G = 0 for any G ∈ModX , and i > N .
Thus we see that the assumptions of [Sta21, Tag 0D6U] are verified in this case (with A = ModX
and A′ = ModY ), so the natural map

Hj (Rf∗F)→ Hj
(
Rf∗

(
τ≥−nF

))
is an isomorphism for any F ∈ D(X), j ≥ N − n. As m̃ is R-flat, we get the commutative diagram

Hj (m̃⊗Rf∗F) Hj (Rf∗ (m̃⊗ F))

Hj
(
m̃⊗Rf∗

(
τ≥−nF

))
Hj
(
Rf∗

(
m̃⊗ τ≥−nF

))
Hj(ρF)

∼ ∼
Hj(ρ

τ≥−nF
)

with the vertical arrows being isomorphisms for j ≥ N − n, and the bottom horizontal map is an
isomorphism as τ≥−nF ∈ D+(X). Thus, by choosing an appropriate n ≥ 0, we see that Hj(ρF) is
an isomorphism for any j; so ρF is an isomorphism itself. �

3.4. Derived Category of OaX-Modules. This section is a global analogue of Section 2.3. We
give two different definitions of the derived category of almost OX -modules and show that they
coincide.

Definition 3.4.1. We define the derived category of OaX-modules as D(Xa) := D(ModaX).

We define the bounded version of derived category of almost R-modules D∗(Xa) for ∗ ∈ {+,−, b}
as the full subcategory of D(Xa) consisting of bounded below (resp. bounded above, resp. bounded)
complexes.

Definition 3.4.2. We define the almost derived category of OX-modules as the Verdier quotient19

D(X)a := D(ModX)/DΣX (ModX).

Remark 3.4.3. We recall that ΣX is the Serre subcategory of ModX that consists of almost zero
OX -modules.

We note that the functor (−)a : ModX →ModaX is exact and additive. Thus it can be derived
to the functor (−)a : D(X)→ D(Xa). Similarly, the functor (−)! : ModaX →ModX can be derived
to the functor (−)! : D(Xa) → D(X). The standard argument shows that (−)! is a left adjoint
functor to the functor (−)a as this already happens on the level of abelian categories.

We also want to establish a derived version of the functor (−)∗. But since functor is only left
exact, we do need to do some work to derive it. Namely, we need to ensure that OaX -modules admit
enough K-injective complexes.

Definition 3.4.4. We say that a complex of OaX -module I•,a is K-injective if HomK(OaX)(C
•,a, I•,a) =

0 for any acyclic complex C•,a of Ra-modules.

19We refer to [Sta21, Tag 05RA] for an extensive discussion of Verdier quotients of triangulated categories.

https://stacks.math.columbia.edu/tag/0A3G
https://stacks.math.columbia.edu/tag/0D6U
https://stacks.math.columbia.edu/tag/05RA
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Remark 3.4.5. We remind the reader that K(OaX) stands for the homotopy category of OaX -
modules.

Lemma 3.4.6. The functor (−)a : Comp(OX)→ Comp(OaX) sends K-injective OaX -complexes to
K-injective OaX -complexes.

Proof. We note that (−)a admits an exact left adjoint (−)! thus [Sta21, Tag 08BJ] ensures that
(−)a preserves K-injective complexes. �

Corollary 3.4.7. Let (X,OX) be a ringed R-site. Then every object F•,a ∈ Comp(OaX) is quasi-
isomorphic to a K-injective complex.

Proof. The proof of Corollary 2.3.6 works verbatim with the only exception that one needs to use
[Sta21, Tag 079P] instead of [Sta21, Tag 090Y]. �

Now, similarly to the case of Ra-modules, we define the functor (−)∗ : D(Xa) → D(X) as the
derived functor of (−)∗ : ModaX →ModX . This functor exists by [Sta21, Tag 070K].

Lemma 3.4.8. Let (X,OX) be a ringed R-site. Then

(1) The functors D(X) D(Xa)
(−)a

(−)!

are adjoint. Moreover, the counit (resp. unit) mor-

phism

(Fa)! → F (resp. G→ (G!)
a)

is an almost isomorphism (resp. isomorphism) for any F ∈ D(X),G ∈ D(Xa). In particular,
the functor (−)a is essentially surjective.

(2) The functor (−)a : D(X) → D(Xa) also admits a right adjoint functor (−)∗ : D(Xa) →
D(X). Moreover, the unit (resp. counit) morphism

F → (Fa)∗ (resp. (G∗)
a → G)

is an almost isomorphism (resp. isomorphism) for any F ∈ D(X),G ∈ D(Xa).

Proof. The proof is absolutely similar to Lemma 2.3.7. �

Theorem 3.4.9. The functor (−)a : D(X)→ D(Xa) induces an equivalence of triangulated cate-
gories (−)a : D(X)a → D(Xa).

Proof. The proof is similar to that of Theorem 2.3.8. �

Remark 3.4.10. Theorem 3.4.9 shows that the two notions of the derived category of almost
modules are the same. In what follows, we do not distinguish D(Xa) and D(X)a anymore.

3.5. Basic Functors on the Derived Categories of OaX-modules. Now we can “derive” certain
functors constructed in section 3.2. For the rest of the section we fix a ringed R-site (X,OX). The
section follows the exposition of section 2.4 very closely.

Definition 3.5.1. We define the derived Hom functors

RHomOaX
(−,−) : D(Xa)op ×D(Xa)→ D(Xa), and

RHomOaX
(−,−) : D(Xa)op ×D(Xa)→ D(R)

as it is done in [Sta21, Tag 08DH] and [Sta21, Tag 0B6A], respectively.

https://stacks.math.columbia.edu/tag/08BJ
https://stacks.math.columbia.edu/tag/079P
https://stacks.math.columbia.edu/tag/090Y
https://stacks.math.columbia.edu/tag/070K
https://stacks.math.columbia.edu/tag/08DH
https://stacks.math.columbia.edu/tag/0B6A
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Definition 3.5.2. We define the global Ext-modules as the R-modules

ExtiOaX
(Fa,Ga) := Hi(RHomOaX

(Fa,Ga))

for Fa,Ga ∈ModaX .

We define the local Ext-sheaves as the OX -modules ExtiOaX
(Fa,Ga) := Hi(RHomOaX

(Fa,Ga)) for

Fa,Ga ∈ModaX .

Remark 3.5.3. We see that [Sta21, Tag 0A64] implies that there is a functorial isomorphism

Hi
(
RHomOaX

(Fa,Ga)
)
' HomD(R)a (Fa,Ga[i])

for Fa,Ga ∈ D(X)a.

Remark 3.5.4. The standard argument shows that there is a functorial isomorphism

RΓ(U,RHomOaX
(Fa,Ga)) ' RHomOaU

(Fa|U ,Ga|U )

for any open U ∈ X, Fa,Ga ∈ D(X)a.

Now we give show a local version of the ((−)!, (−)a)-adjunction, and relate RHom (resp. RHom)
to the certain derived functor. This goes in complete analogy with the situation in the usual (not
almost) world.

Lemma 3.5.5. Let (X,OX) be a ringed R-site. Then

(1) There is a functorial isomorphism

RHomOaX
(Fa,Ga) ' RHomOX

(Fa! ,G)

for any Fa ∈ D(X)a and G ∈ D(X). In particular, this isomorphism induces functorial
isomorphisms

RHomOaX
(Fa,Ga) ' RHomOX (Fa! ,G) and HomD(X)a(Fa,Ga) ' RHomD(X)(F

a
! ,G) .

(2) For any chosen Fa ∈ModaX , the functor RHomOaX
(Fa,−) : D(X)a → D(R) is isomorphic

to the (right) derived functor of HomOaX
(Fa,−).

(3) For any chosen Fa ∈ModaX , the functor RHomOaX
(Fa,−) : D(X)a → D(X) is isomorphic

to the (right) derived functor of HomOaX
(Fa,−).

Proof. We prove Part (1). We firstly define the map

RHomOaX
(Fa,Ga)→ RHomOX

(Fa! ,G) .

We choose some representation F•,a of Fa and a quasi-isomorphism G
∼−→ I• of G to a K-injective

complex I•. Then we know that I•,a is a K-injective resolution of Ga by Lemma 3.4.6. Therefore,
the construction of the derived hom says that we have isomorphisms

RHomOaX
(Fa,Ga) ' Hom•OaX

(F•,a, I•,a)

RHomOX
(Fa! ,G) ' Hom•OX (F•,a! , I•)

Now we recall that term-wise we have the following equalities:

Homn
OaX

(F•,a, I•,a) =
∏

p+q=n

HomOaX
(F−q,a, Ip,a)

Homn
OX

(F•,a! , I•) =
∏

p+q=n

HomOX
(F−q,a! , Ip)

https://stacks.math.columbia.edu/tag/0A64
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Thus we can apply Lemma 3.2.3 term-wise to produce an isomorphism

κn : Homn
OaX

(F•,a, I•,a)→ Homn
OX

(F•,a! , I•)

for each n. It is then straightforward to see that κn commute with the differential, and thus induce
the isomorphism of complexes

κ : Hom•OaX
(F•,a, I•,a)

∼−→ Hom•OX (F•,a! , I•) .

In particular, it produces the desired isomorphism RHomOaX
(Fa,Ga)

∼−→ RHomOaX
(Fa,Ga). The

construction is clearly functorial in both Fa and G.

Parts (2) and (3) are identical to Lemma 2.4.3(2). �

Definition 3.5.6. We define the derived almost Hom functors

RalHomOaX
(−,−) : D(Xa)op ×D(Xa)→ D(Xa)

RalHomOaX
(−,−) : D(Xa)op ×D(Xa)→ D(Ra)

as

RalHomOaX
(Fa,Ga) := RHomOaX

(Fa,Ga)a = RHomOX
(Fa! ,G)a

RalHomOaX
(Fa,Ga) := RHomOaX

(Fa,Ga)a = RHomOX (Fa! ,G)a

Definition 3.5.7. We define the global almost Ext modules as the Ra-modules alExtiOaX
(Fa,Ga) :=

Hi(RalHomOaX
(Fa,Ga)) for Fa,Ga ∈ModaX .

We define the local almost Ext sheaves as the OaX -modules alExtiOaX
(Fa,Ga) := Hi(RalHomOaX

(Fa,Ga))

for Fa,Ga ∈ModaX .

Proposition 3.5.8. Let (X,OX) be a ringed R-site. Then:

(1) There is a natural transformation of functors

D(X)op ×D(X) D(X)

D(Xa)op ×D(Xa) D(Xa)

RHomOX
(−,−)

(−)a×(−)a (−)aρ

RalHomOa
X

(−,−)

that makes the diagram (2, 1)-commutative. In particular, RalHomOaX
(Fa,Ga) ' RHomOX

(F,G)a

for any F,G ∈ D(X).

(2) For any chosen Fa ∈ModaR, the functor RalHomOaX
(Fa,−) : D(X)a → D(X)a is isomor-

phic to the (right) derived functor of alHomOaX
(Fa,−).

(3) The analogous results hold true for the functor RalHomOaX
(−,−).

Proof. The proof is identical to that of Proposition 2.4.8. One only needs to use Proposition 3.2.10
in place of Proposition 2.2.1(3). �

Now we deal with the case of the derived tensor product functor. We will show that our definition
of the derived tensor product functor makes RalHomOaX

(−,−) into the inner Hom functor.
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Definition 3.5.9. We say that a complex of OaX -module F•,a is almost K-flat if the naive tensor
product complex C•,a ⊗•OaX F•,a is acyclic for any acyclic complex C•,a of OaX -modules.

Lemma 3.5.10. The functor (−)a : Comp(OX) → Comp(OaX) sends K-flat OX -complexes to
almost K-flat OaX -complexes.

Proof. The proof Lemma 2.4.10 applies verbatim. �

Lemma 3.5.11. Let f : (X,OX) → (Y,OY ) be a morphism of ringed R-sites, and let F•,a ∈
Comp(OaY ) be an almost K-flat complex. Then f∗(F•,a) ∈ Comp(OaX) is almost K-flat.

Proof. The proof of [Sta21, Tag 06YW] works verbatim in this situation. �

Corollary 3.5.12. Every object F•,a ∈ Comp(OaX) is quasi-isomorphic to an almost K-flat com-
plex.

Proof. The proof of Corollary 2.4.11 applies verbatim with the only difference that one needs to
use [Sta21, Tag 06YF] in place of [Sta21, Tag 06Y4]. �

Definition 3.5.13. We define the derived tensor product functor

−⊗LOaX − : D(X)a ×D(X)a → D(X)a

by the rule (Fa,Ga) 7→ (G! ⊗LOX G!)
a for any Fa,Ga ∈ D(X)a.

Proposition 3.5.14. (1) There is a natural transformation of functors

D(X)×D(X) D(X)

D(X)a ×D(X)a D(X)a

−⊗L
OX
−

(−)a×(−)a (−)a

−⊗L
Oa
X
−

ρ

that makes the diagram (2, 1)-commutative. In particular, there is a functorial isomorphism
(F ⊗LOX G)a ' Fa ⊗LOaX Ga for any F,G ∈ D(X).

(2) For any chosen Fa ∈ModaX , the functor Fa ⊗LRa − : D(X)a → D(X)a is isomorphic to the
(left) derived functor of Fa ⊗OaX

−.

Proof. Again, the proof is identical to that of Proposition 3.5.14. The only non-trivial input that
we need is existence of sufficiently many K-flat complexes of OaX -modules. But this is guaranteed
by Lemma 3.5.12. �

Remark 3.5.15. For any Fa,Ga ∈ D(X)a, there is a canonical morphism

RalHomOaX
(Fa,Ga)⊗LOX Fa → Ga

that, after the identifications from Proposition 3.5.8 and Proposition 3.5.14, is the almostification
of the canonical morphism

RHomOX
(Fa! ,G

a
! )⊗LOX Fa! → Ga!

from [Sta21, Tag 0A8V].

https://stacks.math.columbia.edu/tag/06YW
https://stacks.math.columbia.edu/tag/06YF
https://stacks.math.columbia.edu/tag/06Y4
https://stacks.math.columbia.edu/tag/0A8V
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Lemma 3.5.16. Let (X,OX) be a ringed R-site, and let Fa,Ga,Ha ∈ D(X)a. Then we have a
functorial isomorphism

RHomOaX
(Fa ⊗LOaX Ga,Ha) ' RHomOaX

(Fa,RalHomRa(Ga,Ha)) .

This induces functorial isomorphisms

RHomOaX
(Fa ⊗LOaX Ga,Ha) ' RHomOaX

(Fa,RalHomRa(Ga,Ha)) ,

RalHomOaX
(Fa ⊗LOaX Ga,Ha) ' RalHomOaX

(Fa,RalHomRa(Ga,Ha)) ,

RalHomOaX
(Fa ⊗LOaX Ga,Ha) ' RalHomOaX

(Fa,RalHomRa(Ga,Ha)) .

Proof. The proof of the first isomorphism is very similar to that of Lemma 2.4.14. We leave the
details to the interested reader. The second isomorphism comes from the fist one by applying the
functor RΓ(X,−). The third and the fourth isomorphisms are obtained by applying (−)a to the
first and the second isomorphisms respectively. Here we implicitly use Proposition 3.5.8. �

Corollary 3.5.17. Let (X,OX) be a ringed R-site, and let Ga ∈ D(X)a. Then the functors

RalHomOaX
(Ga,−) : D(X)a D(X)a : −⊗LOaXG

a

are adjoint.

The next two functors we deal with are the derived pullback and derived pushforward. We start
with the derived pullback.

Definition 3.5.18. Let f : (X,OX) → (Y,OY ) be a morphism of ringed R-sites. We define the
derived pullback functor

Lf∗ : D(Y )a → D(X)a

as the derived functor of the right exact, additive functor f∗ : ModaY →ModaX .

Remark 3.5.19. We need to explain why the desired derived functor exists and how it can be
computed. It turns out that it can be constructed by choosing K-flat resolutions, the argument for
this is identical to [Sta21, Tag 06YY]. We only emphasize that three main inputs are Lemma 3.5.11,
Lemma 3.5.10 and an almost analogue of [Sta21, Tag 06YG].

Proposition 3.5.20. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed R-sites. Then there is a
natural transformation of functors

D(Y ) D(X)

D(Y )a D(X)a

Lf∗

(−)a (−)a

Lf∗

ρ

that makes the diagram (2, 1)-commutative. In particular, there is a functorial isomorphism
(Lf∗F)a ' Lf∗(Fa) for any F ∈ D(Y ).

Proof. We construct the natural tranformation ρ : Lf∗ ◦ (−)a ⇒ (−)a ◦ Lf∗ as follows. Pick any
object F ∈ D(Y ) and its K-flat representative K•, then K• is adapted to compute the usual derived
pullback Lf∗. Lemma 3.5.11 ensures K•,a is also adapted to compute the almost version of the
derived pullback Lf∗. So we define the morphism

ρF : (f∗(m̃⊗K•))a → f∗(K•)a

https://stacks.math.columbia.edu/tag/06YY
https://stacks.math.columbia.edu/tag/06YG
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as the natural morphism induced by m̃⊗K• → K•. This map is clearly functorial, so it defines a
transformation of functors ρ. In order to show that it is an isomorphism of functors, it suffices to
show that the map

f∗(m̃⊗K•)→ f∗(K•)

is an almost isomorphism of complexes for any K-flat complex K•. But this is clear as m̃⊗K• → K•

is an almost isomorphism, and Corollary 3.2.18 ensures that f∗ preserves almost isomorphisms. �

Definition 3.5.21. Let f : (X,OX) → (Y,OY ) be a morphism of ringed R-sites. We define the
derived pushforward functor

Rf∗ : D(X)a → D(Y )a

as the derived functor of the left exact, additive functor f∗ : ModaX →ModaY .

We define the derived global sections functor RΓ(U,−) : D(X)a → D(R)a in a similar way for
any open U ⊂ X.

Remark 3.5.22. This functor exists by abstract nonsense (i.e. [Sta21, Tag 070K]) as the category
ModaX has enough K-injective complexes by Lemma 3.4.7.

Proposition 3.5.23. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed R-sites. Then there is a
natural transformation of functors

D(X) D(Y )

D(X)a D(Y )a

Rf∗

(−)a (−)a

Rf∗

ρ

that makes the diagram (2, 1)-commutative. In particular, there is a functorial isomorphism
(Rf∗F)a ' Rf∗(F

a) for any F ∈ D(X). The analogous results hold for the functor RΓ(U,−).

Proof. The proof is very similar to that of Proposition 3.5.20. The main essential ingredients are:
(−)a sends K-injective complexes to K-injective complexes, and f∗ preserves almost isomorphisms.
These two results were shown in Lemma 3.4.6 and Lemma 3.2.23. �

Lemma 3.5.24. Let (X,OX) be a ringed R-site, let F be an OaX -module, and let U ∈ X be an
open object. Then we have a canonical isomorphism

RΓ(U,RalHomOaX
(Fa,Ga)) ' RalHomOaU

(Fa|U ,Ga|U )

Proof. This easily follows from Remark 3.5.4, Proposition 3.5.8, and Proposition 3.5.23. �

Lemma 3.5.25. Let f : (X,OX)→ (Y,OY ) be a locally ringed morphism of R-spaces. Then there
is a functorial isomorphism

Rf∗RHomOaX
(Lf∗Fa,Ga) ' RHomOaY

(Fa,Rf∗G
a)

for Fa ∈ D(Y )a, Ga ∈ D(X)a. This isomorphism induces isomorphisms

Rf∗RalHomOaX
(Lf∗Fa,Ga) ' RalHomOaY

(Fa,Rf∗G
a) ,

RHomOaX
(Lf∗Fa,Ga) ' RHomOaY

(Fa,Rf∗G
a) ,

RalHomOaX
(Lf∗Fa,Ga) ' RalHomOaY

(Fa,Rf∗G
a) .

https://stacks.math.columbia.edu/tag/070K
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Proof. It is a standard exercise to show that the first isomorphism implies all other isomorphisms
by applying certain functors to it, so we deal only with the first one. The proof of the first one is
also quite standard and similar to Lemma 3.2.26, but we spell it out for the reader’s convenience.
The desired isomorphism comes from a sequence of canonical identifications:

Rf∗RHomOaX
(Lf∗(Fa),Ga) ' Rf∗RHomOaX

(Lf∗(F)a,Ga) Proposition 3.5.20

' Rf∗RHomOX
(m̃⊗ Lf∗(F),G) Lemma 3.5.5(1)

' Rf∗RHomOX
(Lf∗(m̃⊗ F),G) Lemma 3.2.17

' RHomOY
(m̃⊗ F,Rf∗(G)) Classical

' RHomOaY
(Fa,Rf∗(G)a) Lemma 3.5.5(1)

' RHomOaY
(Fa,Rf∗(G

a)) Proposition 3.5.23.

�

Corollary 3.5.26. Let f : (X,OX) → (Y,OY ) be a locally ringed morphism of locally ringed

R-spaces. Then the functors Rf∗(−) : D(X)a D(Y )a : Lf∗(−) are adjoint.

Now we discuss the projection formula in the world of almost sheaves. Suppose f : (X,OX) →
(Y,OY ) a locally ringed morphism of locally ringed R-spaces, Fa ∈ D(X)a, and Ga ∈ D(Y )a. We
wish to construct the projection morphism

ρ : Rf∗(F
a)⊗LOaY Ga → Rf∗(F

a ⊗LOaX Lf∗(Ga)).

By Corollary 3.5.26, data of this morphism is equivalent to the data of a morphism

Lf∗(Rf∗(F
a)⊗LOaY Ga)→ Fa ⊗LOaX Lf∗(Ga).

This morphism is defined as the composition of natural isomorphism

Lf∗(Rf∗(F
a)⊗LOaY Ga) ' Lf∗(Rf∗(F

a))⊗LOaX Lf∗(Ga)

and the morphism

Lf∗(Rf∗(F
a))⊗LOaX Lf∗(Ga)

εFa⊗Id−−−−→ Fa ⊗LOaX Lf∗(Ga)

induced by the co-unit of the (Lf∗,Rf∗)-adjunction.

Proposition 3.5.27. Let f : (X,OX) → (Y,OY ) be a locally ringed morphism of locally ringed
R-spaces, Fa ∈ D(X)a, and G ∈ D(Y ) a perfect complex. Then the projection morphism

ρ : Rf∗(F
a)⊗LOaY Ga → Rf∗(F

a ⊗LOaX Lf∗(Ga))

is an isomorphism in D(Y )a.

Proof. The claim is local on Y , so we may assume that G is isomorphic to a bounded complex of
finite free OY -modules. Then an easy argument with stupid filtrations reduce the question to the
case G = OnY . This case is essentially obvious. �
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4. Almost Coherent Sheaves on Schemes and Formal Schemes

4.1. Schemes. The Category of Almost Coherent OaX-modules. In this Section we discuss
the notion of almost quasi-coherent, almost finite type, almost finitely presented and almost coher-
ent sheaves on an arbitrary scheme. The main content of this Section is to make sure that almost
coherent sheaves form a Weak Serre subcategory in OX -modules. Another important statement is
the “approximation” Corollary 4.3.5 that is the key fact to reduce many statements about almost
finitely presented OX -modules to the “classical” case of finitely presented OX -modules. In partic-
ular, we follow this approach in our proof of the Almost Proper Mapping Theorem in Section 5.1.

As always, we fix a ring R with an ideal m such that m = m2 and m̃ = m ⊗R m is R-flat. We
always do almost mathematics with respect to this ideal. In what follows X will always denote an
R-scheme. Note that this implies that X is a locally spectral, ringed R-site, so the results of the
previous sections apply.

We begin with some definitions:

Definition 4.1.1. We say that an OaX -module Fa is almost quasi-coherent if Fa! ' m̃ ⊗ F is a
quasi-coherent OX -module.

We say that an OX -module F is almost quasi-coherent if Fa is an almost quasi-coherent OaX -
module.

Remark 4.1.2. Any quasi-coherent OX -module is almost quasi-coherent.

Remark 4.1.3. We denote by Modaqc
Xa ⊂ModXa the full subcategory consisting of almost quasi-

coherent OaX -modules. It is straightforward20 to see that the “almostification” functor induces an
equivalence

Modaqc
Xa 'Modqc

X /(ΣX ∩Modqc
X ),

i.e. Modaqc
Xa is equivalent to the quotient category of quasi-coherent OX -modules by the full sub-

category of almost zero, quasi-coherent OX -modules.

Definition 4.1.4. We say that an OaX -module Fa is of almost finite type (resp. almost finitely
presented) if Fa is almost quasi-coherent, and there is a covering of X by open affines {Ui}i∈I such
that Fa(Ui) is an almost finitely generated (resp. almost finitely presented) OaX(Ui)-module.

We say that an OX -module F is of almost finite type (resp. almost finitely presented) if so is Fa.

Remark 4.1.5. We denote by Modqc,aft
X (resp. Modqc,afp

X ) the full subcategory of ModX consist-
ing of almost finite type (resp. almost finitely presented) quasi-coherent OX -modules. Similarly,

we denote by Modaft
Xa (resp. Modafp

Xa) the full subcategory of ModXa consisting of almost finite
type (resp. almost finitely presented) OaX -modules. Again, it is straightforward to see that the
“almostification” functors induce equivalences

Modaft
Xa 'Modqc,aft

X /(ΣX ∩Modqc,aft
X ), Modafp

Xa 'Modqc,afp
X /(ΣX ∩Modqc,afp

X ).

Remark 4.1.6. In the usual theory of OX -modules, finite type OX -modules are usually not required
to be quasi-coherent. However, it is much more convenient for our purposes to put almost quasi-
coherence in the definition of almost finite type modules.

The first thing that we need to check is that these notions do not depend on a choice of an affine
covering.

20The proof is completely similar to the proof of Theorem 3.1.20 or Theorem 3.4.9.
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Lemma 4.1.7. Let Fa be an almost finite type (resp. almost finitely presented) OaX -module on
an R-scheme X. Then Fa(U) is an almost finitely generated (resp. almost finitely presented)
OaX(U)-module for any open affine U ⊂ X.

Proof. First of all, Corollary 2.5.12 and Lemma 3.3.2 imply that for any open affine U , Fa(U) is
almost finitely generated (resp. almost finitely presented) if and only if so is (m̃ ⊗ Fa)(U). Thus
we can replace Fa by Fa! ' m̃⊗ F to assume that F is an honest quasi-coherent OX -module.

Now Lemma 2.8.1 guarantees that the problem is local on X. So we can assume that X = U is
an affine scheme and we need to show that F(X) is almost finitely generated (resp. almost finitely
presented).

We pick some covering X = ∪ni=1Ui by open affines Ui such that F(Ui) is almost finitely generated
(resp. almost finitely presented) as an OX(Ui)-module. We note that since F is quasi-coherent we
have an isomorphism

F(Ui) ' F(X)⊗OX(X) OX(Ui).

Now we see that a map OX(X)→
∏n
i=1 OX(Ui) is faithfully flat, and the module

F(X)⊗OX(X)

(
n∏
i=1

OX (Ui)

)
'

(
n∏
i=1

OX (Ui)

)
⊗OX(X) F(X)

is almost finitely generated (resp. almost finitely presented) over
∏n
i=1 OX(Ui). Therefore, Lemma

2.10.5 guarantees that F(X) is almost finitely generated (resp. almost finitely presented) as an
OX(X)-module. �

Corollary 4.1.8. Let X = SpecA be an affine R-scheme, and let Fa be an almost quasi-coherent
OaX -module. Then Fa is almost finite type (resp. almost finitely presented) if and only if Γ(X,Fa)
is almost finitely generated (resp. almost finitely presented) A-module.

Now we check that almost finite type and almost finitely presented OaX behave nicely in short
exact sequences.

Lemma 4.1.9. Let 0→ F′a
ϕ−→ Fa

ψ−→ F′′a → 0 be an exact sequence of OaX -modules. Then

(1) If Fa is almost of finite type and F′′a is almost quasi-coherent, then F′′a is almost finite
type.

(2) If F′a and F′′a are of almost finite type (resp. finitely presented), then so is Fa.

(3) If Fa is of almost finite type and F′′a is almost finitely presented, then F′a is of almost finite
type.

(4) If Fa is almost finitely presented and F′a is of almost finite type, then F′′a is almost finitely
presented.

Proof. First of all, we apply the exact functor (−)! to all OaX -modules in question to assume the
short sequence is an exact sequence of OX -modules and all OX -modules in this sequence are quasi-
coherent. Note that we implicitly use here that quasi-coherent modules form a Serre subcategory of
all OX -modules by [Sta21, Tag 01IE]. Then we check the statement on the level of global sections
on all open affine subschemes U ⊂ X using that quasi-coherent sheaves have vanishing higher
cohomology on affine schemes. And that is done in Lemma 2.5.15. �

Definition 4.1.10. We say that an OaX -module Fa is almost coherent if Fa is almost finite type,
and for any open set U any almost finite type OaU -submodule Ga ⊂ (Fa|U ) is an almost finitely
presented OaU -module.

https://stacks.math.columbia.edu/tag/01IE
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We say that an OX -module F is almost coherent if Fa is an almost coherent OaX -module.

Lemma 4.1.11. Let X be an R-scheme, and let Fa be an OaX -module. Then the following are
equivalent:

(1) Fa is almost coherent.

(2) Fa is almost quasi-coherent, and the OaX(U)-module Fa(U) is almost coherent for any open
affine subscheme U ⊂ X.

(3) Fa is almost quasi-coherent, and there is a covering of X by open affine subschemes (Ui)i∈I
such that Fa(Ui) is almost coherent for each i.

In particular, if X = SpecA is an affine R-scheme and Fa is an almost quasi-coherent OaX -module.
Then Fa is almost coherent if and only if Fa(X) is almost coherent as an A-module.

Proof. We start the proof by noting that we can replace Fa by Fa! to assume that F is a quasi-
coherent OX -module.

Firstly, we check that (1) implies (2). Given any affine open U ⊂ X and any almost finitely

generated almost submodule Ma ⊂ F(U)a, we define an almost subsheaf (̃Ma)! ⊂ (F|U )a. We see

that (̃Ma)! must be an almost finitely presented OU -module, so Lemma 4.1.7 guarantees that Ma
!

is almost finitely presented OX(U)-module. Therefore, any almost finitely generated submodule
Ma ⊂ F(U)a is almost finitely presented. This shows that F(U) is almost coherent.

Now we show that (2) implies (1). Suppose that F is almost quasi-coherent and F(U) is almost
coherent for any open affine U ⊂ X. First of all, it shows that F is of almost finite type, since this
notion is local by definition. Now suppose that we have an almost finite type almost OX -submodule
G ⊂ (F|U )a for some open U . It is represented by a homomorphism

m̃⊗ G
g−→ F

with G being an OX -module of almost finite type, and m̃ ⊗ ker g ' 0. We want to show that G is
almost finitely presented as OX -module. This is a local question, so we can assume that U is affine.
Then Lemma 3.3.2 implies that the natural morphism

g(U) : m̃⊗R G(U)→ F(U)

defines an almost submodule of F(U). We conclude that m̃⊗R G(U) is almost finitely presented by
the assumption on F(U). Since the notion of almost finitely presented OX -module is local, we see
that G is almost finitely presented.

Clearly, (2) implies (3). And it is easy to see that Lemma 2.10.6 guarantees that (3) implies
(2). �

Corollary 4.1.12. Let X be an R-scheme, then:

(1) Any almost finite type OaX -submodule of an almost coherent OaX -module is almost coherent.

(2) Let ϕ : Fa → Ga be a homomorphism from an almost finite type OaX -module to an almost
coherent OaX -module, then ker(ϕ) is an almost finite type OaX -module.

(3) Let ϕ : Fa → Ga be a homomorphism of almost coherent OaX -modules, then ker(ϕ) and
Coker(ϕ) are almost coherent OaX -modules.

(4) Given a short exact sequence of OaX -modules

0→ F′a → Fa → F′′a → 0

if two out of three are almost coherent so is the third.
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Proof. The proofs (1), (2) and (3) are quite straightforward. As usually, we apply (−)! to assume
that all sheaves in the question are quasi-coherent OX -modules. Then the question is local and it
is sufficient to work on global sections over all affine open subschemes U ⊂ X. So the problem is
reduced to Lemma 2.6.8.

The proof of part (4) is similar, but we only need to invoke that given a short exact sequence of
OX -modules

0→ F′a! → Fa! → F′′a! → 0

if two of these sheaves are quasi-coherent, so is the third one. This is proven in the affine case
in [Sta21, Tag 01IE], the general case reduces to the affine one. The rest of the argument is the
same. �

Definition 4.1.13. We define the categories Modacoh
X (resp. Modqc,acoh

X , resp. Modacoh
Xa ) as the

full subcategory of ModX (resp. ModX , resp. ModXa) consisting of almost coherent OX -modules
(resp. quasi-coherent almost coherent modules, resp. almost coherent almost OX -modules). As
always, it is straightforward to see that the “almostification” functor induces the equivalence

Modacoh
Xa 'Modqc,acoh

X /(ΣX ∩Modqc,acoh
X ).

Moreover, Corollary 4.1.12 ensures that Modacoh
X ⊂ModX , Modqc,acoh

X ⊂ModX , and Modacoh
Xa ⊂

ModXa are weak Serre subcategories.

The last thing that we discuss here is the notion of almost coherent schemes.

Definition 4.1.14. We say that an R-scheme X is almost coherent if the sheaf OX is an almost
coherent OX -module.

Lemma 4.1.15. Let X be a coherent R-scheme. Then X is also almost coherent.

Proof. The structure sheaf OX is quasi-coherent by definition. Lemma 4.1.11 says that it suffices
to show that OX(U) is an almost coherent OX(U)-module for any open affine U ⊂ X. Since X is
coherent, we conclude that OX(U) is coherent as an OX(U)-module. Then Lemma 2.6.7 implies
that it is actually almost coherent. �

Lemma 4.1.16. Let X be an almost coherent R-scheme. Then an OaX -module Fa is almost
coherent if and only if it is of almost finite presentation.

Proof. The “only if” part is easy since any almost coherent OaX -module is of almost finite presen-
tation by the definition. The “if” part is a local question, so we can assume that X is affine, then
the claim follows from Lemma 2.6.14. �

4.2. Schemes. Basic Functors on Almost Coherent OaX-modules. This section is devoted
to study how certain functors defined in Section 3.2 interact with the notions of almost (quasi-)
coherent OaX -modules defined in the previous section.

As always, we fix a ring R with an ideal m such that m = m2 and m̃ = m ⊗R m is R-flat. We
always do almost mathematics with respect to this ideal.

We start with the affine situation, i.e. X = SpecA. In this case, we note that the functor

(̃−) : ModA →Modqc
X sends almost zero A-modules to almost zero OX -modules. Thus it induces

the functor

(̃−) : ModAa →Modaqc
Xa .

https://stacks.math.columbia.edu/tag/01IE
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Lemma 4.2.1. Let X = SpecA be an affine R-scheme. Then the functor (̃−) : ModA →Modqc
X

induces equivalences (̃−) : Mod∗A → Modqc,∗
X for any ∗ ∈ {“ ”, aft, afp, acoh}. The quasi-inverse

functor is given by Γ(X,−).

Proof. We note that the functor (̃−) : ModA → Modqc
X is an equivalence with the quasi-inverse

Γ(X,−). Now we note Lemma 4.1.8 and Lemma 4.1.11 guarantee that a quasi-coherent OX -module
F is almost finite type (resp. almost finitely presented, resp. almost coherent) if Γ(X,F) is almost
finitely generated (resp. almost finitely presented, resp. almost coherent) as an A-module. �

Lemma 4.2.2. Let X = SpecA be an affine R-scheme. Then the functors (̃−) : ModAa →Modaqc
Xa

induces an equivalence (̃−)
a

: ModAa →Modaqc
Xa and restricts to the equivalences (̃−)

a
: Mod∗Aa →

Mod∗Xa for any ∗ ∈ {aft, afp, acoh}. The quasi-inverse functor is given by Γ(X,−).

Proof. We note that (̃−) : ModA →Modqc
X induces an equivalence between almost zero A-modules

and almost zero, quasi-coherent OX -modules. Thus the claim follows from Lemma 4.2.1, Re-
mark 4.1.3, Remark 4.1.5, Definition 4.1.13 and the analogous presentations of Mod∗Aa as quotients
of ModAa for any ∗ ∈ {aft, afp, acoh}. �

Now we show that the pullback functor preserves almost finite type and almost finitely presented
OaX -modules.

Lemma 4.2.3. Let f : X → Y be a morphism of R-scheme.

(1) Suppose that X = SpecB, Y = SpecA are affine R-schemes. Then f∗(M̃a) is functorially

isomorphic to ˜Ma ⊗Aa Ba for any Ma ∈ModaA.

(2) The functor f∗ preserves almost quasi-coherence (resp. almost finite type, resp. almost
finitely presented) for O-modules.

(3) The functor f∗ preserves almost quasi-coherence (resp. almost finite type, resp. almost
finitely presented) for Oa-modules.

Proof. (1) follows from Proposition 3.2.19 and the analogous result for quasi-coherent OY -modules.
More precisely, Proposition 3.2.19 provides with the functorial isomorphism

f∗
(
M̃a
)
'
(
f∗(M̃)

)a
'
(
M̃ ⊗A B

)a
' ˜Ma ⊗Aa Ba .

(2) and (3) are local on X and Y , so we may and do assume that X = SpecB, Y = SpecA are
affine R-schemes. In this case, Lemma 4.2.2 guarantees that any almost quasi-coherent OaX -module

is isomorphic to M̃a for some Aa-module Ma. Now (1) ensures that f∗(M̃a) ' ˜Ma ⊗Aa Ba as
almost quasi-coherent OaX -modules. The other claims from (2) and (3) are proven similarly using
Lemma 4.2.2 and Lemma 2.8.1. �

The next thing we discuss is how the finiteness properties interact with tensor products.

Lemma 4.2.4. Let X be an R-scheme.

(1) Suppose that X = SpecA is an affine R-scheme. Then M̃a⊗OaX
Ña is functorially isomorphic

to ˜Ma ⊗Aa Na for any Ma, Na ∈ModaA.

(2) Let Fa,Ga be two almost finite type (resp. almost finitely presented) OaX -modules. Then the
OaX -module Fa⊗OaX

Ga is almost finite type (resp. almost finitely presented). The analogous
result holds for OX -modules F,G.
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(3) Let Fa be an almost coherent OaX -module, and Ga be an almost finitely presented OaX -
module. Then Fa⊗OaX

Ga is an almost coherent OaX -module. The analogous result holds for
OX -modules F,G.

Proof. The proof is similar to the proof of Lemma 4.2.3. The only difference is that one needs
to use Proposition 3.2.12 in place of Proposition 3.2.19 to prove Part (1). Part (2) follows from
Lemma 2.5.17, and Part (3) follows from Corollary 2.6.9. �

We show f∗ preserves almost quasi-coherence of Oa-modules for a quasi-compact and quasi-
separated morphism f . Later on, we will be able to show that f∗ also preserves almost coherence
of Oa-modules for certain proper morphisms.

Lemma 4.2.5. Let f : X → Y be a quasi-compact and quasi-separated morphism of R-schemes.
Then

(1) The OY -module f∗(F) is almost quasi-coherent for any almost quasi-coherent OX -module
F.

(2) The OaY -module f∗(F
a) is almost quasi-coherent for any almost quasi-coherent OaX -module

Fa.

Proof. Since F is almost quasi-coherent, we conclude that m̃ ⊗ F is a quasi-coherent OX -module.
Thus f∗(m̃ ⊗ F) is a quasi-coherent OY -module by [Sta21, Tag 01LC]. Recall that the projection
formula (Lemma 3.3.5) ensures that

f∗(m̃⊗ F) ' m̃⊗ f∗F .

Thus, we see that m̃ ⊗ f∗F ' f∗(F
a)! is a quasi-coherent OY -module. This shows that both f∗(F)

and f∗(F
a) are almost quasi-coherent over OY and OaY respectively. This finishes the proof of the

both parts. �

Finally, we deal with the HomOaX
(−,−) functor. This is probably the most subtle functor

considered in this section. We start with the following preparatory lemma:

Lemma 4.2.6. Let X be an R-scheme.

(1) Suppose X = SpecA is an affine R-scheme. Then the canonical map

˜HomA(M,N)→ HomOX
(M̃, Ñ) (4.1)

is an almost isomorphism of OX -modules for any almost finitely presented A-module M
and any A-module N .

(2) Suppose X = SpecA is an affine R-scheme. Then there is a functorial isomorphism

˜alHomAa(Ma, Na) ' alHomOaX
(M̃a, Ña) (4.2)

of OaX -modules for any almost finitely presented Aa-module Ma, and any Aa-module Na.
We also get a functorial almost isomorphism

˜HomA(M,N) 'a HomOaX
(M̃a, Ña) (4.3)

of OX -modules for any almost finitely presented A-module M , and any A-module N .

(3) Suppose F is an almost finitely presented OX -module and G an almost quasi-coherent OX -
module, then HomOX

(F,G) is an almost quasi-coherent OX -module.

https://stacks.math.columbia.edu/tag/01LC
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(4) Suppose Fa is an almost finitely presented OaX -module and Ga an almost quasi-coherent
OaX -module, then HomOaX

(Fa,Ga) (resp. alHomOaX
(Fa,Ga)) is an almost quasi-coherent

OX -module (resp. OaX -module).

Proof. (1): We note that we have a canonical isomorphism HomA(M,N) → HomOX (M̃, Ñ) for
any A-modules M , N . This induces a morphism

˜HomA(M,N)→ HomOX
(M̃, Ñ) .

In order to show that it is an almost isomorphism for an almost finitely presented M , it suffices to
show that the natural map

HomA(M,N)⊗A Af → HomAf (M ⊗A Af , N ⊗A Af )

is an almost isomorphism for any f ∈ A. This follows from Lemma 2.9.11.

(2) follows easily from (1). Indeed, we apply the functorial isomorphism

HomOX
(F,G)a ' alHomOaX

(Fa,Ga)

from Proposition 3.2.10(2) to the almost isomorphism in Part (1) to get the functorial isomorphism

˜HomA(M,N)a ' alHomOaX
(M̃a, Ña) .

Now we use Proposition 2.2.1(3) to get the functorial isomorphism

alHomAa(Ma, Na) ' HomA(M,N)a.

Applying the functor (̃−) to it and composing with the isomorphism above, we get the functorial
isomorphism

˜alHomAa(Ma, Na) ' alHomOaX
(M̃a, Ña) .

The construction of the isomorphism (4.3) is similar and even easier.

(3) is a local question, so we can assume that X = SpecA. We note that

HomOX
(F,G) 'a HomOX

(m̃⊗ F, m̃⊗ G)

by Proposition 3.2.10(2). Thus, we can assume that both F and G are quasi-coherent. Then the
claim follows from (1) and Lemma 4.2.1.

(4) is similarly just a consequence of (2) and Lemma 4.2.2. �

Corollary 4.2.7. Let X be an R-scheme.

(1) Let F be an almost finitely presented OX -module, and let G be an almost coherent OX -
module. Then HomOX

(F,G) is an almost coherent OX -module.

(2) Let Fa be an almost finitely presented OaX -module, and let Ga be an almost coherent OaX -
module. Then HomOaX

(Fa,Ga) (resp. alHomOaX
(Fa,Ga)) is an almost coherent OX -module

(resp. OaX -module).

Proof. We start the proof by observing that HomOX
(F,G) 'a HomOX

(m̃⊗ F, m̃⊗ G) by Proposi-
tion 3.2.10(2). Thus we can assume that both F and G are actually quasi-coherent. In that case
we use Lemma 4.2.6(1) and Lemma 4.1.11 to reduce the question to showing that HomA(M,N)
is almost coherent for any almost finitely presented M and almost coherent N . However, this has
already been done in Corollary 2.6.9.

Part (2) follows from Part (1) as HomOaX
(Fa,Ga) ' HomOX

(Fa! ,G) and alHomOaX
(Fa,Ga) '

HomOX
(F,G)a. �
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4.3. Schemes. Approximation of Almost Finitely Presented OaX-modules. One of the
defects of our definition of almost finitely presented OX -modules is that we get an approximation
by finitely presented OX -modules only (Zariski)-locally on X. So it is not quite well adapted to
proving global statements such as the Almost Proper Mapping Theorem. We resolve this issue by
show that (on a quasi-compact quasi-separated scheme) any almost finitely presented OaX -module
can be globally approximated by finitely presented OX -modules.

As always, we fix a ring R with an ideal m such that m = m2 and m̃ = m ⊗R m is R-flat. We
always do almost mathematics with respect to this ideal.

Lemma 4.3.1. Let X be an R-scheme, and {Gai }i∈I a filtered diagram of almost quasi-coherent
OaX -modules.

(1) The natural morphism

γ0
F : colimI alHomOX

(Fa,Gai )→ alHomOX
(Fa, colimI G

a
i )

is injective for an almost finitely generated OaX -module Fa;

(2) The natural morphism

γ0
F : colimI alHomOX

(Fa,Gai )→ alHomOX
(Fa, colimI G

a
i )

is an almost isomorphism for an almost finitely presented OaX -module Fa.

Proof. The statement is local, so we can assume that X = SpecA is an affine scheme. Then
Lemma 4.2.2 implies that Fa ' Ma and Gai ' Na

i for an almost finitely generated (resp. almost
finitely presented) A-module M . Then [Sta21, Tag 009F] and Lemma 4.2.6 imply that it suffices
to show that

γ0
M : colimi alHomAa(Ma, Na

i )→ alHomAa(Ma, colimNa
i )

is injective (resp. an isomorphism) in ModaR. But this is exactly Corollary 2.5.11. �

Corollary 4.3.2. Let X be an R-scheme, and {Gai }I a filtered diagram of almost quasi-coherent
OaX -modules.

(1) The natural morphism

γ0
F : colimI alHomOX (Fa,Gai )→ alHomOX (Fa, colimI G

a
i )

is injective for an almost finitely generated OaX -module Fa;

(2) The natural morphism

γ0
F : colimI alHomOX (Fa,Gai )→ alHomOX (Fa, colimI G

a
i )

is an almost isomorphism for an almost finitely presented OaX -module Fa.

Proof. It formally follows from Lemma 3.2.25, Lemma 4.3.1, and [Sta21, Tag 009F] (and Corol-
lary 3.1.18). �

Definition 4.3.3. An OX -module F is globally almost finitely generated (resp. globally almost
finitely presented) if, for every finitely generated ideal m0 ⊂ m, there is a quasi-coherent finitely
generated (resp. finitely presented) OX -module G and a morphism f : G→ F such that m0(ker f) =
0, m0(Coker f) = 0.

Lemma 4.3.4. Let X be a quasi-compact quasi-separated R-scheme, and F an almost adically
quasi-coherent OX -module.

https://stacks.math.columbia.edu/tag/009F
https://stacks.math.columbia.edu/tag/009F
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(1) If, for any filtered diagram of adically quasi-coherent OX -modules {Gi}i∈I , the natural
morphism

colimI HomOX (F,Gi)→ HomOX (F, colimI Gi)

is almost injective, then F is globally almost finitely generated.

(2) If, for any filtered system of adically quasi-coherent OX -modules {Gi}i∈I , the natural mor-
phism

colimI HomOX (F,Gi)→ HomOX (F, colimI Gi)

is an almost isomorphism, then F is globally almost finitely presented.

Proof. Lemma 3.2.25 and Corollary 3.1.18 ensure that we can replace F with Fa! without loss of
generality. So we may and do assume that F is are quasi-coherent. Then the proof of Lemma 2.5.10
works essentially verbatim. We repeat it for the reader’s convenience.

(1) : Note that F ' colimI Fi is a filtered colimit of its finitely generated OX-submodules (see
[Sta21, Tag 01PG]). Therefore, we see that

colimI HomOX (F,F/Fi) 'a HomOX (F, colimI(F/Fi)) ' 0.

Consider an element α of the colimit that has a representative the quotient morphism F → F/Fi
(for some choice of i). Then, for every ε ∈ m, εα = 0 in colimI HomOX (F,F/Fi). Explicitly this
means that there is j ≥ i such that εF ⊂ Fj . Now note that this property is preserved by choose
any j′ > j. Therefore, for any m0 = (ε1, . . . , εn), we can find a finitely generated OX -submodule
Fi ⊂ F such that m0F ⊂ Fi. Therefore, F is almost finitely generated.

(2) : Fix any finitely generated sub-ideal m0 = (ε1, . . . , εn) ⊂ m. We use [Sta21, Tag 01PJ] to
write F ' colimΛ Fλ as a filtered colimit of finitely presented OX -modules. By assumption, the
natural morphism

colimΛ HomOX (F,Fλ)→ HomOX (F, colimΛ Fλ) = HomOX (F,F)

is an almost isomorphism. In particular, εiIdF is in the image of this map for every i = 1, . . . , n.
This means that, for every εi, there is λi ∈ Λ and a morphism gi : F → Fλi such that the composition

fλi ◦ gi = εiIdF,

where fλi : Fλi → F is the morphism to the colimit. Note that existence of such gi is preserved by
replacing λi by any λ′i ≥ λi. Therefore, using that {Fλ} is a filtered diagram, we can find one index
λ with maps

gi : F → Fλ

such that fλ ◦ gi = εiIdF. Now we consider a morphism

Gi := gi ◦ fλ − εiIdFλ : Fλ → Fλ.

Note that Im(Gi) ⊂ ker(fλ) because

fλ ◦ gi ◦ fλ − fλεiIdFλ = εifλ − εifλ = 0.

We also have that εi ker(fλ) ⊂ Im(Gi) because Gi|ker(fλ) = εiId. Therefore,
∑

i Im(Gi) is a quasi-
coherent finitely generated OX -module such that

m0(ker fλ) ⊂
∑
i

Im(Gi) ⊂ ker(fλ).

Therefore, f : F′ := Fλ/(
∑

i Im(Gi))→ F is a morphism such that F′ is finitely presented, m0(ker f) =
0, and m0(Coker f) = 0. Since m0 ⊂ m was an arbitrary finitely generated sub-ideal, we conclude
that F is globally almost finitely presented. �

https://stacks.math.columbia.edu/tag/01PG
https://stacks.math.columbia.edu/tag/01PJ
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Corollary 4.3.5. Let X be a quasi-compact and quasi-separated R-scheme, and let F be an almost
quasi-coherent OX -module. Then F is almost finitely presented (resp. almost finitely generated)
if and only if for any finitely generated ideal m0 ⊂ m there is a morphism f : G → F such that
G is a quasi-coherent finitely presented (resp. finitely generated) OX -module , m0(ker f) = 0 and
m0(Coker f) = 0.

Proof. Corollary 4.3.2 ensures that F satisfies the conditions of Lemma 4.3.4. Lemma 4.3.4 now
gives the desired result. �

Corollary 4.3.6. Let X be a quasi-compact, quasi-separated R-schme, and Fa an almost quasi-
coherent OaX -module. Then

(1) Fa is almost finitely generated if and only if, for every filtered diagram {Gai }i∈I of almost
quasi-coherent OaX -modules, the natural morphism

colimI alHomOaX
(Fa,Gai )→ alHomOaX

(Fa, colimI G
a
i )

is injective in ModaR;

(2) Fa is almost finitely presented if and only if, for every filtered diagram {Gai } of almost
quasi-coherent OaX -modules, the natural morphism

colimI alHomOaX
(Fa,Gai )→ alHomOaX

(Fa, colimI G
a
i )

is an isomorphism in ModaR;

4.4. Schemes. Derived Category of Almost Coherent OaX-modules. The goal of this section
is to define different categories that can be called “derived category of almost coherent shaves”.
Namely, we define the categories Dacoh(X), Dqc,acoh(X), and Dacoh(X)a. Then we show that many
derived functors of interest preserve almost coherence in an appropriate sense.

Definition 4.4.1. We define Daqc(X) (resp. Daqc(X)a) to be the full triangulated subcategory of
D(X) (resp. D(X)a) consisting of complexes with almost quasi-coherent cohomology sheaves.

Definition 4.4.2. We define Dacoh(X) (resp. Dqc,acoh(X), resp. Dacoh(X)a) to be the full tri-
angulated subcategory of D(X) (resp. D(X), resp. D(X)a) consisting of complexes with almost
coherent (resp. quasi-coherent and almost coherent, resp. almost coherent) cohomology sheaves.

Remark 4.4.3. The definition above makes sense as the categories Modacoh
X , Modqc,acoh

X , and

Modacoh
Xa are weak Serre subcategories of ModX , ModX , and ModaX respectively.

Now suppose that X = SpecA is an affine R-scheme. Then we note that the functor

(̃−) : ModA →ModX

is additive and exact, thus can be easily derived to the functor

(̃−) : D(A)→ Dqc(X) .

Lemma 4.4.4. Let X = SpecA be an affine R-scheme. Then the functor

(̃−) : D(A)→ Dqc(X)

is a t-exact equivalence of triangulated categories21 with quasi-inverse given by RΓ(X,−). More-
over, these two functors induce the equivalence

(̃−) : D∗acoh(A) D∗qc,acoh(X) : RΓ(X,−)

21with their standard t-structures
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for any ∗ ∈ {“ ”,+,−, b}.

Proof. The first part is just [Sta21, Tag 06Z0]. In particular, it shows that Hi(RΓ(X,F)) '
H0(X,Hi(F)) for any F ∈ Dqc(X). Now Lemma 4.1.11 implies that Hi(F) is almost coherent if
and only if so is H0(X,Hi(F)). So the functor RΓ(X,−) sends D∗qc,acoh(X) to D∗acoh(A).

We also observe that the functor (̃−) clearly sends Dacoh(A) to Dqc,acoh(X). Thus we conclude

that (̃−) and RΓ(X,−) induce an equivalence of Dacoh(A) and Dqc,acoh(X). The bounded versions
follow from t-exactness of both functors. �

Lemma 4.4.5. Let X = SpecA be an affine R-scheme. Then the almostification functor

(−)a : D∗qc(X)→ D∗aqc(X)a

induces an equivalence D∗qc(X)/D∗qc,ΣX (X)
∼−→ D∗aqc(X)a for any ∗ ∈ {“ ”,+,−, b}. Similarly, the

induced functor
D∗qc,acoh(X)/D∗qc,ΣX (X)

∼−→ D∗acoh(X)a

is an equivalence for any ∗ ∈ {“ ”,+,−, b}.

Proof. The functor (−)! : D∗aqc(X)a → D∗qc(X) gives the left adjoint to (−)a such that Id→ (−)! ◦
(−)a is an isomorphism and the kernel of (−)a consists exactly of the morphisms f such that
cone(f) ∈ Dqc,ΣX (X). Thus the dual version of [GZ67, Proposition 1.3] finishes the proof of the

first claim. The proof of the second claim is similar once one notices that M̃a is almost coherent
for any almost coherent Aa-module Ma. The latter fact follows from Lemma 4.1.11. �

Lemma 4.1.11 ensures that D(A)a ' D(A)/DΣA(A). As (̃−) clearly sends DΣA(A) into D∗qc,ΣX (X),
we conclude that it induces the functor

(̃−) : D∗(A)a → D∗aqc(X)a .

Theorem 4.4.6. Let X = SpecA be an affine R-scheme. Then the functor

(̃−) : D(A)a → Daqc(X)a

is a t-exact equivalence of triangulated categories with quasi-inverse given by RΓ(X,−). Moreover,
these two functors induce equivalences

(̃−) : D∗acoh(A)a D∗acoh(X)a : RΓ(X,−)

for any ∗ ∈ {“ ”,+,−, b}.

Proof. We note that Lemma 4.4.4 ensures that (̃−) : D∗qc,acoh(X) → D∗acoh(X)a is an equiva-

lence with quasi-inverse RΓ(X,−). Moreover, (−)a induces an equivalence between DΣA(A) and

Dqc,ΣX (X); we leave the verification to the interested reader. Thus, Lemma 4.4.5 ensures that (̃−)
gives an equivalence

D(A)a ' D(A)/DΣA(A)
∼−→ Dqc(X)/Dqc,ΣX (X) ' Daqc(X)a .

Its inverse is given by the functor Daqc(X)a → D(A)a induced by RΓ(X,−) on Dqc(X) that exactly
coincides with RΓ(X,−) : Daqc(X)a → D(A)a by Proposition 3.5.23.

The version with almost coherent cohomology sheaves is similar to the analogous statement from
Lemma 4.4.4. �

Lemma 4.4.7. Let f : X → Y be a morphism of R-schemes.

https://stacks.math.columbia.edu/tag/06Z0
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(1) Suppose that X = SpecB, Y = SpecA are affine R-schemes. Then Lf∗(M̃a) is functorially

isomorphic to ˜Ma ⊗LAa Ba for any Ma ∈ D(A)a.

(2) The functor Lf∗ carries an object of D∗aqc(Y ) to an object of D∗aqc(X) for ∗ ∈ {“ ”,−}.
(3) The functor Lf∗ carries an object of D∗aqc(Y )a to an object of D∗aqc(X)a for ∗ ∈ {“ ”,−}.
(4) Suppose that X and Y are almost coherent R-schemes. Then the functor Lf∗ carries an

object of D−qc,acoh(Y ) (resp. D−acoh(Y )) to an object of D−qc,acoh(X) (resp. D−acoh(X)).

(5) Suppose that X and Y are almost coherent R-schemes. Then the functor Lf∗ carries an
object of D−acoh(Y )a to an object of D−acoh(X)a.

Proof. We start with (1). We use Proposition 3.5.20 to see that Lf∗(M̃a) ' (Lf∗(M̃))a. Thus it

suffices to show that Lf∗(M̃) ' M̃ ⊗LA B as (M̃ ⊗LA B)a ' ˜Ma ⊗LAa Ba by Proposition 2.4.16. But
the result for quasi-coherent complexes is classical.

Now we show (2). We note that Lemma 3.2.17 implies that Lf∗(m̃⊗ F) ' m̃⊗ Lf∗(F) for any
F ∈ D(Y ). Thus we can replace F with m̃ ⊗ F to assume that it is quasi-coherent. Then it is a
standard fact that Lf∗ sends D∗qc(Y ) to D∗qc(X) for ∗ ∈ {“ ”,−}.

(3) follows from (2) by noting that Lf∗(Fa) ' (Lf∗ (Fa! ))a according to Proposition 3.5.20.

To prove (4), we again use the isomorphism Lf∗(m̃ ⊗ F) ' m̃ ⊗ Lf∗(F) to assume that F is in

D−qc,acoh(X). Lemma 4.4.4 guarantees that there is M ∈ D−coh(A) such that M̃ ' F. Thus Part (1)

and Lemma 4.1.11 ensure that it is sufficient to show that Ma ⊗LAa Ba ' (M ⊗LA B)a has almost
finitely presented cohomology modules. This is exactly the content of Corollary 2.8.2.

(5) follows from (4) as Lf∗(Fa) ' (Lf∗ (Fa! ))a. �

Lemma 4.4.8. Let X be an R-scheme.

(1) Suppose that X = SpecA is an affine R-scheme. Then M̃a⊗LOaX Ñ
a is functorially isomorphic

to ˜Ma ⊗LAa Na for any Ma, Na ∈ D(A)a.

(2) Let F,G ∈ D∗aqc(X), then F ⊗LOX G ∈ Daqc(X) for ∗ ∈ {“ ”,−}.

(3) Let Fa,Ga ∈ D∗aqc(X)a, then Fa ⊗LOaX Ga ∈ Daqc(X)a for ∗ ∈ {“ ”,−}.

(4) Suppose thatX is an almost coherentR-scheme, and let F,G ∈ D−qc,acoh(X) (resp. D−acoh(X)).

Then F ⊗LOX G ∈ D−qc,acoh(X) (resp. D−acoh(X)).

(5) Suppose that X is an almost coherent R-scheme, and let Fa,Ga ∈ D−acoh(X)a. Then Fa⊗LOaX
Ga ∈ D−acoh(X)a.

Proof. The proof is basically identical to that of Lemma 4.4.7 and left to the reader. We only
mention that one has to use Proposition 2.6.18 in place of Corollary 2.8.2. �

Lemma 4.4.9. Let f : X → Y be a quasi-compact and quasi-separated morphism of R-schemes.
Suppose that Y is quasi-compact. Then

(1) The functor Rf∗ carries D∗aqc(X) to D∗aqc(Y ) for any ∗ ∈ {“ ”,−,+, b}.
(2) The functor Rf∗ carries D∗aqc(X)a to D∗aqc(Y )a for any ∗ ∈ {“ ”,−,+, b}.
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Proof. Proposition 3.5.23 guarantees that (Rf∗F)a ' Rf∗F
a. Since (m̃⊗ F)a ' Fa, we see that it

suffices to show that the functor

Rf∗(m̃⊗−)

carries D∗aqc(X) to D∗aqc(Y ) for any ∗ ∈ {“ ”,−,+, b}. Since m̃⊗ F is in Dqc(X), we conclude that
it is enough to show that Rf∗(−) carries D∗qc(X) to D∗qc(Y ) for any ∗ ∈ {“ ”,−,+, b}. This is
proven in [Sta21, Tag 08D5]. �

Before going to the case of the derived Hom-functors, we recall the construction of the functorial
map

ψ : ˜RHomA(M,N)→ RHomOX
(M̃, Ñ)

for any M ∈ D−(A), N ∈ D+(A) on an affine scheme X = SpecA. Indeed, the functor (̃−) is
left adjoint to the global section functor Γ(X,−) on the abelian level. Thus after deriving these
functors, we get that −̃ is left adjoint to RΓ(X,−). Therefore, for any F ∈ D(X), there is a

canonical morphism ˜RΓ(X,F) → F. We apply it to F = RHomOX
(M̃, Ñ) to get the desired

morphism

ψ : ˜RHomA(M,N)→ RHomOX
(M̃, Ñ) .

Lemma 4.4.10. Let X be an almost coherent R-scheme.

(1) Suppose X = SpecA is an affine R-scheme. The canonical map

ψ : ˜RHomA(M,N)→ RHomOX
(M̃, Ñ)

is an almost isomorphism for M ∈ D−acoh(A), N ∈ D+(A).

(2) Suppose X = SpecA is an affine R-scheme. There is a functorial isomorphism

˜RalHomAa(Ma, Na) ' RalHomOaX
(M̃a, Ña)

for Ma ∈ D−acoh(A)a, Na ∈ D+(A)a. We also get a functorial almost isomorphism

˜RHomAa(Ma, Na) 'a RHomOaX
(M̃a, Ña)

for M ∈ D−acoh(A), N ∈ D+(A).

(3) Suppose F ∈ D−acoh(X) and G ∈ D+
aqc(X). Then RHomOX

(F,G) ∈ D+
aqc(X).

(4) Suppose Fa ∈ D−acoh(X)a and Ga ∈ D+
aqc(X)a. Then RHomOaX

(Fa,Ga) ∈ D+
aqc(X) and

RalHomOaX
(Fa,Ga) ∈ D+

aqc(X)a.

Proof. We start with (1). We use the convergent compatible spectral sequences

Ep,q2 = ˜ExtpA(H−q(M), N)⇒ ˜Extp+qA (M,N)

E′
p,q
2 = ExtpOX

(
˜H−q(M), Ñ

)
⇒ Extp+qOX

(
M̃, Ñ

)
to see that we may assume that M ∈Modacoh

A is just a module in degree 0. Similarly, we use the
compatible spectral sequences

Ep,q2 = ˜ExtqA(M,Hp(N))⇒ ˜Extp+qA (M,N)

E′
p,q
2 = ExtqOX (M̃, H̃p(N))⇒ Extp+qOX

(M̃, Ñ)

https://stacks.math.columbia.edu/tag/08D5
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to also assume that N ∈ModA. So the claim boils down to showing that the natural maps

˜ExtpA(M,N)→ ExtpOX (M̃, Ñ)

are almost isomorphisms for any M ∈ Modacoh
A , N ∈ ModA, and p ≥ 0. Lemma 3.1.5 says that

it is sufficient to say that kernel and cokernel are annihilated by any finitely generated sub-ideal
m0 ⊂ m.

Recall that, for any OX -modules F, G, the sheaf ExtpOX (F,G) is canonically isomorphic to sheafi-
fication of the presheaf

U 7→ ExtpOU (F|U ,G|U ) .

Thus, in order to show that the map ˜ExtpA(M,N) → ExtpOX (M̃, Ñ) is an almost isomorphism, it
suffices to show that

ExtpA(M,N)⊗A Af → ExtpOXf
(M̃f , Ñf )

is an almost isomorphism. Now we use canonical isomorphisms

ExtpOXf
(M̃f , Ñf ) ' HomD(Xf )(M̃f , Ñf [p])

' HomD(Af )(Mf , Nf [p])

' ExtpAf (Mf , Nf ),

where the second isomorphism uses that (−̃) induces a t-exact equivalence (−̃) : D(Af ) −→ Dqc(SpecAf ).
Thus, the question boils down to showing that the natural map

ExtpA(M,N)⊗A Af → ExtpAf (Mf , Nf )

is an almost isomorphism. This follows from Proposition 2.9.12.

(2) formally follows from (1) by using Proposition 3.5.8(1).

(3) is also a basic consequence of (2). Indeed, the claim is local, so we can assume that X =

SpecA is an affine R-scheme. In that case we use Theorem 4.4.6 to say that F ' M̃ , G ' Ñ for

some M ∈ D−acoh(A), N ∈ D+(A). Then RHomOX
(F,G) ' ˜RHomA(M,N) by (2), and the latter

complex has almost quasi-coherent cohomology sheaves by design.

(4) easily follows from (3) and the isomorphisms

RHomOaX
(Fa,Ga) ' RHomOX

(Fa! ,G)

RalHomOaX
(Fa,Ga) ' RHomOX

(Fa! ,G)a

that come from Lemma (1) and Definition 3.5.6. �

Corollary 4.4.11. Let X be an almost coherent R-scheme.

(1) Let F ∈ D−aqc,acoh(X), G ∈ D+
aqc,acoh(X). Then RHomOX

(F,G) ∈ D+
aqc,acoh(X).

(2) Let Fa ∈ D−acoh(X)a, Ga ∈ D+
acoh(X)a. Then RalHomOaX

(Fa,Ga) ∈ D+
acoh(X)a.

Proof. The question is local onX, so we can suppose thatX = SpecA is affine. Then Lemma 4.4.10,
Theorem 4.4.6, and Lemma 4.1.11 reduce both question to showing that RHomA(M,N) ∈ D+

acoh(A)

for M ∈ D−acoh(A) and N ∈ D+
acoh(A). This is the content of Proposition 2.6.19. �



ALMOST COHERENT MODULES AND ALMOST COHERENT SHEAVES 95

Proposition 4.4.12. Let f : X → Y be a quasi-compact quasi-separated morphism of R-schemes,
Fa ∈ Daqc(X)a, and G ∈ Daqc(Y )a. Then the projection morphism (see the discussion before
Proposition 3.5.27)

ρ : Rf∗(F
a)⊗LOaY Ga → Rf∗(F

a ⊗LOaX Lf∗(Ga))

is an isomorphism in D(Y )a.

Proof. Proposition 3.5.14, Proposition 3.5.20, and Proposition 3.5.23 imply that we can replace Fa

(resp. Ga) with Fa! ∈ Dqc(X)a (resp. Ga! ∈ Dqc(Y )a). So it suffices to show the analogous result for
modules with quasi-coherent cohomology sheaves. This is proven in [Sta21, Tag 08EU]. �

4.5. Formal Schemes. The Category of Almost Coherent OaX-modules. In this Section
we discuss the notion of almost coherent sheaves on “good” formal schemes. One of the main
complications is that there is no good notion of a “quasi-coherent” sheaf on a formal scheme.
Namely, even though there is a notion of adically quasi-coherent sheaves on a big class of formal
schemes due to [FK18, §I.3], this notion does not really behave well. For example, the category
of adically quasi-coherent sheaves usually is not abelian. One of the main difficulties in working
with adically quasi-coherent sheaves is the lack of the Artin-Rees lemma beyond the case of finitely
generated modules. More precisely, many operations with adically quasi-coherent sheaves require
taking completions, but it is difficult to control the effect of it without the use of the Artin-Rees
lemma.

The way we deal with this problem is to use a version of the Artin-Rees lemma (Lemma 2.12.6)
for almost finitely generated modules over “good” rings. The presence of the Artin-Rees lemma
suggests that it is reasonable to expect that we might have a good notion of adically quasi-coherent,
almost coherent OX-modules on some “good” class of formal schemes.

We start by giving the Setup in which we can develop the theory of almost coherent sheaves

Set-up 4.5.1. We fix a ring R with a finitely generated ideal I such that R is I-adically complete,
I-adically topologically universally adhesive22, and I-torsion free with an ideal m such that I ⊂ m,
m2 = m and m̃ := m⊗R m is R-flat.

The basic example of such a ring is a complete microbial23 valuation ring R with algebraically
closed fraction field K. We pick a pseudo-uniformizer $ and define I := ($), m := ∪∞i=1($1/n)
for some compatible choice of roots of $. We note that R is topologically universally adhesive by
[FGK11, Theorem 7.3.2].

We note that the assumptions in Setup 4.5.1 imply that any finitely presented algebra over a
topologically finitely presented R-algebra is coherent and I-adically adhesive. Coherence follows
from [FGK11, Proposition 7.2.2] and adhesiveness basically follows from the definition. In what
follows, we will use those facts without saying.

In what follows, X will always mean a topologically finitely presented formal R-scheme. We will
denote by Xk := X ×Spf R SpecR/Ik+1 the “reduction” schemes. They come together with the
closed immersion ik : Xk → X. Also, given any OX-module F, we will always denote its “reduction”
i∗kF by Fk.

22This means that the algebra R〈X1, . . . , Xn〉[T1, . . . , Tm] is I-adically adhesive for any n and m
23A valuation ring R is microbial if there is a non-zero topologically nilpotent element $ ∈ R. Any such element

is called a pseudo-uniformizer.

https://stacks.math.columbia.edu/tag/08EU
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Definition 4.5.2. [FK18, Definition I.3.1.3] An OX-module F on a formal scheme X of finite ideal
type is called adically quasi-coherent if F → limn Fn is an isomorphism and, for any open formal
subscheme U ⊂ F and any ideal of definition I of finite type, the sheaf F/IF is a quasi-coherent
sheaf on the scheme (U,OU/I).

We denote by ModqcX the full subcategory of ModX consisting of adically quasi-coherent OX-
modules.

Definition 4.5.3. We say that an OaX-module Fa is almost adically quasi-coherent if Fa! ' m̃ ⊗ F

is an adically quasi-coherent OX-module. We denote by Modaqc
Xa the full subcategory of ModXa

consisting of almost adically quasi-coherent OX-modules.

We say that an OX-module F is almost adically quasi-coherent if Fa is an almost quasi-coherent
OaX-module. We denote by Modaqc

X the full subcategory of ModX consisting of adically quasi-
coherent OX-modules.

Remark 4.5.4. In general, we can not say that an adically quasi-coherent OX-module F is almost
adically quasi-coherent. The problem is that the sheaf m̃⊗ F might not be complete, i.e. the map
m̃⊗ F → limk m̃⊗ Fk is a priori only an almost isomorphism.

Lemma 4.5.5. Let X be a topologically finitely presented formal R-scheme for R as in the
Setup 4.5.1, and let Fa be an almost adically quasi-coherent OaX-module. Then Fak is almost quasi-
coherent for all k. Moreover, if an OaX-module Ga is annihilated by some In+1. Then Ga is almost
adically quasi-coherent if and only if so is Gan.

Proof. In order to prove the first claim, it is sufficient to show that m̃⊗Fk is quasi-coherent provided
that m̃⊗ F is adically quasi-coherent. We use Corollary 3.2.18 to say that m̃⊗ Fk ' (m̃⊗ F)k and
the reduction of an adically quasi-coherent module is quasi-coherent. Therefore, each Fak is almost
adically quasi-coherent.

Now if G is annihilated by In+1 then G = in,∗Gn. We use the Projection Formula (Corollary 3.3.6)
to say that m̃⊗G ' in,∗(Gn⊗m̃). Clearly, in,∗ sends quasi-coherent sheaves to adically quasi-coherent
sheaves. So Ga is almost adically quasi-coherent if so is Gan. �

Definition 4.5.6. We say that an OaX-module Fa is of almost finite type (resp. almost finitely
presented) if Fa is almost adically quasi-coherent, and there is a covering of X by open affines
{Ui}i∈I such that Fa(Ui) is an almost finitely generated (resp. almost finitely presented) OaX(Ui)-

module. We denote these categories by Modaft
Xa and Modafp

Xa respectively.

We say that an OX-module F is of almost finite type (resp. almost finitely presented) if so is Fa.

We denote these categories by Modaft
X and Modafp

X respectively.

Definition 4.5.7. We say that an OX-module F is adically quasi-coherent of almost finite type
(resp. adically quasi-coherent almost finitely presented) if it is adically quasi-coherent and there
is a covering of X by open affines {Ui}i∈I such that F(Ui) is an almost finitely generated (resp.

almost finitely presented) OX(Ui)-module. We denote these categories by Modqc,aft
X and Modqc,afp

X
respectively.

Remark 4.5.8. If Fa is a finite type (resp. finitely presented) OaX-module, then (Fa)! is adically
quasi-coherent of almost finite type (resp. almost finite presentation).

Remark 4.5.9. We note that, a priori, it is not clear if Fa is an almost finite type (resp. almost
finitely presented) OaX-module for an adically quasi-coherent almost finite type (resp. almost finitely
presented) OX-module F. The problem is that our definition of adically quasi-coherent almost finite
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type (resp. almost finitely presented) module does not require m̃⊗F to be adically quasi-coherent.
However, we will show in Lemma 4.5.10 that it is automatic in this case.

Lemma 4.5.10. Let X be a topologically finitely presented formal R-scheme for R as in the
Setup 4.5.1, and let F be an adically quasi-coherent of almost finite type (resp. almost finitely
presented) OX-module. Then m̃ ⊗ F is adically quasi-coherent. In particular, F is almost of finite
type (resp. almost finitely presented).

Proof. Corollary 2.5.12 and Lemma 3.3.2 imply that the only condition we really need to check
is that m̃ ⊗ F is adically quasi-coherent. Therefore, it suffices to prove the result for an adically
quasi-coherent almost finite type OX-module F.

Since the question is local on X, we can assume that X = Spf A is affine and M := F(X) is
almost finitely generated over A. Then we use [FK18, Theorem I.3.2.8] to say that F is isomorphic
to M∆. We claim that m̃ ⊗ F is isomorphic to (m̃ ⊗A M)∆ as that would imply that m̃ ⊗ F is
adically quasi-coherent by [FK18, Proposition I.3.2.2]. In order to show that m̃ ⊗ F is isomorphic
to (m̃ ⊗R M)∆ we need to check two things: for any open affine Spf B = U ⊂ X the B-module
(m̃ ⊗ F)(U) is I-adically complete, and then the natural map (m̃ ⊗RM)⊗̂AB → (m̃ ⊗ F)(U) is an
isomorphism.

We start with the first claim. Lemma 3.3.2 says that (m̃⊗F)(U) is isomorphic to m̃⊗RF(U). Since
F is adically quasi-coherent, F(U) 'M⊗̂AB, so (m̃⊗F)(U) ' m̃⊗R(M⊗̂AB). Lemma 2.8.1 says that
M⊗AB is almost finitely generated over B, so it is already I-adically complete by Lemma 2.12.7.
Therefore, we see that m̃⊗RF(U) ' m̃⊗R (M⊗AB), and the latter is almost finitely generated over
B by Corollary 2.5.12. Thus we use Lemma 2.12.7 once more to show its completeness.

Now we show that the natural morphism (m̃⊗RM)⊗̂AB → (m̃⊗F)(U) is an isomorphism. Again,
using the same results as above we can get rid of any completions and identify this map with the
“identity” map

(m̃⊗RM)⊗AB → m̃⊗R (M⊗AB)

This finishes the proof. �

Lemma 4.5.11. Let X be a topologically finitely presented formal R-scheme for R as in the
Setup 4.5.1, and let Fa be an almost finite type (resp. almost finitely presented) OaX-module. Then
the OaXk -module Fak is almost finite type (resp. almost finitely presented) for any integer k.

Proof. Lemma 4.5.5 implies that each Fak is an almost quasi-coherent OXk -module. So it is sufficient
to find a covering of Xk by open affines Ui,k such that Fak(Ui,k) is almost finitely generated (resp.
almost finitely presented) over OaXk(Ui,k). We note that underlying topological spaces of X and Xk
are the same, so we can choose some covering of X by open affines Ui such that Fa(Ui) are almost
finitely generated (resp. almost finitely presented) over OaX(Ui), and define Ui,k as the “reductions”
of Ui. Then using the vanishing result for higher cohomology groups of adically quas-coherent
sheaves on affine formal schemes of finite type [FK18, Theorem I.7.1.1] and Lemma 3.3.2, we
deduce that

Fak(Ui,k) ' (m̃⊗ Fak)(Ui,k)
a '

(
m̃⊗ F (Ui) /I

k+1
)a

is almost finitely generated (resp. almost finitely presented) over OXk(Ui,k). �

Lemma 4.5.12. Let X be a locally topologically finitely presented formal R-scheme for R as in
the Setup 4.5.1, and let Fa be an almost finite type (resp. almost finitely presented) OaX-module.
Then Fa(U) is an almost finitely generated (resp. almost finitely presented) OaX(U)-module for any
open affine U ⊂ X.
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Proof. Corollary 2.5.12 and Lemma 3.3.2 guarantee that we can replace F with m̃ ⊗ F for the
purpose of the proof. Thus we may and do assume that F is an adically quasi-coherent almost
finitely generated (resp. almost finitely presented) OX-module. Then using Lemma 2.8.1 and
Lemma 2.12.7 we can use the argument as in the proof of Lemma 4.5.10 show that the restriction
of F to any open formal subscheme is still adically quasi-coherent of almost finite type (resp. finitely
presented), so we may and do assume that X = Spf A is an affine formal R-scheme. Since now X is
quasi-compact, we can choose a finite refinement of the covering X = ∪Ui such that F(Ui) is almost
finitely generated (resp. almost finitely presented) over O(Ui). Thus we may and do assume that a
covering (Ui) is finite.

Now we have an affine topologically finitely presented formal R-scheme X = Spf A, a finite
covering of X by affines Ui = Spf Ai, and an adically quasi-coherent OX-module F such that F(Ui)
is almost finitely generated (resp. almost finitely presented) Ai-module. We want to show that
F(X) is an almost finitely generated (resp. almost finitely presented) A-module.

We firstly deal with the almost finitely generated case. We note that Lemma 4.1.7, Lemma 4.5.11,
and [FK18, Theorem I.7.1.1] imply that F(X)/I is almost finitely generated. We know that F is adi-
cally quasi-coherent so F(X) must be an I-adically complete A-module. Therefore, Corollary 2.5.20
guarantees that F(X) is an almost finitely generated A-module.

Now we move to the almost finitely presented case. We already now that F(X) is almost finitely
generated over A. Thus the standard argument with Lemma 2.12.7 implies that F(Ui) = F(X)⊗AAi
for any i. Recall that [FK18, Proposition I.4.8.1] implies24 that each A→ Ai is flat. Since Spf Ai
form a covering of Spf A, we conclude that A →

∏n
i=1Ai is faithfully flat. Now the result follows

from faithfully flat descent for almost finitely presented modules that is proven in Lemma 2.10.5. �

Corollary 4.5.13. Let X = Spf A be a topologically finitely presented affine formal R-scheme for
R as in the Setup 4.5.1, and let Fa be an almost adically quasi-coherent OaX-module. Then Fa is
almost finite type (resp. almost finitely presented) if and only if Fa(X) is almost finitely generated
(resp. almost finitely presented) Aa-module.

Similarly, an adically quasi-coherent OX-module F is is almost finite type (resp. almost finitely
presented) if and only if F(X) is almost finitely generated (resp. almost finitely presented) A-
module.

Lemma 4.5.14. Let X = Spf A be a topologically finitely presented affine formal R-scheme for R
as in the Setup 4.5.1, let ϕ : N →M be a homomorphism of almost finitely generated A-modules.
Then the following sequence

0→ (kerφ)∆ → N∆ ϕ∆

−−→M∆ → (Cokerφ)∆ → 0

is exact. Moreover, Im(ϕ)∆ ' Im(ϕ∆).

Proof. We denote the kernel kerφ by K, the image Im(ϕ) by M ′, and the cokernel Cokerφ by Q.

We start with kerϕ∆: We note that (kerϕ∆)(X) = K, this induces a natural morphism α : K∆ →
kerϕϕ. We show that it is an isomorphism, it suffices to check that it induces an isomorphism on
values over a basis of principal open subsets. Now recall that for any A-module L, we have an

equality L∆(Spf A{f}) = L̂f where the completion is taken with respect to the I-adic topology.

Thus in order to check that α is an isomorphism it suffices to show that K̂f is naturally identified

with (kerϕ)(Spf A{f}) = ker(N̂f → M̂f ). Using the Artin-Rees Lemma 2.12.6 over the adhesive

24Topologically universally adhesive rings are by definition “t. u. rigid-Noetherian”



ALMOST COHERENT MODULES AND ALMOST COHERENT SHEAVES 99

ring Af , we conclude that the induced topologies on Kf and M ′f coincide with the I-adic ones.
This implies that

K̂f = limKf/I
nKf = limKf/(I

nNf ∩Kf ) and M̂ ′f = limM ′f/I
nM ′f = limM ′f/(I

nMf ∩M ′f )

This guarantees that we have two exact sequences:

0→ K̂f → M̂f → M̂ ′f → 0,

0→ M̂ ′f → N̂f

In particular, we get that the natural map K̂f → ker(M̂f → N̂f ) is an isomorphism. That shows

that K∆ ' ker(ϕ∆).

We prove the claim for Imϕ∆: We note that since the category of OX-modules is abelian, we
can identify Imϕ∆ ' Coker(K∆ → N∆). We observe that [FK18, Theorem I.7.1.1] and the estab-
lished fact above that kerϕ is adically quasi-coherent imply that the natural map F(U)/K∆(U)→
(Imϕ∆)(U) is an isomorphism for any affine open formal subscheme U. In particular, we have
(Imϕ∆)(X) = M/K = M ′. Therefore, we have a natural map (M ′)∆ → Imϕ∆ and we show that
it is an isomorphism. Again it suffices to show that this map is an isomorphism on values over a
basis of principal open subsets. Then we use the identification F(U)/K∆(U) ' (Imϕ)(U) and the
short exact sequence

0→ K̂f → M̂f → M̂ ′f → 0,

to finish the proof.

We show the claim for Cokerϕ∆: The argument is identical to the argument for Imϕ once we
proved that Imϕ = ker(G→ Cokerϕ) is adically quasi-coherent. �

Corollary 4.5.15. Let X = Spf A be a topologically finitely presented affine formal R-scheme for R
as in the Setup 4.5.1, let M an almost finitely generated A-module, and let N be any A-submodule
of M . Then the following sequence

0→ N∆ ϕ∆

−−→M∆ → (M/N)∆ → 0

is exact.

Proof. We just apply Lemma 4.5.14 to the homomorphism M →M/N of almost finitely generated
A-modules. �

Corollary 4.5.16. Let X be a topologically finitely presented formal R-scheme for R as in the
Setup 4.5.1, and let ϕ : F → G be a morphism of adically quasi-coherent, almost finite type OX-
modules. Then kerϕ is an adically quasi-coherent OX-module, Cokerϕ and Imϕ are adically
quasi-coherent OX-modules of almost finite type.

Corollary 4.5.17. Let X be a topologically finitely presented formal R-scheme for R as in the
Setup 4.5.1, and let ϕ : Fa → Ga be a morphism of almost almost finite type OaX-modules. Then
kerϕ is an almost adically quasi-coherent OaX-module, Cokerϕ and Imϕ are OaX-modules of almost
finite type.

Proof. We apply the exact functor (−)! to the map ϕ and reduce the claim to Corollary 4.5.16. �
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Now we are ready to show that almost finite type and almost finitely presented OX-modules share
many good properties we would expect. The only subtle thing is that we do not know whether
an adically quasi-coherent quotient of an adically quasi-coherent, almost finite type OX-module is
of almost finite type. The main extra complication here is that we need to be very careful with
the adically quasi-coherent condition in the definition of almost finite type (resp. almost finitely
presented) modules since that condition does not behave well in general.

Lemma 4.5.18. Let 0→ F′
ϕ−→ F

ψ−→ F′′ → 0 be an exact sequence of OX-modules, then

(1) If F is adically quasi-coherent of almost finite type, and F′ is adically quasi-coherent then
F′′ is adically quasi-coherent of almost finite type.

(2) If F′ and F′′ are adically quasi-coherent of almost finite type (resp. almost finitely presented)
then so is F.

(3) If F is adically quasi-coherent of almost finite type and F′′ is adically quasi-coherent almost
finitely presented then F′ is adically quasi-coherent of almost finite type.

(4) If F is adically quasi-coherent of almost finitely presented and F′ is adically quasi-coherent
of almost finite type then F′′ is adically quasi-coherent, almost finitely presented.

Proof. (1): Without loss of generality, we can assume that X = Spf A is an affine formal scheme.
Then F ∼= M∆ for some almost finitely generated A-module M , and F′ ∼= N∆ for some A-submodule
N ⊂ M . Then Corollary 4.5.15 ensures that F′′ ' (M/N)∆. In particular, it is adically quasi-
coherent. Then the claim is an easy consequence of the vanishing theorem [FK18, Theorem I.7.1.1]
and Lemma 2.5.15(1).

(2): The difficult part is to show that F is adically quasi-coherent. In fact once we know that F

is adically quasi-coherent, it is automatically of almost finite type (resp. almost finitely presented)
by [FK18, Theorem I.7.1.1] and Lemma 2.5.15(2).

In order to show that F is adically quasi-coherent, we may and do assume that X = Spf A
is an affine formal R-scheme for some adhesive ring A. Then let us introduce A-modules M ′ :=
F′(X), M := F(X), and M ′′ := F′′(X). We have the natural morphism M∆ → F and we show that
it is an isomorphism. The vanishing theorem [FK18, Theorem I.7.1.1] implies that we have a short
exact sequence:

0→M ′ →M →M ′′ → 0

Thus M is almost finitely generated (resp. almost finitely presented) by Lemma 2.5.15(2). Then
Corollary 4.5.14 gives that we have a short exact sequence

0→M ′∆ →M∆ →M ′′∆ → 0

Using the vanishing theorem [FK18, Theorem I.7.1.1] once again we get a commutative diagram

0 M ′∆ M∆ M ′′∆ 0

0 F′ F F′′ 0

where the rows are exact, and left and right vertical arrows are isomorphisms. That implies that
the map M∆ → F is an isomorphism.

(3): This easily follows from Lemma 2.5.15(3), Lemma 4.5.16 and [FK18, Theorem I.7.1.1].
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(4): This also easily follows from Lemma 2.5.15(4), Lemma 4.5.16 and [FK18, Theorem I.7.1.1].
�

We also give the almost version of this Lemma:

Corollary 4.5.19. Let 0→ F′a
ϕ−→ Fa

ψ−→ F′′a → 0 be an exact sequence of OaX-modules, then

(1) If Fa is of almost finite type, and F′a is almost adically quasi-coherent then F′′a is of almost
finite type.

(2) If F′a and F′′a are of almost finite type (resp. almost finitely presented) then so is Fa.

(3) If Fa is of almost finite type and F′′a is almost finitely presented then F′a is of almost finite
type.

(4) If Fa is of almost finitely presented and F′a is of almost finite type then F′′a is almost finitely
presented.

Definition 4.5.20. We say that an OaX-module Fa is almost coherent if Fa is almost finite type
and for any open set U any finite type OaX-submodule Ga ⊂ (F|U)a is an almost finitely presented
OU-module.

We say that F is (adically quasi-coherent) almost coherent OX-module if Fa almost coherent (and
F is adically quasi-coherent).

Remark 4.5.21. Lemma 4.5.10 ensures that any adically quasi-coherent almost coherent OX -
module F is almost coherent.

Lemma 4.5.22. Let Fa be an OaX-module on a topologically finitely presented formal R-scheme
X. Then the following are equivalent:

(1) Fa is almost coherent.

(2) Fa is almost quasi-coherent and the OaX(U)-module Fa(U) is almost coherent for any open
affine formal subscheme U ⊂ X.

(3) Fa is almost quasi-coherent and there is a covering of X by open affine subschemes (Ui)i∈I
such that Fa(Ui) is almost coherent for each i.

In particular, an OaX-module Fa is almost coherent if and only if it almost finitely presented.

Proof. The proof that these three notions are equivalent is identical to the proof of Lemma 4.5.22
modulo facts that we have already established in this chapter, especially Corollary 4.5.14.

As for the last claim, we recall that X is topologically finitely presented over a topologically
universally adhesive ring, so OX(U) is coherent for any open affine U [FK18, Prop. 0.8.5.23, Lemma
I.1.7.4, Prop. I.2.3.3]. Then Lemma 2.6.13 and Lemma 2.6.15 prove the equivalence. �

Even though Lemma 4.5.22 says that the notion of almost coherence coincides with the notion
of almost finite presentation, it shows that almost coherence is morally “the correct” definition. In
what follows, we prefer to use the terminology of almost coherent sheaves as it is shorter and gives
a better intuition from our point of view.

Lemma 4.5.23. (1) Any almost finite type OaX-submodule of an almost coherent OaX-module
is almost coherent.

(2) Let ϕ : Fa → Ga be a homomorphism from an almost finite type OaX-module to an almost
coherent OaX-module. Then kerϕ is an almost finite type OaX-module.
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(3) Let ϕ : Fa → Ga be a homomorphism of almost coherent OaX-modules. Then kerϕ and
Cokerϕ are almost coherent OX-modules.

(4) Given a short exact sequence of OaX-modules

0→ F′a → Fa → F′′a → 0,

if two out of three are almost coherent so is the third one.

Remark 4.5.24. There is also an evident version of this corollary for adically quasi-coherent almost
coherent OX-modules.

Proof. The proof is identical to Corollary 4.1.12 once we have Lemma 4.5.16 and equivalence of
almost coherent and almost finitely presented OX-modules from Lemma 4.5.22. �

Corollary 4.5.25. Let X be topologically finitely presented formal R-scheme for R as in the

Setup 4.5.1. Then the category Modacoh
X (resp. Modqc,acoh

X , Modacoh
Xa ) of almost coherent OX-

modules (resp. adically quasi-coherent, almost coherent OX-modules, resp. almost coherent OaX-
modules) is a Weak Serre subcategory of ModX (resp. ModX, resp. ModaX).

4.6. Formal Schemes. Basic Functors on Almost Coherent OaX-modules. This section is
devoted to study how certain functors defined in Section 3.2 interact with the notions of almost
(quasi-)coherent OaX-modules. The exposition follows Section 4.2 very closely.

We start with the affine situation, i.e. X = Spf A. In this case, we note that the functor
(−)∆ : ModA →Modqc

X sends almost zero A-modules to almost zero OX-modules. Thus, it induces
a functor

(−)∆ : ModAa →ModXa .

Lemma 4.6.1. Let X = Spf A be an affine formal R-scheme for R as in the Setup 4.5.1. Then
the functor (−)∆ : ModA → Modqc

X induces an equivalence (−)∆ : Mod∗A → Modqc,∗
X for any

∗ ∈ {aft, acoh}. The quasi-inverse functor is given by Γ(X,−).

Proof. We note that the functor (−)∆ : ModA →Modqc
X induces an equivalence between the cate-

gory of I-adically complete A-modules and adically quasi-coherent OX-modules by [FK18, Theorem
I.3.2.8]. Recall that all almost finite type modules are complete by Lemma 2.12.7. Thus it suf-
fices to show that an adically quasi-coherent OX-module is almost finitely generated (resp. almost
coherent) if and only if so is Γ(X,F). Now this follows from Lemma 4.5.13 and Lemma 4.5.22. �

Lemma 4.6.2. Let X = Spf A be an affine formal R-scheme for R as in the Setup 4.5.1. Then
the functor (−)∆ : ModA → Modqc

X induces equivalences (−)∆ : Mod∗Aa → Mod∗Xa for any ∗ ∈
{aft, acoh}. The quasi-inverse functor is given by Γ(X,−).

Proof. The proof is analogous to Lemma 4.2.2 once Lemma 4.6.1 is verified. �

Now recall that for any R-scheme X, we can define the I-adic completion of X as a colimit
colim(Xk,OXk) of the reductions Xk := X ×R SpecR/Ik+1 in the category of formal schemes. We
refer to [FK18, §1.4(c)] for more details. This completion comes with a map of locally ringed spaces

c : X̂ → X .

One important example of a completion is ŜpecA = Spf Â for any R-algebra A25. We study the
properties of the completion map in the case of a finitely presented R-scheme or an affine scheme
SpecA for a topologically finitely presented R-algebra A.

25We note that Â is I-adically complete by [Sta21, Tag 05GG] since I is finitely generated.

https://stacks.math.columbia.edu/tag/05GG
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Lemma 4.6.3. Let X = SpecA be an affine R-scheme for R as in the Setup 4.5.1. Suppose
that A is either finitely presented or topologically finitely presented over R. Then the morphism

c : X̂ → X is flat and there is a functorial isomorphism M∆ ∼= c∗(M̃) for any almost finitely
generated A-module M .

Proof. The flatness assertion is just [FK18, Proposition I.1.4.7 (2)]. The natural map

M → H0(X, c∗(M̃))

induces the map M∆ → c∗(M̃). In order to show that it is an isomorphism, it is enough to show
that the map

M̂f →Mf ⊗Af Âf
is an isomorphism for any f ∈ A. This follows from Lemma 2.12.7, as each such Af is I-adically
adhesive. �

Corollary 4.6.4. Let X be a locally finitely presented R-scheme for R as in the Setup 4.5.1. Then

the morphism c : X̂ → X is flat and c∗ sends almost finite type OaX -modules (resp. almost coherent
OaX -modules) to almost finite type OaX-modules (resp. almost coherent OaX-modules).

Similarly, c∗ sends quasi-coherent almost finite type OX -modules (resp. quasi-coherent almost
coherent OX -modules) to adically quasi-coherent almost finite type OX-modules (resp. adically
quasi-coherent almost coherent OX-modules)

Proof. The statement is local, so we can assume that X = SpecA. Then the claim follows from
Lemma 4.6.3. �

Now we show that the pullback functor preserves almost finite type and almost coherent OaX-
modules.

Lemma 4.6.5. Let f : X → Y be a morphism of locally finitely presented formal R-scheme for R
as in the Setup 4.5.1.

(1) Suppose that X = Spf B, Y = Spf A are affine formal R-schemes. Then f∗(M∆) is functo-

rially isomorphic to (M ⊗A B)∆ for any M ∈Modaft
A .

(2) Suppose that X = Spf B, Y = Spf A are affine formal R-schemes. Then f∗(Ma,∆) is

functorially isomorphic to (Ma ⊗Aa Ba)∆ for any Ma ∈Moda,aft
A .

(3) The functor f∗ sends Modqc,aft
Y (resp. Modqc,acoh

Y ) to Modaft
X (resp. Modqc,acoh

X ).

(4) The functor f∗ sends Modaft
Ya (resp. Modacoh

Ya ) to Modaft
Xa (resp. Modacoh

Xa ).

Proof. We prove (1), the proofs of other parts follow from it similarly to the proof Lemma 4.2.3.

We consider a commutative diagram

Spf B SpecB

Spf A SpecA

cB

f f

cA

where the map f : SpecB → SpecA is the map induced by f# : A → B. Then we have that

M∆ ' c∗AM̃ by Lemma 4.6.3. Therefore,

f∗(M∆) ' c∗B(f∗M̃) ' c∗B(M̃ ⊗A B) ' (M ⊗A B)∆

where the last isomorphism follows from Lemma 4.6.3 again. �



104 BOGDAN ZAVYALOV

The next thing we discuss is how the finiteness properties interact with tensor products.

Lemma 4.6.6. Let X be a topologically finitely presented formal R-scheme for R as in the
Setup 4.5.1.

(1) Suppose that X = Spf A is affine. Then M∆⊗OX
N∆ is functorially isomorphic to (M⊗AN)∆

for any M,N ∈Modaft
A .

(2) Suppose that X = Spf A is affine. Then Ma,∆ ⊗OaX
Na,∆ is functorially isomorphic to

(Ma ⊗Aa Na)∆ for any Ma, Na ∈Modaft
Aa .

(3) Let F,G be two adically quasi-coherent almost finite type (resp. almost finitely presented)
OX-modules. Then the OX -module F ⊗OX

G is adically quasi-coherent of almost finite type
(resp. almost finitely presented).

(4) Let Fa,Ga be two almost finite type (resp. almost coherent) OaX-modules. Then the OaX-
module Fa ⊗OaX

Ga is of almost finite type (resp. almost coherent). The analogous result
holds for OX -modules F,G.

Proof. Again, we only show (1) as the other parts follow from this similarly to the proof of
Lemma 4.2.4 with the simplification that almost coherent and almost finitely presented modules
coincide by our assumption on X and R.

The proof of (1) is, in turn, similar to that of Lemma 4.6.5 (1). We consider the completion
morphism c : Spf A→ SpecA. Then we have a sequence of isomorphisms

M∆ ⊗OX
N∆ ' c∗(M̃)⊗OX

c∗(Ñ) ' c∗(M̃ ⊗OSpecA
Ñ) ' c∗(M̃ ⊗A N) ' (M ⊗A N)∆.

�

Finally, we deal with the functor HomOaX
(−,−). This is probably the most subtle functor

considered in this section. We start with the following preparatory lemma:

Lemma 4.6.7. Let X be a locally topologically finitely presented formal R-scheme for R as in the
Setup 4.5.1.

(1) Suppose X = Spf A is affine. Then the canonical map

HomA(M,N)∆ → HomOX
(M∆, N∆) (4.4)

is an almost isomorphism for any almost coherent A-modules M and N .

(2) Suppose X = Spf A is affine. Then there is a functorial isomorphism

alHomAa(Ma, Na)∆ ' alHomOaX
(Ma,∆, Na,∆) (4.5)

for any almost coherent Aa-module Ma and Na. We also get a functorial almost isomor-
phism

HomAa(Ma, Na)∆ 'a HomOaX
(Ma,∆, Na,∆) (4.6)

for any almost coherent Aa-module Ma and Na.

(3) Suppose F and G are almost coherent OX-modules. Then HomOX
(F,G) is an almost coherent

OX-module.

(4) Suppose Fa and Ga are almost coherent OaX-modules. Then

HomOaX
(Fa,Ga) (resp. alHomOaX

(Fa,Ga))

is an almost coherent OX-module (resp. OaX -module).
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Proof. Again, the proof is absolutely analogous to Lemma 4.2.6 and Corollary 4.2.7 once (1) is
proven. So we only give a proof of (1) here.

We note that both M and N are I-adically complete by Lemma 2.12.7. Now we use [FK18] to
say that the natural map HomA(M,N) → HomOX

(M∆, N∆) is an isomorphism. This induces a
morphism

HomA(M,N)∆ → HomOX
(M∆, N∆) .

In order to prove that it is an almost isomorphism, it suffices to show that the natural map

HomA(M,N)⊗̂AA{f} → HomA{f}(M⊗̂AA{f}, N⊗̂AA{f})

is an almost isomorphism for any f ∈ A. Now we note that HomA(M,N) is almost coherent by
Corollary 2.6.9. Thus, HomA(M,N)⊗AA{f} is already complete, so the completed tensor product

coincides with the usual one. Similarly, M⊗̂AA{f} ' M ⊗A A{f} and N⊗̂AA{f} ' N ⊗A A{f}.
Therefore, the question boils down to showing that the natural map

HomA(M,N)⊗A A{f} → HomA{f}(M ⊗A A{f}, N ⊗A A{f})

is an almost isomorphism. This, in turn, follows from Lemma 2.9.11. �

4.7. Formal Schemes. Approximation of Almost Coherent OaX-modules. The main goal
of this section is to establish an analogue of Corollary 4.3.5 in the context of formal schemes. More
precisely, we show that, for any “nice” formal scheme X, an almost coherent OX-module F can
be “approximated” by a coherent OX-module Gm0 up to m0 ⊂ m torsion. It turns out that this
result is more subtle than its algebraic counterpart because, in general, we do not know if we can
present an adically quasi-coherent OX-module as a filtered colimit of finitely presented OX-modules.
Also colimits are much more subtle in the formal set-up due to the presence of topology. This
seems unlikely that the method used in the proof Corollary 4.3.5 can be used in the formal set-up.
Instead, we take another route and, instead, we first approximate F up to bounded torsion and
then reduce to the algebraic case.

For the rest of the section, we fix a ring R as in the Set-up 4.5.1, and X a topologically finitely
presented formal R-scheme.

Definition 4.7.1. A map of OX-modules φ : G → F is an FP-approximation if G is a finitely
presented OX-module, and In(Kerφ) = 0, In(Cokerφ) = 0 for some n > 0.

If m0 ⊂ m is a finitely generated sub-ideal of m0, a map of OX-modules φ : G → F is an FP-m0-
approximation if it is an FP-approximation and m0(Cokerφ) = 0.

Lemma 4.7.2. Let X = Spf A be an affine topologically finitely presented formal R-scheme, and
F an adically quasi-coherent OX-module of almost finite type. Then, for any finitely generated ideal
m0 ⊂ m, F admits an FP-m0-approximation.

Proof. Lemma 4.6.2 guarantees that F = M∆ for some almost finitely generated A-module M .
Then, by definition, there is a submodule N ⊂ M such that m0(M/N). By assumption, U :=

SpecA \ V(I) is noetherian, so Ñ |U is a finitely presented OU -module. Then [FK18, Lemma
0.8.1.6(2)] guarantees that there is a finitely presented A-module N ′ with a surjective map N ′ → N
such that its kernel K is I∞-torsion. In particular, K ⊂ N ′[I∞]. But since A is I-adically
complete and noetherian outside I, [FGK11, Theorem 5.1.2 and Definition 4.3.1] guarantees that
N ′[I∞] = N ′[In] for some n ≥ 0. In particular, K is an In-torsion module.

Therefore, we have an exact sequence

0→ K → N ′ →M → Q→ 0,
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where N ′ is finitely presented, M is almost finitely generated, m0Q = 0, and InK = 0 for some
n ≥ 1. Now Lemma 4.5.14 says that the following sequence is exact:

0→ K∆ → N ′∆ →M∆ → Q∆ → 0.

In particular, N ′∆ is a finitely presented OX-module, m0(Q∆) = 0, and In(K∆). �

Lemma 4.7.3. [FK18, Exercise I.3.4] Let X be a finitely presented formal R-scheme, F an adically
quasi-coherent OX-module of finite type, and G ⊂ F an adically quasi-coherent OX-submodule.
Then G is a filtered colimit G = colimλ∈Λ Gλ of adically quasi-coherent OX-submodules of finite
type such that, for all λ ∈ Λ, G/Gλ is annihilated by In for some fixed n > 0.

Lemma 4.7.4. Let X be a finitely presented formal R-scheme, F an adically quasi-coherent, almost
finitely generated OX-module, and φi : Gi → F for i = 1, 2 two FP-m0-approximations of F for some
finitely generated sub-ideal m0 ⊂ m. Then there is a commutative diagram

G1

H F

G2

q1
φ1

φ

q2
φ2

where φ and qi are FP-m0-approximations for i = 1, 2.

Proof. By the assumption, there is an integer c > 0 such that ker(φi) and Coker(φi) are annihilated
by Ic for i = 0, 1. Therefore, we may replace m0 by m0 + Ic to assume that m0 contains Ic.

Now we define K to be the kernel of the natural morphism G1 ⊕ G2 → F. Note that it is an
adically quasi-coherent OX-submodule by Lemma 4.5.14. Therefore, Lemma 4.7.3 applies to the
inclusion K ⊂ G1 ⊕ G2, so we can write K = colimλ∈Λ Kλ as a filtered colimit of adically quasi-
coherent, finite type OX-submodules of G1⊕G2 with Im(K/Kλ) = 0 for some fixed m > 0 and every
λ ∈ Λ. We define Hλ = (G1 ⊕ G2)/Kλ, it comes with the natural morphisms

φλ : Hλ → F,

qi,λ : Gi → Hλ

for i = 1, 2. We claim that these morphisms satisfy the claim of lemma for some λ ∈ Λ, i.e. φλ,
and qi,λ are FP-m0-approximations.

Since X is topologically finitely presented (in particular, it is quasi-compact and quasi-separated),
these claims can be checked locally. So we may and do assume that X = Spf A is affine. Then we
use Lemma 4.6.2, [FK18, Theorem I.3.2.8, Proposition I.3.5.4] to reduce to the situation X = Spf A,
F = M∆, G1 = N∆

1 , G2 = N∆
2 for some almost finitely generated A-module M , and finitely presented

A-modules N1, N2 with maps of sheaves induced by homomorphisms N1 →M and N2 →M . Then
Lemma 4.5.14 guarantees that K = K∆ for K = ker(N1 ⊕ N2 → M), and K = colimλ∈ΛKλ for
finitely generated A-submodules26 Kλ with Im(K/Kλ) = 0 for some fixed m > 0 and all λ ∈ Λ.
So one can use Lemma 4.5.14 once again to conclude that it suffices (due to the assumption
that Ic ⊂ m0) to show that, for some λ ∈ Λ, the natural morphisms (N1 ⊕ N2)/Kλ → M ,
Ni → (N1⊕N2)/Kλ have kernels annihilated by some power of I, and cokernels annihilated by m0.

26Here, Kλ = Γ(X,Kλ), so the equality follows from [Sta21, Tag 009F].

https://stacks.math.columbia.edu/tag/009F
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The kernels of Ni → (N1 ⊕ N2)/Kλ (for i = 1, 2) embed into the respective kernels for the
morphisms N1 → M , so they are automatically annihilated by some power of I for any λ ∈ Λ.
Also, clearly, the morphism (N1⊕N2)/Kλ →M has kernel K/Kλ that is annihilated by Im by the
choice of Kλ.

Therefore, it suffices to show that we can choose λ ∈ Λ such that qi,λ : Ni → (N1 ⊕ N2)/Kλ

(for i = 1, 2) and φλ : (N1 ⊕ N2)/Kλ → M have cokernels annihilated by m0. The latter case is
automatic and actually holds for any λ ∈ Λ. So the only non-trivial thing we need to check is that
m0(Coker qi,λ) = 0 for some λ ∈ Λ.

Let (m1, . . . ,md) ∈ m0 be a finite set of generators, and {yi,j}j∈Ji a finite set of generators of Ni

for i = 1, 2. Denote by yi,j the image of yi,j in M . Define xi,j,k ∈ N2−i to be a lift of mkyi,j ∈ M
in N2−i for k = 1, . . . , d, i = 1, 2 and j ∈ Ji. Note that elements (mky1,j , x1,j,k) ∈ N1 ⊕ N2 and
(x2,j,k,mky2,j) ∈ N1 ⊕ N2 lie in K. So for some λ ∈ Λ, Kλ contains the elements (mky1,j , x1,j,k)
and (x2,j,k,mky2,j). Then it is easy to see that the cokernels of Ni → (N1⊕N2)/Kλ are annihilated
by m0. This finishes the proof. �

Lemma 4.7.5. Let X be a finitely presented formal R-scheme, F an adically quasi-coherent, almost
finitely type OX-module. Then, for any finitely generated ideal m0 ⊂ m, F is FP-m0-approximated.

Proof. Firstly, we note that Lemma 4.7.2 guarantees that the claim holds if X is affine. Now choose
a covering of X by open affines X =

⋃n
i=1 Vi, we know that claim on each Vi. So it suffices to

show that, if X = U1 ∪ U2 is union of two finitely presented open formal subschemes and F is
FP-m0-approximated on both U1 and U2, then F is FP-m0-approximated on X.

Suppose that Gi → F|Ui are FP-m0-approximations on Ui for i = 1, 2. Then the intersection
U1,2 := U1∩U2 is again topologically finitely presented formalR-schene because X is so (in particular,
it is assumed to be quasi-compact and quasi-separated). Therefore, Lemma 4.7.4 guarantees that
we can find another FP-m0-approximation H → F|U1,2 that is dominated by both Gi|U1,2 → F|U1,2

for i = 1, 2. Consider the OU1,2-modules

Ki := ker(Gi|U1,2 → H) for i = 1, 2.

Lemma 4.5.14 guarantees that both Ki are adically quasi-coherent OX-modules of finite type27.
The fact that Gi|U1,2 → H are FP-m0-approximations ensures that both Ki are killed by some Im

for m ≥ 1. In particular, we see that Ki ⊂ Gi[I
m]|U1,2 , so they are naturally quasi-coherent sheaves

on Xm−1 = X ×Spf R SpecR/Im. Therefore, one can use [Sta21, Tag 01PF] (applied to Xm−1) to
extend Ki to

K̃i ⊂ Gi[I
m] ⊂ Gi

where K̃i adically quasi-coherent OX-modules of finite type. Then Gi/K̃i → F|Ui are FP-m0-
approximations of F|Ui that are isomorphic on the intersection. Therefore, they glue to a global
FP-m0-approximation G→ F. �

Theorem 4.7.6. Let X be a finitely presented formal R-scheme, F an almost finitely generated
(resp. almost finitely presented) OX-module. Then, for any finitely generated ideal m0 ⊂ m, there
is an adically quasi-coherent, finitely generated (resp. finitely presented) OX-module G and a map
φ : G→ F such that m0(Cokerφ) = 0 and m0(kerφ) = 0.

Proof. Without loss of generality, we can replace F by m̃⊗ F, so we may and do assume that F is
adically quasi-coherent.

27Since they are kernels of morphisms between coherent OX-modules

https://stacks.math.columbia.edu/tag/01PF
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The case of almost adically quasi-coherent, almost finite type OX-module F follows from Lemma 4.7.5.
Indeed, there is an FP-m0-approximation φ′ : G′ → F, so we define φ : G → F to be the natural
inclusion G := Im(φ′) → F. This gives the desired morphism as G is an adically quasi-coherent
OX-module of almost finite type by Corollary 4.5.16.

Now suppose F is an adically quasi-coherent, almost finitely presented OX-module. Then we use
Lemma 4.7.5 to find an FP-m0-approximation φ′ : G′ → F. Now we note that any almost finitely
presented OX-module is almost coherent by Lemma 4.5.22. Therefore, kerφ is again adically quasi-
coherent, almost finitely presented. Therefore, we can find an FP-m0-approximation φ′′ : G′′ →
ker(φ′) by Lemma 4.7.5. Denote by φ′′′ : G′′ → G′ the composition of φ′′ with the natural inclusion
ker(φ′) → G′. Now it is easy to check that φ : Coker(φ′′′) → F gives the desired “approximation”.

�

4.8. Formal Schemes. Derived Category of Almost Coherent OaX-modules. We discuss
the notion of the derived category of almost coherent sheaves on a formal scheme X. One major
issue is that there the derived category of OX-modules with adically quasi-coherent cohomology
sheaves is not well-defined, as adically quasi-coherent sheaves is not a Weak Serre subcategory of
ModX, so it is not even an abelian category. However, it would be useful for certain technical
reasons to be able to work with that category.

In order to overcome this issue, we follow the strategy used in [Lur18] and define “Dqc(X)”
completely on the derived level without really defining a good abelian notion of (adically) quasi-
coherent sheaves. For the rest of the section, we fix a base ring R as in the Setup 4.5.1.

Definition 4.8.1. Let X be a locally topologically finitely presented R-scheme. Then we define
the derived category of adically quasi-coherent sheaves “Dqc(X)” as a full subcategory of D(X) with
elements F such that

• For every open affine U ⊂ X, RΓ(U,F) ∈ D(OX(U)) is derived I-adically complete.
• For every inclusion U ⊂ V of affine formal subschemes of X, the natural morphism

RΓ(V,F)⊗̂LOX(V)OX(U) → RΓ(U,F)

is an isomorphism, where the completion is understood in the derived sense.

Remark 4.8.2. We refer to [Sta21, Tag 091N] and [Sta21, Tag 0995] for a self-contained discussion
of the derived completion of modules and sheaves of modules respectively.

We want to give an interpretation of “Dqc(X)” in terms of A-modules for an affine formal scheme
X = Spf A. We recall that in the case of schemes, we have a natural equivalence Dqc(SpecA) '
D(A) and the map is induced by RΓ(SpecA,−). In the case of formal schemes, it is not literally
true. We need to impose certain completeness conditions.

Definition 4.8.3. Let A be a ring with a finitely generated ideal I. We define the Dcomp(A, I) ⊂
D(A) as a full triangulated subcategory consisting of I-adically derived complete objects.

Suppose now that X = Spf A be an affine scheme, topologically finitely presented over R. We
note that the natural functor RΓ(X,−) : D(X)→ D(A) induces a functor

RΓ(X,−) : “Dqc(X)”→ Dcomp(A, I) .

The main claim is that this functor is an equivalence. This is the main content of [Lur18, Corollary
8.2.4.15]. We need to prove one technical result to ensure that our definitions are consistent with
the definitions in Lurie’s book.

https://stacks.math.columbia.edu/tag/091N
https://stacks.math.columbia.edu/tag/0995


ALMOST COHERENT MODULES AND ALMOST COHERENT SHEAVES 109

Lemma 4.8.4. Let A be a topologically finitely presented R-algebra for R as in the Setup 4.5.1, let
f ∈ A be any element, and let (x1, . . . , xd) = I be a choice of generators for the ideal of definition
of R. Denote by K(Af ;xn1 , . . . , x

n
d ) the Koszul complexes for the sequence (xn1 , . . . , x

n
d ). Then the

pro-systems {K(Af ;xn1 , . . . , x
n
d )} and {Af/In} are isomorphic in Pro(D(Af )).

Proof. The proof is the same [Sta21, Tag 0921]. The only difference that one needs to use [FGK11,
Theorem 4.2.2(2)(b)] in place of the usual the Artin-Rees lemma. �

Lemma 4.8.5. Let A be a topologically finitely presented R-algebra for R as in the Setup 4.5.1,
let f ∈ A be any element. Then the completed localization A{f} coincides with the I-adic derived
completion of Af .

Proof. Choose some generators I = (x1, . . . , xd). Then we know that the derived completion com-
pletion of Af is given by R limnK(Af ;xn1 , . . . , x

n
d ) where K(Af ;xn1 , . . . , x

n
d ) is the Koszul complex

for the sequence (xn1 , . . . , x
n
d ). Lemma 4.8.4 implies that the pro-systems {K(Af ;xn1 , . . . , x

n
d )} and

{Af/In} are naturally pro-isomorphic. Thus we have an isomorphism

R lim
n
K(Af ;xn1 , . . . , x

n
d ) ∼= R lim

n
Af/I

n ' A{f} .

The last isomorphism uses the Mittag-Leffler criterion to ensure vanishing of lim1. �

Theorem 4.8.6. [Lur18, Corollary 8.2.4.15] Let X = Spf A be an affine, finitely presented formal
scheme over R as in the Setup 4.5.1. Then the functor RΓ(X,−) : “Dqc(X)” → Dcomp(A, I) is an
equivalence of categories.

Proof. The statement can be deduced from [Lur18, Corollary 8.2.4.15] by passing to the homotopy
categories. We note that even though [Lur18, Corollary 8.2.4.15] uses∞-categories, the cited proof
can be rephrased in our situation without using any derived geometry. However, it would require
quite a big digression, so instead we explain why our definitions are compatible with definitions in
[Lur18].

Lemma 4.8.5 implies that the definition of Spf A in [Lur18] is compatible with the classical
one. Now [Lur18, Proposition 8.2.4.18] ensures that our definition of “Dqc(X)” is equivalent to
h(Qcoh(X)) in the sense of [Lur18]. �

Definition 4.8.7. We denote by

(−)L∆ : Dcomp(A, I)→ “Dqc(X)”

the pseudo-inverse to RΓ(X,−) : “Dqc(X)”→ Dcomp(A, I). We note that clearly

RΓ(Spf A{f},M
L∆) 'M⊗̂AA{f}

for any M ∈ Dcomp(A, I).

Remark 4.8.8. The functor (−)L∆ is not compatible with the “abelian” functor (−)∆ used the
previous sections.

Our real goal is to show that there is an equivalence between Dacoh(A) and Dqc,acoh(X). The-
orem 4.8.6 will be a useful tool to prove this equivalence. We now give a precise definition of
Dqc,acoh(X).

Definition 4.8.9. We define Dqc,acoh(X) (resp. Dacoh(X)a) to be the full triangulated subcategory
of D(X) (resp. D(X)a) consisting of complexes with adically quasi-coherent, almost coherent (resp.
almost coherent) cohomology sheaves (resp. almost sheaves).

https://stacks.math.columbia.edu/tag/0921
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Remark 4.8.10. An argument similar to one in the proof of Lemma 4.4.5 shows that Dacoh(X)a

is equivalent to the Verdier quotient Dqc,acoh(X)/Dqc,ΣX
(X).

In order to show an equivalence Dqc,acoh(X) ' Dacoh(A), our first goal is to show that Dqc,acoh

lies inside “Dqc(X)”. Even though it looks very plausible, it requires a proof that is not entirely
trivial.

Lemma 4.8.11. Let X = Spf A be an affine topologically finitely presented formal R-scheme for
R as in the Setup 4.5.1. Then the functor RΓ(X,−) : Dqc,acoh(X)→ D(A) is t-exact (with respect
to the evident t-structures on both sides) and factors through Dacoh(A). More precisely, there is
an isomorphism

Hi (RΓ (X,F)) ' H0
(
X,Hi (F)

)
∈Modacoh

A

for any object F ∈ Dqc,acoh(X).

Proof. We note that the vanishing theorem [FK18, Theorem I.7.1.1] implies that we can use [Sta21,
Tag 0D6U] with N = 0. Thus we see that the map Hi(RΓ(X,F)) → Hi(RΓ(X, τ≥iF)) is an
isomorphism for any integer i, and that RΓ(X,F) ∈ Dacoh(A) for any F ∈ Dqc,acoh(X). Combining
it with the canonical isomorphism Hi(RΓ(X, τ≥iF)) ' H0(X,Hi(F)) we get the desired result. �

Lemma 4.8.12. Let X be an locally topologically finitely presented formal R-scheme for R as in
the Setup 4.5.1. Then Dqc,acoh(X) is naturally a full triangulated subcategory of “Dqc(X)”.

Proof. Both Dqc,acoh(X) and “Dqc(X)” are full triangulated subcategories of D(X). Thus, it suffices
to show that any F ∈ Dqc,acoh(X) lies in “Dqc(X)”.

Lemma 4.8.11 and Corollary 2.12.8 imply that RΓ(U,F) ∈ Dcomp(A, I) for any open affine U ⊂ X.
Now suppose U ⊂ V is an inclusion of open affine formal subschemes in X. We consider the natural
morphism

RΓ(V,F)⊗̂LOX(V)OX(U)→ RΓ(U,F)

We note that OX(U) is flat over OX(V) by [FK18, Proposition I.4.8.1]. Thus, the complex

RΓ(V,F)⊗LOX(V) OX(U)

lies in Dacoh(OX(U)) by Lemma 2.8.1. Therefore, it also lies in Dcomp(A, I) by Corollary 2.12.8. So
we conclude that

RΓ(V,F)⊗̂LOX(V)OX(U) ' RΓ(V,F)⊗LOX(V) OX(U) .

Using OX(V)-flatness of OX(U), we conclude that the question boils down to show that

Hi(V,F)⊗OX(V) OX(U) → Hi(U,F)

is an isomorphism for all i. Now Lemma 4.8.11 implies that this, in turn, reduces to showing that
the natural map

Γ(V,Hi(F))⊗OX(V) OX(U) → Γ(U,Hi(F))

is an isomorphism. Without loss of generality, we may assume that X = V = Spf A. Then Hi(F)
is an adically quasi-coherent, almost coherent OX-module, so it is isomorphic to M∆ for some
M ∈ Modacoh

A by Lemma 4.6.1. So the desired claim follows from [FK18, Lemma 3.6.4] and the
observation that M ⊗OX(V) OX(U) is already I-adically complete by Lemma 2.12.7. �

Now we show that the (−)L∆ functor sends Dacoh(A) to Dqc,acoh(Spf A). This is also not entirely

obvious as this derived version of (−)L∆ a priori has nothing to do with the classical version of
(−)∆-functor defined on classically I-adically complete modules. The key is to show that these

functors coincide on Modacoh
A .

https://stacks.math.columbia.edu/tag/0D6U
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Lemma 4.8.13. Let X = Spf A be an affine topologically finitely presented formal R-scheme for R
as in the Setup 4.5.1. Then the functor (−)L∆ : Dacoh(A)→ “Dqc(X)” factors through Dqc,acoh(X).
Moreover, for any M ∈ Dacoh(A), there are functorial isomorphisms

Hi(M)∆ ' Hi(ML∆).

Proof. We note that Hi(X,ML∆) ' Hi(M) by its very construction. Since Hi(ML∆) is canonically
isomorphic to the sheafification of the presheaf

U 7→ Hi(U,ML∆),

we get that there is a canonical map Hi(M) → Γ(X,Hi(M∆)). By the universal property of the
classical (−)∆ functor, we get a functorial morphism

Hi(M)∆ → Hi(ML∆).

Since Hi(M) is almost coherent, we only need to show that this map is an isomorphism for any i.
This boils down (using almost coherence of Hi(M)) to show that

Hi(M)⊗A A{f} → Hi(Spf A{f},M
L∆) .

for all f ∈ A. Now recall that RΓ(Spf A{f},M
L∆) ' M⊗̂LAA{f} for any f ∈ A. Using that

M ∈ Dacoh(A), A{f} is flat over A, and that almost coherent complexes are derived complete by
Lemma 2.12.8, we conclude that the natural map

Hi(M)⊗A A{f} → Hi(Spf A{f},M
L∆)

is an isomorphism finishing the proof. �

Corollary 4.8.14. Let X = Spf A be an affine topologically finitely presented formal R-scheme
for R as in the Setup 4.5.1. Suppose that M ∈ D(A) has almost zero cohomology modules. Then
Hi(ML∆) is an almost zero, adically quasi-coherent OX-module for all integer i. In particular,
(−)L∆ induces a functor (−)L∆ : Dacoh(A)a → Dacoh(X)a.

Proof. This follows directly from the observation that any almost zero A-modules is almost coherent
and the formula Hi(M)∆ ' Hi(ML∆) established in Lemma 4.8.13. �

Theorem 4.8.15. Let X = Spf A be an affine topologically finitely presented formal R-scheme for
R as in the Setup 4.5.1. Then the functor RΓ(X,−) : Dqc,acoh(X)→ Dacoh(A) is t-exact equivalence

of triangulated categories with the pseudo-inverse (−)L∆.

Proof. Lemma 4.8.11 implies that RΓ(X,−) induces the functor Dqc,acoh(X)→ Dacoh(A) and that
this functor is t-exact. Lemma 4.8.12 and Theorem 4.8.6 ensures that it is sufficient to show that
(−)L∆ sends Dacoh(A) to Dqc,acoh(X), this follows from Lemma 4.8.13. �

Now we can pass to the almost categories using Remark 4.8.10 to get the almost version of
Theorem 4.8.15.

Corollary 4.8.16. Let X = Spf A be an affine topologically finitely presented formal R-scheme
for R as in the Setup 4.5.1. Then the functor RΓ(X,−) : Dacoh(X)a → Dacoh(A)a is a t-exact
equivalence of triangulated categories with the pseudo-inverse (−)L∆.
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4.9. Formal Schemes. Basic Functors on the Derived Categories of OaX-modules. We
discuss the derived analogue of the results in Section 4.6. We show that the derived completion,
derived tensor product, derived pullback, and derived almost Hom functors preserve complexes
with almost coherent cohomology sheaves under certain conditions. For the rest of the section, we
fix a ring R as in the Setup 4.5.1.

We start with the completion functor. We recall that we have defined the morphism of locally

ringed spaces c : X̂ → X for any R-schemeX. IfX is locally finitely presented over R orX = SpecA
for a topologically finitely presented R-algebra A, then c is a flat morphism as was shown in
Lemma 4.6.3 and Corollary 4.6.4.

Lemma 4.9.1. Let X = SpecA be an affine R-scheme for R as in the Setup 4.5.1. Suppose that
A is either finitely presented or topologically finitely presented over R. Suppose M ∈ Dacoh(A).

Then ML∆ ' Lc∗(M̃).

Proof. First of all, we show that Lc∗(M̃) ∈ Dqc,acoh(X̂). Indeed, the functor c∗ is exact as c is flat.
Thus, Lemma 4.6.3 guarantees that we have a sequence of isomorphisms

Hi
(
Lc∗

(
M̃
))
' c∗

(
H̃i (M)

)
'
(
Hi (M)

)∆
.

In particular, Theorem 4.8.6 ensures that the natural morphism

M ' RΓ(X, M̃)→ RΓ(X̂,Lc∗(M̃))

induces the morphism ML∆ → Lc∗(M̃). As c∗ is exact, Lemma 4.8.13 implies that it is sufficient
to show that the natural map

Hi(M)∆ → c∗(H̃i(M))

is an isomorphism for all i. This follows from Lemma 4.6.3. �

Corollary 4.9.2. Let X be a locally finitely presented R-scheme for R as in the Setup 4.5.1. Then

Lc∗ induces functors Lc∗ : D∗qc,acoh(X) → D∗qc,acoh(X̂) (resp. Lc∗ : D∗acoh(X)a → D∗acoh(X̂)a) for

any ∗ ∈ {“ ”,−, b,+}.

Proof. The claim is local, so it suffices to assume that X = SpecA. Then it follows from exactness
of c∗ and Lemma 4.9.1. �

Lemma 4.9.3. Let f : X → Y be a morphism of locally finitely presented formal R-scheme for R
as in the Setup 4.5.1.

(1) Suppose that X = Spf B, Y = Spf A are affine formal R-schemes. Then there is a functorial
isomorphism

Lf∗
(
ML∆

)
' (M ⊗A B)L∆

for any M ∈ Dacoh(A).

(2) Suppose that X = Spf B, Y = Spf A are affine formal R-schemes. Then there is a functorial
isomorphism

Lf∗
(
Ma,L∆

)
' (Ma ⊗Aa Ba)L∆

for any Ma ∈ Dacoh(A).

(3) The functor Lf∗ carries D−qc,acoh(Y) to D−qc,acoh(X).

(4) The functor Lf∗ carries D−acoh(Y)a to D−acoh(X)a.
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Proof. The proof is similar to Lemma 4.6.5. We use Lemma 4.9.1 and Lemma 4.8.13 to reduce to
the analogous algebraic fact that was already proven in Lemma 4.2.3. �

Lemma 4.9.4. Let X be a locally topologically finitely presented formal R-scheme for R as in the
Setup 4.5.1.

(1) Suppose that X = Spf A is affine. Then there is a functorial isomorphism

ML∆ ⊗LOX
NL∆ ' (M ⊗LA N)L∆

for any M , N ∈ Dacoh(A).

(2) Suppose that X = Spf A is affine. Then there is a functorial isomorphism

Ma,L∆ ⊗LOaX N
a,L∆ ' (Ma ⊗LAa Na)L∆

for any Ma, Na ∈ Dacoh(A)a.

(3) Let F, G ∈ D−qc,acoh(X). Then F ⊗LOX
G ∈ D−qc,acoh(X).

(4) Let Fa, Ga ∈ D−acoh(X)a. Then Fa ⊗LOaX Ga ∈ D−acoh(X)a.

Proof. Similarly to Lemma 4.9.3, we use Lemma 4.9.1 and Lemma 4.8.13 to reduce to the analogous
algebraic fact that was already proven in Lemma 4.2.4. �

Now we discuss the RalHomOX
(−,−) functor. Our strategy of showing that RalHom(−,−)

preserves almost coherent complexes will be slightly different from the schematic case. The main
technical problem is to define the map RalHomAa(Ma, Na)L∆ → RalHomOaX

(Ma,L∆, Na,L∆) in the

affine case.
The main issue is that we do not know if (−)L∆ is a left adjoint to the functor of global section

on the whole category D(X); we only know that it becomes a pseudo-inverse to RΓ(X,−) after
restriction to “Dqc(X)”. However, the complex RHomOX

(ML∆, NL∆) itself does not usually lie
inside “Dqc(X)”. To overcome this issue, we will show that

m̃⊗RHomOX
(ML∆, NL∆)

does lie in “Dqc(X)” for M ∈ D−acoh(A) and N ∈ D+
acoh(A).

Since “Dqc(X)” was defined in a bit abstract way, it is probably the easiest way to show that

m̃⊗RHomOX
(ML∆, NL∆) actually lies in Dqc,acoh(X). That is sufficient by Lemma 4.8.12.

Lemma 4.9.5. Let X = Spf A be a topologically finitely presented formal R-scheme for R as in
the Setup 4.5.1. Let M,N ∈Modacoh

A there are natural almost isomorphisms

ExtpA(M,N)∆
∼−→ ExtpOX

(M∆, N∆)

for all integer p.

Proof. We recall that ExtpOX
(M∆, N∆) is canonically isomorphic to sheafification of the presheaf

U 7→ ExtpOU
(M∆|U, N∆|U) .

In particular, there is a canonical map ExtpOX
(M∆, N∆) → Γ(X,ExtpOX

(M∆, N∆)). It induces the
morphism

ExtpOX
(M∆, N∆)∆ → ExtpOX

(M∆, N∆) . (4.7)
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Now we note that the classical (−)∆ functor and the derived version coincide on almost coherent
modules by Lemma 4.8.13. Hence, the equivalence “Dqc(X)” ' Dcomp(A, I) coming from Theo-

rem 4.8.6 and Lemma 4.8.13 ensure that ExtpOX
(M∆, N∆) ' ExtpA(M,N). So the map (4.7) becomes

the map

ExtpA(M,N)∆ → ExtpOX
(M∆, N∆) .

We note that ExtpA(M,N) is an almost coherent A-module by Proposition 2.6.19. Using that almost
coherent modules are complete, we conclude that it suffices to show that

ExtpA(M,N)⊗A A{f} → ExtpSpf A{f}
(M∆|Spf A{f} , N

∆|Spf A{f})

is an almost isomorphism. Using Lemma 4.6.5 and the equivalence “Dqc(X)” ' Dcomp(A, I) as
above, we see that the map above becomes the canonical map

ExtpA(M,N)⊗A A{f} → ExtpA{f}(M ⊗A A{f}, N ⊗A A{f}) .

Finally, this map is an almost isomorphism by Proposition 2.9.12. �

Corollary 4.9.6. Let X be a locally topologically finitely presented formal R-scheme for R as in
the Setup 4.5.1. Then

m̃⊗RHomOX
(F,G) ∈ D+

qc,acoh(X)

for F ∈ D−qc,acoh(X), and G ∈ D+
qc,acoh(X).

Proof. The claim is local, so we can assume that X = Spf A. Using the Ext-spectral sequence

and Lemma 4.5.18 to reduce to the case Fand F in Modqc,acoh
X . Then Theorem 4.6.2 ensures that

F = M∆ and G = N∆ for some M , N ∈Modacoh
A . Then Lemma 4.9.5 guarantees that

Hp
(
RHomOX

(F,G)
)
'a ExtpA(M,N)∆.

In other words,

m̃⊗Hp
(
RHomOX

(F,G)
)
' m̃⊗ ExtpA(M,N)∆ .

Now ExtpA(M,N)∆ is an adically quasi-coherent, almost coherent OX-module by Proposition 2.6.19

and Lemma 4.6.1. So Lemma 4.5.10 guarantees that m̃⊗ExtpA(M,N)∆ is also adically quasi-coherent

and almost coherent. Therefore, m̃⊗RHomOX
(F,G) ∈ D+

qc,acoh(X). �

Lemma 4.9.7. Let X be a locally topologically finitely presented formal R-scheme for R as in the
Setup 4.5.1.

(1) Suppose X = Spf A is affine. Then there is a functorial isomorphism

RalHomAa(Ma, Na)L∆ → RalHomOaX
(Ma,L∆, Na,L∆)

for M ∈ D−acoh(A)a and N ∈ D+
acoh(A)a.

(2) Suppose Fa ∈ D+
acoh(X)a and Ga ∈ D−acoh(X) are almost coherent OaX-modules. Then

RalHomOaX
(Fa,Ga) ∈ D+

acoh(X)a .

Proof. We start with (1). Proposition 3.5.8 implies the map

(m̃⊗RHomOX
(M∆, N∆))a → RalHomOaX

(Ma,∆, Na,∆)

is an isomorphism in D(X)a. Similarly, the map

(m̃⊗RHomA(M,N)∆)a → RalHomAa(Ma, Na)∆
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is an isomorphism by Lemma 4.9.5. Thus it suffices to construct a functorial isomorphism

m̃⊗RHomA(M,N)L∆ → m̃⊗RHomOX
(ML∆, NL∆) .

Now Lemma 4.8.13 and Corollary 4.9.6 guarantee that

m̃⊗RHomOX
(ML∆, NL∆) ∈ Dqc,acoh(X).

Proposition 2.6.19, Lemma 4.6.1, and Lemma 4.5.10 also guarantee that

m̃⊗RHomA(M,N)∆ ∈ Dqc,acoh(X).

Thus, Theorem 4.8.6 ensures that in order to construct the desired isomorphism it suffices to do
it after applying RΓ(X,−). Projection Formula (Theorem 3.3.6) and the definition of the (−)L∆-
functor provide us with functorial isomorphisms

RΓ
(
X, m̃⊗RHomA(M,N)L∆

)
' m̃⊗RHomA(M,N)

RΓ
(
X, m̃⊗RHomOX

(ML∆, NL∆)
)
' m̃⊗RΓ

(
X,RHomOX

(ML∆, NL∆)
)

' m̃⊗RHomOX (ML∆, NL∆)

' m̃⊗RHomA (M,N)

where the last isomorphism uses equivalence from Theorem 4.8.6. Thus, we see

RΓ
(
X, m̃⊗RHomA(M,N)L∆

)
' RΓ

(
X, m̃⊗RHomOX

(ML∆, NL∆)
)
.

As a consequence, we have a functorial isomorhism

m̃⊗RHomA (M,N)L∆
∼−→ m̃⊗RHomOX

(
ML∆, NL∆

)
.

This induces the desired isomorphism

RalHomAa (Ma, Na)L∆
∼−→ RalHomOaX

(
Ma,L∆, Na,L∆

)
.

(2) is an easy consequence of (1), Proposition 2.6.19, and Corollary 4.8.14. �

5. Cohomological Properties of Almost Coherent Sheaves

5.1. Almost Proper Mapping Theorem. The main goal of this section is to prove the “Almost
Proper Mapping Theorem” both in setup of both “nice” schemes and “nice” formal schemes. The
theorem roughly says the derived pushforward of an almost coherent OX -module along a (topolog-
ically) finitely presented proper map is almost coherent.

The idea of the proof is rather easy: we “approximate” an almost finitely presented OX -module
by finitely presented using Corollary 4.3.5 and then the usual Proper Mapping Theorem. However,
there is a subtlety that the usual Proper Mapping Theorem is usually proven only for a (locally)
noetherian base, and we are really interested in non-noetherian situation. So we use a more general
version (in so-called “universally coherent” case) of the Proper Mapping Theorem from the book
[FK18].

Definition 5.1.1. We say that a scheme Y is universally coherent if any scheme X that is locally
of finite presentation over Y is coherent (i.e. the structure sheaf OX is coherent).

Theorem 5.1.2 (Proper Mapping Theorem). [FK18, Theorem I.8.1.3] Let Y be a universally
coherent quasi-compact scheme, and f : X → Y a proper morphism of finite presentation. Then
the functor Rf∗ sends D∗coh(X) to D∗coh(Y ) for any ∗ ∈ {“ ”,+,−, b}.
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We want to generalize this theorem to the “almost world”. So we pick a ring R and a fixed ideal
m ⊂ R such that m2 = m and m̃ = m ⊗R m is R-flat. In this section, we always consider almost
mathematics with respect to this ideal.

Theorem 5.1.3 (Almost Proper Mapping Theorem). Let Y be a universally coherent quasi-
compact R-scheme, and let f : X → Y be a proper, finitely presented morphism. Then

• The functor Rf∗ sends D∗qc,acoh(X) to D∗qc,acoh(Y ) for any ∗ ∈ {“ ”,+,−, b}.

• The functor Rf∗ sends D∗acoh(X)a to D∗acoh(Y )a for any ∗ ∈ {“ ”,+,−, b}.

• The functor Rf∗ sends D+
acoh(X) to D+

acoh(Y ).

• If Y has finite Krull dimension, then Rf∗ sends D∗acoh(X) to D∗acoh(Y ) for any ∗ ∈ {“ ”,+,−, b}.

Lemma 5.1.4. Let Y be a quasi-compact scheme of finite Krull dimension, and let f : X → Y
be a finite type, quasi-separated morphism. Then X has finite Krull dimension, and f∗ is of finite
cohomological dimension on ModX .

Proof. First of all, we show that X has finite Krull dimension. Indeed, the morphism f : X → Y
is quasi-compact, therefore X is quasi-compact. Then it suffices to show that locally X has finite
Krull dimension. So we can assume that X = SpecB, Y = SpecA, and the map is given by a finite
type morphism A → B. In that situation we have dimY = dimA and dimX = dimB. Thus,
it is enough to show that the Krull dimension of a finite type A-algebra is finite. This readily
reduces the question to the case of a polynomial algebra dimA[X1, . . . , Xn]. Now [AM69, Chapter
11, Exercise 6] implies that dimA[X1, . . . , Xn] ≤ dimA+ 2n.

Now we prove that f∗ has finite cohomological dimension. We note that it suffices to show that
there is an integer N such that for any open affine U ⊂ Y the cohomology groups Hi(XU ,F) vanish
for i ≥ N and any OXU -module F. We recall that f is quasi-separated, so XU is quasi-compact,
quasi-separated and dimXU ≤ dimX for any open U ⊂ X. Therefore, it is sufficient to show that
on any spectral space X we have Hi(X,F) = 0 for i > dimX and F ∈ Ab(X). This is proven in
[Sch92, Corollary 4.6] (another reference is [Sta21, Tag 0A3G]). Thus we see that N = dimX does
the job. �

Proof of Theorem 5.1.3. Step 0. Reduction to the case of bounded below derived categories: We
note that f∗ always has bounded cohomological dimension on Modqc

X . Indeed, for any F ∈Modqc
X

on a separated scheme X, we can compute Hi(X,F) by the alternating Čech complex for some finite
covering of X by affines. Therefore, if X can be covered by N affines, the functor f∗ restricted to
Modqc

X has cohomological dimension at most N .
Now we use [Sta21, Tag 0D6U] (alternatively, one can use [Lim19, Lemma 3.4]) to reduce the

question of proving the claim for any F ∈ Dqc,acoh(X) to the question of proving the claim for all its

truncations τ≥aF. In particular, we can assume that F ∈ D+
qc,acoh(X). The case Fa ∈ D∗acoh(X)a

can be shown similarly. Actually, Proposition 3.5.23 and the observation that Fa! ∈ Dqc,acoh(X)
imply that the results for D∗qc,acoh(X) and D∗acoh(X)a are equivalent.

The same argument also works for D+
acoh(X) provided that X, Y and f∗ has finite cohomological

dimension. Lemma 5.1.4 and [Sta21, Tag 0A3G] say that it holds whenever Y has finite Krull
dimension.

Step 1. Reduction to the case quasi-coherent almost coherent sheaves: Using the Projection For-
mula (Lemma 3.3.6) (resp. Proposition 3.5.23), we see that in order to show Rf∗ sends D+

acoh(X)

to D+
acoh(Y ) (resp. D+

acoh(X)a to D+
acoh(Y )a) it is sufficient to show the analogous result for

https://stacks.math.columbia.edu/tag/0A3G
https://stacks.math.columbia.edu/tag/0D6U
https://stacks.math.columbia.edu/tag/0A3G
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D+
qc,acoh(X). Moreover, we can use the spectral sequence

Ep,q2 = Rpf∗H
q(F)⇒ Rp+qf∗(F)

to reduce the claim to the fact that higher derived pushforwards of a quasi-coherent, almost coher-
ent sheaf are quasi-coherent, almost coherent.

Step 2. The case of a quasi-coherent, almost coherent OX-module F: We show that Rif∗F is
a quasi-coherent, almost coherent OY -module for any quasi-coherent, almost coherent OX -module
F and any i. First of all, we note that Rif∗F is quasi-coherent as higher pushforwards along
quasi-compact, quasi-separated morphisms preserve quasi-coherence.

Now we show almost coherence of Rif∗F. Note that it is sufficient to show that Rif∗F is almost
finitely presented as Y is a coherent scheme (this follows from Lemma 4.1.15 and Lemma 4.1.16).
We choose some finitely generated ideal m0 ⊂ m and another finitely generated ideal m1 ⊂ m
such that m0 ⊂ m2

1. Then we use Corollary 4.3.5 to find a finitely presented OX -module G and a
morphism

ϕ : G→ F

such that ker(ϕ) and Coker(ϕ) are annihilated by m1. We define OX -modules

K := kerϕ, M := Imϕ and Q := Cokerϕ,

so we have two short exact sequences

0→ K→ G→M→ 0

0→M→ F → Q→ 0

with sheaves K and Q killed by m1. This easily shows that the natural homomorphisms

Rif∗(ϕ) : Rif∗G→ Rif∗F

have kernels and cokernels annihilated by m2
1. Since m0 ⊂ m2

1 we see that m0(ker Rif∗(ϕ)) = 0
and m0(Coker Rif∗(ϕ)) = 0. Moreover, we know that Rif∗G is a finitely presented OY -module
by Theorem 5.1.2 (G is a coherent OX -module since X is a coherent scheme). Therefore we use
Corollary 4.3.5 to conclude that Rif∗F is an almost finitely presented OY -module for any i ≥ 0.
And this implies the almost coherence of Rif∗F as explained above. �

Before we go to the formal version of this result, we need to establish a slightly more precise
version of the usual Proper Mapping Theorem for formal schemes than the one in [FK18].

Theorem 5.1.5 (Proper Mapping Theorem). Let R be as in Set-up 4.5.1, A a topologically finitely
presented R-algebra, f : X → Spf A a topologically finitely presented, proper morphism, and F a
coherent OX-module. Then Hi(X,F) are coherent A-modules for all i ≥ 0, and the natural morphism

Hi(X,F)∆ → Rif∗ (F)

is an isomorphism for any i ≥ 0.

Proof. Firstly, we use [FK18, Theorem I.11.1.2] to conclude that Rf∗F ∈ D+
coh(Spf A). Therefore,

Theorem 4.8.15 implies that M := RΓ(Spf A,Rf∗F) lies in D+
acoh(A), and

ML∆ ' Rf∗F.

Moreover, Lemma 4.8.13 implies that the natural map

Hi(X,F)∆ ' Hi(M)∆ → Rif∗F
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is an isomorphism. Finally, we conclude that

Hi(X,F) ' H0
(
X,Hi(X,F)∆

)
' H0(X,Rif∗F)

must be coherent because Rif∗F is coherent. �

Theorem 5.1.6 (Almost Proper Mapping Theorem). Let Y be a topologically finitely presented
formal R-scheme for R as in the Setup 4.5.1. And let f : X→ Y be a proper, topologically finitely
presented morphism. Then

• The functor Rf∗ sends D∗qc,acoh(X) to D∗qc,acoh(Y) for any ∗ ∈ {“ ”,+,−, b}.

• The functor Rf∗ sends D∗acoh(X)a to D∗acoh(Y)a for any ∗ ∈ {“ ”,+,−, b}.

• The functor Rf∗ sends D+
acoh(X) to D+

acoh(Y).

• If Y0 := Y ×Spf R (SpecR/$) has finite Krull dimension, then Rf∗ sends D∗acoh(X) to
D∗acoh(Y) for any ∗ ∈ {“ ”,+,−, b}.

Moreover, if Y = Spf A is an affine scheme and F is an adically quasi-coherent, almost coherent
OX-module, then Hn(X,F) is almost coherent over A, and the natural map Hn(X,F)∆ → Rnf∗F is
an isomorphism of OY-modules for n ≥ 0.

Lemma 5.1.7. Let Y be a quasi-compact adic formal R-scheme, and let f : X→ Y be a topologi-
cally finite type, quasi-separated morphism. Suppose that the reduction Y0 = Y×Spf R (SpecR/$)

(or equivalently the “special fiber” Y = Y ×Spf R SpecR/Rad($)) is of finite Krull dimension.
Then X has finite Krull dimension, and f∗ is of finite cohomological dimension on ModX.

Proof. The proof is identical to Lemma 5.1.4 once we notice that the underlying topological spaces
of Y, Y0 and Y are canonically identified. �

Also, before going to the proof of Theorem 5.1.6 we need to establish one preliminary lemma.

Lemma 5.1.8. Let f : X → Y = Spf A be a morphism as in Theorem 5.1.6 with affine Y, and
let F ∈ ModX be an adically quasi-coherent, almost coherent sheaf. Then Rqf∗F is an adically
quasi-coherent, almost coherent OY-module if

(1) the A-module Hq(X,F) is almost coherent for any q ≥ 0,

(2) for any g ∈ A, the canonical map

Hq(X,F)⊗A A{g} → Hq(XU,F),

where U = Spf A{g} → Y = Spf A, is an isomorphism for any q ≥ 0.

Proof. Consider an A-module M := Hq(X,F) that is almost coherent by hypothesis ((1)). So
Lemma 2.12.7 guarantees that M is I-adically complete, and so M∆ is an adically quasi-coherent,
almost coherent OX-module. Now note that Rqf∗F is the sheafification of the presheaf

U 7→ Hq(XU,F)

Thus there is a canonical map M → H0(Y,Rqf∗F) that induces the morphism

M∆ → Rqf∗F

The second hypothesis together with Lemma 2.8.1 and Lemma 2.12.7 ensures this map is an iso-
morphism on stalks (as the sheafification process preserves stalks). Therefore, M∆ → Rqf∗F is
an isomorphism of OX-modules. In particular, Rqf∗F is adically quasi-coherent and almost coher-
ent. �
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Proof of Theorem 5.1.6. We use the same reduction as in the proof of Theorem 5.1.3 to reduce to
the situation of an adically quasi-coherent, almost coherent OX-module F. Moreover, the statement
is local on Y, so we can assume that Y = Spf A is affine.

Now we show that both conditions in Lemma 5.1.8 are satisfied in our situation.

Step 1: Hq(X,F) is almost coherent for every q ≥ 0. Fix a finitely generated ideal m0 ⊂ m and
another finitely generated ideal m1 ⊂ m such that m0 ⊂ m2

1.

Theorem 4.7.6 guarantees that there is a coherent OX-module Gm1 and a morphism φm1 : Gm1 → F

such that its kernel and cokernel are annihilated by m1. Then it is easy to see that the natural
morphism

Hq(X,Gm1)→ Hq(X,F)

has kernel annihilated by m2
1 and cokernel annihilated by m1. In particular, both kernel and cokernel

are annihilated by m0. Since m0 was an arbitrary finitely generated sub-ideal of m, it suffices to
show that Hq(X,Gm1) are coherent A-modules for any q ≥ 0. This follows from Theorem 5.1.5.

Step 2: canonical maps Hq(X,F) ⊗A A{g} → Hq(XU,F) are isomorphism for any g ∈ A, q ≥ 0,
and U = Spf A{g}. Lemma 4.7.5 guarantees that F admits an FP-approximation φ : G→ F. Using
Lemma 4.5.14, we get short exact sequences of adically quasi-coherent sheaves

0→ K→ G→M→ 0,

0→M→ F → Q→ 0,

where K and Q are annihilated by In+1 for some n ≥ 0. So K and Q can be identified with
quasi-coherent sheaves on Xn := X×Spf A SpecA/In+1. Therefore, the natural morphisms

Hq(X,K)⊗A A{g} ' Hq(Xn,K)⊗A/In+1 (A/In+1)g → Hq(XU,n,K),

Hq(X,Q)⊗A A{g} ' Hq(Xn,Q)⊗A/In+1 (A/In+1)g → Hq(XU,n,Q)

are isomorphisms for q ≥ 0. The morphism

Hq(X,G)⊗A A{g} → Hq(XU,G) (5.1)

is an isomorphism by Theorem 5.1.5. In particular, the map (5.1) must be an isomorphism.

Finally, the five-lemma implies that the morphisms

Hq(X,M)⊗A A{g} → Hq(XU,M)

must be isomorphisms for all q ≥ 0 because analogous maps for K and G are isomorphisms (and
A{g} is flat over A). Applying the five-lemma again, we conclude that the morphisms

Hq(X,F)⊗A A{g} → Hq(XU,F)

must be isomorphisms for all q ≥ 0 because analogous maps for M and G are isomorphisms (and
A{g} is flat over A). �

5.2. Characterization of Quasi-Coherent, Almost Coherent Complexes. The main goal of
this Section is to show an almost analogue of [Sta21, Tag 0CSI]. This gives a useful characterization
of objects in Db

qc,acoh(X) on a separated, finitely presented R-scheme for a universally coherent R.
This will be crucially used in our proof of the almost version of the Formal GAGA Theorem 5.3.2.

Our proof is very close to the proof of [Sta21, Tag 0CSI], but we need to make certain adjustments
to make the arguments work in the almost coherent setting.

https://stacks.math.columbia.edu/tag/0CSI
https://stacks.math.columbia.edu/tag/0CSI
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Theorem 5.2.1. Let R be an universally coherent ring with an ideal m such that m2 = m and
m̃ := m⊗R m is flat. Suppose that F ∈ Dqc(P

N
R ) an element such that RHomPN (P,F) ∈ D−acoh(R)

for P = ⊕Ni=0O(i). Then F ∈ D−qc,acoh(PN
R ).

Proof. We follow the ideas of [Sta21, Tag 0CSG]. Denote the dg algebra RHomX(P,P) by S.
A computation of cohomology groups of line bundles on PN

R implies that S is a “discrete” non-
commutative algebra that is finite and flat over R. [Sta21, Tag 0BQU]28 guarantees that the
functor

−⊗L
S P : D(S)→ Dqc(P

N )

is an equivalence of categories, and the map in the other direction is given by

RHom(P,−) : Dqc(P
N )→ D(S)

So if we define M := RHom(P,F) ∈ D(S), our assumptions imply that that the image of M in
D(R) lands inside D−acoh(R). We need to show that this assumption guarantees that F 'M ⊗L

S P

lives in D−qc,acoh(PN ). Moreover, using the convergence spectral sequence

Ep,q2 = Hp(Hq(M)⊗L
S P)⇒ Hp+q(M ⊗L

S P)

shows that it is sufficient to assume that M is just an S-module. Then Lemma 2.8.4 implies that
for any finitely generated ideal m0 ⊂ m, there is a finitely presented right S-module N with a
morphism f : N →M such that ker f and Coker f are annihilated by m0. The universal coherence
of R and [Sta21, Tag 0CSF] imply that N ⊗L

S P ∈ D−qc,coh(PN ). Now we note that the functor

−⊗L
S P : D(S)→ Dqc(P

N )

is R-linear, so the standard argument shows that the cone of the morphism

f ⊗L
S P : N ⊗L

S P→M ⊗L
S P

has cohomology sheaves anihillated by m0OX . Finally, Lemma 2.5.7 says that M ⊗L
S P is in

D−qc,acoh(PN ). �

Lemma 5.2.2. Let R be a universally coherent ring, and let X be a scheme separated and of finite
presentation over R. Let K ∈ Dqc(X). If RΓ(X,E ⊗L

OX
K) is in D−acoh(R) for every E ∈ D−coh(X),

then K ∈ D−qc,acoh(X).

Proof. We follow the proof of [Sta21, Tag 0CSL]. The condition that K ∈ D−qc,acoh(X) is local on

X as X is quasi-compact. Therefore, we can prove it locally around each point x. We use [Sta21,
Tag 0CSJ] to find

• An open subset U ⊂ X containing x.

• An open subset V ⊂ Pn
R.

• A closed subset Z ⊂ X ×R Pn
R with a point z ∈ Z lying over x

• An object E ∈ D−coh(X ×R Pn
R).

with a lot of properties listed in the cited lemma. Even though the notations are pretty heavy, the
only real properties of these object that we will use are that x ∈ U and

Rq∗(Lp
∗K ⊗L E)|V = R(U → V )∗(K|U )

28Note that they have slightly different notations for R and S

https://stacks.math.columbia.edu/tag/0CSG
https://stacks.math.columbia.edu/tag/0BQU
https://stacks.math.columbia.edu/tag/0CSF
https://stacks.math.columbia.edu/tag/0CSL
https://stacks.math.columbia.edu/tag/0CSJ
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The last formula is proven in [Sta21, Tag 0CSK] and we refer to this lemma for a discussion of the
morphism U → V that turns out to be a finitely presented closed immersion.

That being said, we note that the argument above shows that it is sufficient to show that K|U is
almost coherent for each such U . Moreover, the formula Rq∗(Lp

∗K ⊗L E)|V = R(U → V )∗(K|U ),
the fact that U → V is a finitely presented closed immersion and Lemma 2.8.4 imply that it is
sufficient to show that R(U → V )∗(K|U ) = Rq∗(Lp

∗K ⊗L E)|V lies in D−qc,acoh(V ). In particular,

it is enough to show that Rq∗(Lp
∗K ⊗L E) ∈ D−qc,acoh(Pn

R). The key is that we can check that

condition using Theorem 5.2.1.
We define a sheaf P :=

⊕n
i=0 OPn(i) and we compute

RHomPn(P,Rq∗(Lp
∗K ⊗L E)) = RΓ(Pn,Rq∗(Lp

∗K ⊗L E)⊗L
OPn

P∨)

= RΓ(Pn,Rq∗(Lp
∗K ⊗L E ⊗L Lq∗P∨))

= RΓ(X ×R Pn
R,Lp

∗K ⊗L E ⊗L Lq∗P∨)

= RΓ(X,Rp∗(Lp
∗K ⊗L E ⊗L Lq∗P∨))

= RΓ(X,K ⊗L
OX

Rp∗(E ⊗L Lq∗P∨))

where the second and fifth equality come from the projection formula [Sta21, Tag 08EU]. Finally,
we note that the Proper Mapping Theorem 5.1.2 implies that Rp∗(E⊗L Lq∗P∨) ∈ D−coh(X), so the
assumption says that

RHomPn(P,Rq∗(Lp
∗K ⊗L E)) = RΓ(X,K ⊗L

OX
Rp∗(E ⊗L Lq∗P∨)) ∈ D−coh(R)

Now Theorem 5.2.1 finishes the proof. �

Theorem 5.2.3. Let R be a universally coherent ring, and let X be a separated, finitely presented
R-scheme. Let F ∈ D−qc(X) be an object such that RHomX(P,F) ∈ D−acoh(R) for any P ∈ Perf(X),

then F ∈ D−qc,acoh(X). Analogously, if RHomX(P,F) ∈ Db
acoh(R) for any P ∈ Perf(X), then

F ∈ Db
qc,acoh(X).

Proof. Once we have have Lemma 5.2.2 and the equality RHomX(P,F) = RΓ(X,P∨ ⊗L
OX

F), the

first part of the Theorem is absolutely analogous to [Sta21, Tag 0CSH]. The second part now follows
directly from [Sta21, Tag 09IS] and [BZNP17, Lemma 3.0.14]. �

5.3. The GAGA Theorem. The main goal of this section is to prove the formal GAGA Theorem
for almost coherent sheaves. It roughly says that any adically quasi-coherent, almost coherent sheaf
on a completion of a proper, finitely presented scheme admits an essentially unique algebraization,
and the same holds for morphisms of those sheaves.

We start by recalling the statement of the classical formal GAGA Theorem. We start with a
proper A-scheme for some complete adic noetherian ring A with the ideal of definition m. Then
we consider the m-adic completion X as a formal scheme over Spf A. It comes with the natural
morphism c : X→ X of locally ringed spaces that induces a functor

c∗ : CohX → CohX

The GAGA Theorem says that it is an equivalence of categories. Let us say few words about the
“classical” proof of this theorem. There are essentially three independent steps in the proof: the
first one is to show that the morphism c is flat; the second one is to show that the functor c∗ induces
an isomorphism

c∗ : Hi(X,F)→ Hi(X, c∗F)

https://stacks.math.columbia.edu/tag/0CSK
https://stacks.math.columbia.edu/tag/08EU
https://stacks.math.columbia.edu/tag/0CSH
https://stacks.math.columbia.edu/tag/09IS
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for any any F ∈ CohX and any integer i. And the last one is to prove that any coherent sheaf
G ∈ CohPN admits a surjection of the form

⊕
i O(ni)

mi → G. Though the first two steps generalizes
to our Setup, there is no chance to have any analogue of the last statement. The reason is easy:
existence of such a surjection would automatically imply that the sheaf G is of finite type, however
almost coherent sheaves are usually not of finite type.

This issue suggests that we should take another approach to GAGA Theorems recently developed
by J. Hall in his paper [Hal18]. The main advantage of this approach is that it firstly constructs a
candidate for the algebraization, and only then he proves that this candidate works.

We start with the discussion of the GAGA functor. In what follows, we assume that R is a
ring from the Setup 4.5.1. We pick a finitely presented R-scheme X, and we consider its I-adic
completion X that is a topologically finitely presented formal R-scheme. The formal scheme X
comes equipped with the canonical morphism of locally ringed spaces

c : (X,OX)→ (X,OX)

that induces the functor
Lc∗ : D(X)→ D(X)

We now want to check that this functor “preserves” quasi-coherent, almost coherent objects.
That is necessarily even to formulate the GAGA statement.

Lemma 5.3.1. Let R be a ring as in the Setup 4.5.1, A a topologically finitely presented R-algebra,
and X a finitely presented A-scheme. Then the morphism c is flat, and the funtor c∗ : ModX →
ModX sends (quasi-coherent and) almost coherent sheaves to (adically quasi-coherent and) almost
coherent sheaves. In particular, it induces functors

Lc∗ : D∗qc,acoh(X)→ D∗qc,acoh(X)

for any ∗ ∈ {“ ”,+,−, b}.

Proof. The flatness assertion is just [FK18, Proposition I.1.4.7 (2)]. Flatness of c implies that
it suffices to show that c∗(G) is adically quasi-coherent, almost coherent OX-module for a quasi-
coherent, almost coherent OX -module G. This claim is Zariski-local on X. Thus we can assume

that X = SpecA is affine, so G ' M̃ for some almost finitely presented A-module M . This case is
done in Lemma 4.6.3. �

Theorem 5.3.2. Let R be a ring as in the Setup 4.5.1, A a topologically finitely presented R-
algebra, and X a finitely presented, proper A-scheme. Then the functor

Lc∗ : D∗qc,acoh(X)→ D∗qc,acoh(X)

induces an equivalence of categories for ∗ ∈ {“ ”,+,−, b}.

Corollary 5.3.3. Let R, A and X be as in Theorem 5.3.2. Then the functor

Lc∗ : D∗acoh(X)a → D∗acoh(X)a

induces an equivalence of categories for ∗ ∈ {“ ”,+,−, b}.

Corollary 5.3.4. Let R, A, and X be as in Theorem 5.3.2, and let K ∈ Dqc,acoh(X). Then the
natural map

βK : RΓ(X,K)→ RΓ(X,Lc∗K)

is an isomorphism. Moreover, the map βK is an almost isomorphism for K ∈ Dacoh(X).
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Proof. Note that the case of K ∈ Dacoh(X) follows from the case of K ∈ Dqc,acoh(X) due to
Lemma 3.2.17 and Proposition 3.5.23. So it suffices to prove for K ∈ Dqc,acoh(X).

Now since we are allowed to replace K with K[i] for any integer i, it suffices to show that

H0(RΓ(X,K)) ' HomX(OX ,K)→ HomX(OX,Lc
∗K) ' H0(RΓ(X,Lc∗K)).

This follows from Theorem 5.3.2 and the observation that OX ' Lc∗OX . �

We follow Jack Hall’s proof of the GAGA Theorem very closely with according simplifications
due to the flatness of the functor c∗. As he works entirely in the setting of the pseudo-coherent
objects, and almost coherent sheaves may not be pseudo-coherent, we repeat some arguments in
our setting.

Before going to the proof, we need to define the functor in the other direction. Recall that we
always have a functor

Rc∗ : D(X)→ D(X)

This functor is t-exact as c : X → X is topologically just a closed immersion. In particular, it
preserves boundedness of complexes (in any direction). However, that functor usually does not
preserve (almost) coherent objects as can be seen in the example of Rc∗OX = c∗OX. A way to fix
it is to use a “so-called” quasi-coherator functor

RQX : D(X)→ Dqc(X)

that is defined as the right adjoint to the inclusion ι : Dqc(X) → D(X). It exists by [Sta21, Tag
0CR0]. So this allows us to define a functor

Rcqc : D(X)→ Dqc(X)

as the composition Rcqc := RQX ◦Rc∗.

Combining the adjunctions (Lc∗,Rc∗) and (ι,RQX), we conclude that we have a pair of the
adjoint functors:

Lc∗ : Dqc(X) � D(X) :Rcqc

That gives us the unit and counit morphisms

η : Id→ RcqcLc
∗ and ε : Lc∗Rcqc → Id

For future reference, we also note that the adjuntion and the monoidal property of the functor Lc∗

define a projection morphism

πG,F : G⊗L
OX

(RcqcF)→ Rcqc(Lc
∗G⊗L

OX
F)

for any G ∈ Dqc(X) and any F ∈ D(X). Before discussing the actual proof of Theorem 5.3.2, we
need to establish some formal properties of these functors. In particular, we need to verify that the
unit and counit morphisms are isomorphisms in some easy special cases.

Lemma 5.3.5. Let R be a ring as in the Setup 4.5.1, A a topologically finitely presented R-algebra,
and X a finitely presented A-scheme. Then there is an integer N = N(X) such that Rcqc carries

D≤nqc,acoh(X) to D≤n+N
qc (X) (resp. D

[a,n]
qc,acoh(X) to D

[a,n+N ]
qc (X)) for any integer n. In particular, the

natural map

τ≥aRcqcF → τ≥a(Rcqcτ
≥a−NF)

is an isomorphism for any F ∈ Dqc,acoh(X) and any integer a.

https://stacks.math.columbia.edu/tag/0CR0
https://stacks.math.columbia.edu/tag/0CR0


124 BOGDAN ZAVYALOV

Proof. We explain the proof that Rcqc carries D≤nqc,acoh(X) to D≤n+N
qc (X); the case of D

[a,n]
qc,acoh(X) is

similar.
We start the proof by verifying the assumptions of [Sta21, Tag 0CSA] in our setting. Namely,

we fix an object F ∈ D≤nqc,acoh(X) and show that Hi(RΓ(U, c∗F)) = 0 for any open affine U ⊂ X and

any i ≥ n. Indeed, we know that the functor c∗ : ModOX
→ModOX is exact as c is topologically

just a closed immersion. Therefore, we see that

Hi(RΓ(U, c∗F)) = Hi(RΓ(Û ,F)) = Hi(Û ,F|
Û

)

Lemma 4.8.11 implies that Hi(Û ,F|
Û

) = 0 for any i ≥ n. Moreover, we know that Rc∗F ∈ D≤n(X)

as c∗ is exact on ModX and F ∈ D≤n(X).
Now we apply [Sta21, Tag 0CSA] for K = Rc∗F, a = −∞ and b = n to finish the proof of the

first claim in the Lemma. One can check that the proof of that Lemma works well for a = −∞.

The second claim of the lemma follows from the first claim and the distinguished triangle

τ≤a−N−1F → F → τ≥a−NF → τ≤a−N−1F[1]

Namely, we apply the exact functor Rcqc to this distinguished triangle to get that

Rcqc
(
τ≤a−N−1F

)
→ RcqcF → Rcqc

(
τ≥a−NF

)
→ Rcqc

(
τ≤a−N−1F[1]

)
is a distinguished triangle in Dqc(X) and that Rcqc(τ

≤a−N−1F) ∈ D≤a−1
qc (X). This implies that

the map

τ≥aRcqcF → τ≥aRcqc
(
τ≥a−NF

)
is an isomorphism. �

Lemma 5.3.6. Let X be as in Theorem 5.3.2, F ∈ D−qc,acoh(X) and G ∈ D−qc(X). Suppose that for

each i there is ni such that IniHi(F) = 0 and IniHi(G) = 0. Then the natural morphisms ηG and
εF are isomorphisms.

Proof. We prove the claim only for F as the other claim is similar.

Reduction to the case F ∈ Db
qc,acoh(X): First of all, we note that it suffices to show that the

natural maps

τ≥aF → τ≥aLc∗RcqcF

is an isomorphism for any a. Moreover, we note that t-exactness of Lc∗ and Lemma 5.3.5 imply
that there is an integer N such that the natural map τ≥aLc∗RcqcF → τ≥aLc∗Rcqcτ

≥a−NF is an
isomorphism for any integer a. In particular, we have a commutative diagram

τ≥a−NF Lc∗Rcqc(τ
≥a−NF)

τ≥aF τ≥aLc∗RcqcF ' τ≥aLc∗Rcqcτ≥a−NF

where the vertical maps induce isomorphisms in degree ≥ a. Therefore, it suffices to prove the
claim for τ≥a−NF. So we may and do assume that F is bounded.

Proof for a bounded F: The case of a bounded F easily reduces to the case of an adically quasi-
coherent, almost coherent OX-module concentrated in degree 0. In that situation we have an adically

https://stacks.math.columbia.edu/tag/0CSA
https://stacks.math.columbia.edu/tag/0CSA
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quasi-coherent module F such that Ik+1F = 0 for some k. That implies that F = ik,∗Fk = Rik,∗Fk
for the closed immersion ik : Xk → X. Now it is straightforward to see that the canonical map

Rik,∗Fk → Lc∗Rcqc(Rik,∗Fk)

is an isomorphism. The key is flatness of c and the observation that Rc∗(Rik,∗Fk) is already
quasi-coherent, so the quasi-coherator does nothing in this case. �

The other thing we need to check is that the map πG,F is an isomorphism for G ∈ Perf(X). As
this statement is proven in [Hal18] without any pseudo-coherence assumption on F ∈ D(X), we
just cite it here.

Lemma 5.3.7. If G ∈ Dqc(X) and F ∈ D(X), then the natural projection morphism

πG,F : G⊗L
OX

RcqcF → Rcqc(Lc
∗G⊗L

OX
F)

is an isomorphism if G is perfect.

Proof. [Hal18, Lemma 4.3] �

Now we come to the key input ingredient. Even though Rcqc is quite abstract and difficult to
compute in practice, it turns out that the Almost Proper Mapping Theorem allows us to check that
this functor sends D−qc,acoh(X) to D−qc,acoh(X). That would give us a candidate for the algebraization.

Lemma 5.3.8. Let R be a ring as in the Setup 4.5.1, A a topologically finitely presented R-
algebra, and X a finitely presented, proper A-scheme. Then Rcqc sends D∗qc,acoh(X) to D∗qc,acoh(X)

for ∗ ∈ {−, b}.

Proof. We prove only the bounded above case as the other one follows from this using Lemma 5.3.5.
We pick any F ∈ D−qc,acoh(X) and we use Theorem 5.2.3 to say that it is sufficient to show that

RHomX(P,Rc∗F) ∈ D−acoh(R) for any perfect complex P ∈ Perf(X). That turns out to be a formal
consequence of the Almost Propper Mapping Theorem 5.1.6. Indeed, we have

RHomX(P,RcqcF) = RHomX(Lc∗P,F)

= RHomX(OX, (Lc
∗P)∨ ⊗L

OX
F)

= RΓ(X, (Lc∗P)∨ ⊗L
OX

F) ∈ D−acoh(R),

where the last formula comes from the fact that derived pullback and derived dual operations
preserve perfect complexes, and for any P ∈ Perf(X) we have P⊗L

OX
F ∈ D−qc,acoh(X). �

Finally, we are ready to give a proof of the GAGA Theorem.

Proof of Theorem 5.3.2. Claim 0: It suffices to show the theorem for ∗ = −, i.e. for bounded above
derived categories. Indeed, flatness of c∗ implies that Lc∗ preserve boundedness (resp. boundedness
above, resp. boundedness below), so it suffices to show that the natural morphisms

ηG : G→ RcqcLc
∗G

εF : Lc∗RcqcF → F

are isomorphisms for any G ∈ Dqc,acoh(X) and F ∈ Dqc,acoh(X).

We fix N as in Lemma 5.3.5. Then flatness of c∗ and Lemma 5.3.5 guarantee that

RcqcLc
∗τ≥aG ∈ D[a,∞](X)

Lc∗Rcqcτ
≥aF ∈ D[a,∞](X).
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Therefore, we see that ηG is an isomorphism on Hi for i < a if and only if the same holds for
ητ≤a−1G. Since a was arbitrary, we conclude that it suffices to show that ηG is an isomorphism for
G ∈ D−qc,acoh(X). Similar argument shows that it suffices to show that εF is an isomorphism for

F ∈ D−qc,acoh(X). So it suffices to prove the theorem for ∗ = −.

Before we formulate the next claim, we need to use the so-called “approximation by perfect
complexes” [Sta21, Tag 08EL] to find some P ∈ Perf(X) such that τ≥0P ' OX/I ' OX0 and whose
support is equal to X0. We note that it implies that all cohomology sheaves Hi(P) are killed by
some power of I. We also denote its (derived) pullback by P := Lc∗P.

Claim 1: If G ∈ D−qc,acoh(X) such that G ⊗L
OX

P ' 0, then G ' 0. Similarly, if F ∈ D−qc,acoh(X)

such that F ⊗L
OX

P ' 0, then F ' 0.

We choose the maximal m (assuming that G 6' 0)such that Hm(G) 6= 0. Then we see that
Hm(G ⊗L

OX
P) ' Hm(G) ⊗OX OX0 = Hm(G)/I. We have (Hm(G)/I)(U) = Hm(G)(U)/I ' 0 on

any open affine U . So Nakayama’s Lemma 2.5.19 implies that Hm(G)(U) ' 0 for any such U .
This contradicts the choice of m. The proof in the formal setup is the same once we notice that
H0(P) = OX/I.

Claim 2: The map ηG : G→ RcqcLc
∗G is an isomorphism for any G ∈ D−qc,acoh(X).

Claim 1 implies that it is sufficient to show that the map

εG ⊗L
OX

P: G⊗L
OX

P→ RcqcLc
∗G⊗L

OX
P (5.2)

is an isomorphism. Recall that the cohomology sheaves of P are killed by some power of $. This
property passes to G⊗L

OX
P, so we can use Lemma 5.3.6 to get that the map

εG⊗L
OX

P : G⊗L
OX

P→ Rcqc
(
Lc∗

(
G⊗L

OX
P
))

is an isomorphism. Now comes the key: we fit the morphism εG⊗L
OX

P into the following commutative

triangle:

G⊗L
OX

P RcqcLc
∗G⊗L

OX
P

Rcqc(Lc
∗(G⊗L

OX
P )) Rcqc(Lc

∗G⊗L
OX

Lc∗P)

εG⊗L
OX

P

ε
G⊗L

OX
P πP,Lc∗G

where the bottom horizontal arrow is the isomorphism map induced by the monoidal structure on
Lc∗. Moreover, we have already established that the left vertical arrow is an isomorphism, and
right vertical arrow is an isomorphism due to Lemma 5.3.7. That shows that the top horizontal
must be also an isomorphism.

Claim 3: The map εF : Lc∗RcqcF → F is an isomorphism for any F ∈ D−qc,acoh(X).

We use Claim 1 again to say that it is sufficient to show that the map

εF ⊗L
OX

Lc∗P: Lc∗RcqcF ⊗L
OX

Lc∗P→ F ⊗L
OX

Lc∗P

is an isomorphism. But that map fits into the commutative diagram:

https://stacks.math.columbia.edu/tag/08EL
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Lc∗RcqcF ⊗L
OX

Lc∗P F ⊗L
OX

Lc∗P

Lc∗(RcqcF ⊗L
OX

P) Lc∗Rcqc(F ⊗L
OX

Lc∗P)

εF⊗L
OX

Lc∗P

Lc∗(πP,F)

ε
F⊗L

OX
Lc∗P

where the left vertical morphism is the canonical isomorphism induced by the monoidal structure on
Lc∗, the bottom morphism is an isomorphism by Lemma 5.3.7, and the right vertical morphism is
an isomorphism by Lemma 5.3.6. This implies that the top horizontal morphism is an isomorphism
and that finishes the proof. �

5.4. The Formal Function Theorem. We derive the Formal Function Theorem for almost co-
herent sheaves from the Formal GAGA theorem in this Section. As an intermediate step, we
compare the natural I-topology (see Definition 5.4.2) on cohomology groups of proper schemes to
the I-adic topology. They turn out to coincide for proper schemes and almost coherent coefficient
sheaves.

For the rest of the section, we fix a ring R as in the Setup 4.5.1 and a finitely presented or
topologically finitely presented R-algebra A.

Remark 5.4.1. Both A and Â are also topologically universally adhesive by [FK18, Proposition
0.8.5.19], and they are (topologically universally) coherent by [FK18, Proposition 0.8.5.23].

For the next definition, we fix a finitely presented A-scheme X and an OX -module F.

Definition 5.4.2. The natural I-filtration F•Hi(X,F) is

FnHi(X,F) := Im
(
Hi(X, InF)→ Hi(X,F)

)
The natural I-topology on Hi(X,F) is the topology induced by the filtration F•Hi(X,F).

Lemma 5.4.3. Let X be a finitely presented A-scheme, F an quasi-coherent almost finitely gen-
erated OX -module, and G ⊂ F be a quasi-coherent OX -submodule of F. Then, for any n, there is
m such that ImF ∩ G ⊂ InG.

Proof. It suffices to assume that X is affine, in which case it follows from Lemma 2.12.6. �

Lemma 5.4.4. Let X be a finitely presented A-scheme, F and G quasi-coherent almost finitely
generated OX -modules, and ϕ : G→ F an OX -linear homomorphism such that ker(ϕ) and Coker(ϕ)
are annihilated by Ic for some integer c. Then, for every i ≥ 0, the natural I-topology on Hi(X,F)
coincides with the topology induced by the filtration

FilnGHi(X,F) = Im(Hi(X, InG)→ Hi(X,F)).

Proof. Consider the short exact sequences

0→ K→ G→ H→ 0,

0→ H→ F → Q→ 0,

where K and Q are annihilated by Ic. The first short exact sequence induced the short exact
sequence

0→ K ∩ ImG→ ImG→ ImH→ 0
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for any m ≥ 0. Lemma 5.4.3 implies that K ∩ ImG ⊂ IcK = 0 for large enough m. Therefore, the
natural map ImG → ImH is an isomorphism for large enough m. Note that H is almost finitely
generated and quasi-coherent, so we can replace G with H to assume that ϕ is injective.

Now clearly FilkGHi(X,F) ⊂ FkHi(X,F) for every k. So it suffices to show that, for any k, there

m such that FmHi(X,F) ⊂ FilkGHi(X,F). We consider the short exact sequence

0→ G ∩ ImF → ImF → ImQ→ 0.

If m ≥ c we get that G∩ ImF = ImF because IcQ ' 0. Now we use Lemma 5.4.3 to conclude there
is m ≥ c such that

ImF = G ∩ ImF ⊂ IkG
Therefore, FmHi(X,F) ⊂ FilkGHi(X,F). �

Lemma 5.4.5. Let X be a finitely presented A-scheme, F and G quasi-coherent almost finitely
generated OX -modules, and ϕ : G→ F an OX -linear homomorphism such that ker(ϕ) and Coker(ϕ)
are annihilated by Ic for some integer c. Suppose that the natural I-topology on Hi(X,G) is the
I-adic topology. Then the same holds for Hi(X,F).

Proof. Clearly, InHi(X,F) ⊂ FnHi(X,F). So it suffices to show that, for every n, there is an m
such that FmHi(X,F) ⊂ InHi(X,F).

The assumption that the natural I-topology on Hi(X,G) coincides with the I-adic topology
guarantees that FkHi(X,G) ⊂ InHi(X,G) for large enough k. Pick such k. Lemma 5.4.4 implies
that

FmHi(X,F) ⊂ Im(Hi(X, IkG)→ Hi(X,F))

for large enough m. So we get, for such m, that

FmHi(X,F) ⊂ Im
(

Hi(X, IkG)→ Hi (X,F)
)
⊂ Im

(
InHi (X,G)→ Hi (X,F)

)
⊂ InHi (X,F)

for a large enough m. �

Theorem 5.4.6. Let X a proper, finitely presented A-scheme, and F a quasi-coherent, almost
coherent OX -module. Then the natural I-topology on Hi(X,F) coincides with the I-adic topology
for any i ≥ 0.

Proof. Lemma 4.7.3 guarantees that there is a finitely presented OX -module G and a morphism
$ : G→ F such that Ic(kerϕ) = 0 and Ic(Cokerϕ) = 0. Lemma 5.4.5 then ensures that it suffices
to prove the claim for G. In this case, the claim follows [FK18, Proposition I.8.5.2 and Lemma
0.7.4.3] and Remark 5.4.1. �

We consider a proper, finitely presented A-scheme X, and an almost coherent OX -module F. We
denote the I-adic completion of X by X, so we have a commutative diagram:

X X

Spf (Â) SpecA

c

f̂ f

Given this diagram we can consider four different cohomology groups:

Hi(X, c∗F), ̂Hi(X,F), Hi(X,F)⊗A Â, and lim
n

Hi(Xn,Fn).
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All these groups have a natural structure of Â-module, and it is straightforward to construct
functorial in F homomorphisms

Hi(X,F)⊗A Â ̂Hi(X,F)

Hi(X, c∗F) limn Hi(Xn,Fn)

αi
F

βi
F

φi
F

γi
F

(5.3)

We show that all these morphisms are (almost) isomorphisms.

Theorem 5.4.7. In the notation as above, all the maps αiF, β
i
F, γ

i
F, φ

i
F are almost isomorphisms

for any almost coherent OX -module F. If F is quasi-coherent, almost coherent, then these maps
are isomorphisms.

Proof. Step 0. Reduction to the case of a quasi-coherent, almost coherent sheaf F: We observe that
Lemma 3.3.2, Lemma 3.2.17 and the fact that limits of two almost isomorphic direct systems are
almost the same allow us to replace F with m̃ ⊗ F to assume that F is quasi-coherent and almost
coherent.

Step 1. αiF is an isomorphism: This is just a consequence of Lemma 2.12.7 as we established in
Theorem 5.1.3 that Hi(X,F) is an almost coherent A-module.

Step 2. βiF is an isomorphism: We note that the assumptions on A imply that the map A→ Â
is flat by [FK18, Proposition 0.8.218]. Thus the flat base change for quasi-coherent cohomology

groups implies that Hi(X,F) ⊗A Â ' Hi(X
Â
,F

Â
). Therefore, we may and do assume that A is

$-adically complete. Then the map Hi(X,F)→ Hi(X, c∗F) is an isomorphism by Theorem 5.3.2.

Step 3. αiF is an injective: Theorem 5.4.6 and Corollary 5.3.4 imply that the I-adic topology of
Hi(X,F) coincides with the natural I-topology. Therefore,

̂Hi(X,F) ' lim
n

Hi(X,F)

Im (Hi(X, In+1F)→ Hi(X,F))
.

Clearly, we have an inclusion

Hi(X,F)

Im (Hi(X, In+1F)→ Hi(X,F))
↪→ Hi(Xn,Fn).

Therefore, we conclude that αiF is injective by left exactness of the limit functor.

Step 4. γiF is surjective: Recall that F ' limk Fk because F is adically quasi-coherent. Therefore,
[FK18, Corollary 0.3.2.16] implies that it is sufficient to show that there is a basis of opens B such
that, for every U ∈ B,

Hi(U,F) = 0 for i ≥ 1, and

H0(U,Fk+1)→ H0(U,Fk) is surjective for any k ≥ 0.

Vanishing of the higher cohomology groups of adically quasi-coherent sheaves on affine formal
schemes (see [FK18, Theorem I.7.1.1]) implies that one can take B to be the basis consisting of
open affine formal subschemes of X. Therefore, we get that γiF is indeed surjective for any i ≥ 0.

Step 5. αiF and γiF are isomorphisms: This follows formally from commutativity of Diagram 5.4
and the previous steps. �
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5.5. Almost Version of Grothendieck Duality. For this section, we fix a universally coherent
ring R with an ideal m such that m̃ := m ⊗R m is R-flat and m2 = m. Since R is universally
coherent, there is a good theory of f ! functor for separated morphisms between finitely presented
R-schemes29.

Proposition 5.5.1. Let f : X → Y be a separated morphism of finitely presented R-schemes.
Then f ! sends D+

qc,acoh(Y ) to D+
qc,acoh(X).

Proof. The only thing that we need to check here is that f ! preserves almost coherence of coho-
mology sheaves. This statement is local, so we can assume that both X and Y are affine. Then
we can choose a closed embedding X → An

Y → Y . So, it suffices to prove the claim for a finitely
presented closed immersion and for the morphism An

Y → Y .

In the case f : X → Y a finitely presented closed immersion, we know that

f !(F) ' RHomY (f∗OX ,F)

for any F ∈ D+
qc(Y ). Since Y is a coherent scheme and f is finitely presented, we conclude that

f∗OX is an almost coherent OY -module. Therefore, f !(F) = RHomY (f∗OX ,F) ∈ Dqc,acoh(X) by
Corollary 4.4.11.

Now we consider the case of a relative affine space f : X = An
Y → Y . In this case, the formula

for f ! is f !(F) ' Lf∗F ⊗LOX Ωn
X/Y [n]. Then Lf∗(F) ∈ D+

qc,acoh(X) by Lemma 4.4.7(4), and so

Lf∗F ⊗LOX Ωn
X/Y [n] ∈ D+

qc,acoh(X) because Ωn
X/Y is (non-canonically) isomorphic to OX . �

Now we use Proposition 5.5.1 to define the almost version of the upper shriek functor:

Definition 5.5.2. Let f : X → Y be a separated morphism of finitely presented R-schemes. We
define f !

a : D+
aqc(Y )a → D+

aqc(X)a as f !
a(F) := (f !(F!))

a.

Remark 5.5.3. In what follows, we will usually denote the functor f !
a simply by f ! as it will not

cause any confusion.

Lemma 5.5.4. Let f : X → Y be a separated morphism of finitely presented R-schemes. Then f !

carries D+
acoh(Y )a to D+

acoh(X)a.

Proof. This follows from Proposition 5.5.1. �

Theorem 5.5.5. Let f : X → Y be as above. Suppose that f is proper. Then f ! : D+
aqc(Y )a →

D+
aqc(X)a is right adjoint to the functor Rf∗ : D+

aqc(Y )a → D+
aqc(X)a.

We note that the theorem makes sense as Rf∗ carries D+
aqc(X)a into D+

aqc(Y ) by Lemma 4.4.9.

Proof. This follows from a sequence of canonical isomorphisms:

HomD(Y )a(Rf∗F
a,Ga) ' HomD(Y )(m̃⊗Rf∗F,G) Lemma 3.1.13

' HomD(Y )(Rf∗(m̃⊗ F),G) Lemma 3.3.6

' HomD(X)(m̃⊗ F, f !(G)) Grothendieck Duality

' HomD(X)a(Fa, f !(G)a) Lemma 3.1.13.

�

29This theory does not seem to be addressed in the literature in this generality, however we all the arguments
from [Sta21, Tag 0DWE] can be adapted to this level generality with little or no extra work.

https://stacks.math.columbia.edu/tag/0DWE
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Now suppose that f : X → Y be a proper morphism of finitely presented R-schemes, Fa ∈
D+
aqc(X)a, and Ga ∈ D+

aqc(Y )a. Then we want to construct a canonical morphism

Rf∗RalHomX(Fa, f !(Ga))→ RalHomY (Rf∗(F
a),Ga).

Lemma 3.5.16 says that such a map is equivalent to a map

Rf∗RalHomX(Fa, f !(Ga))⊗LOX Rf∗(F
a)→ Ga.

We construct the latter map as the composition

Rf∗RalHomX(Fa, f !(Ga))⊗LOXRf∗(F
a)→ Rf∗

(
RalHomX(Fa, f !(Ga))⊗LOX Fa

)
→ Rf∗f

!Ga → Ga

where the first map is induced by the relative cup product ([Sta21, Tag 0B68]), the second map
comes from Remark 3.5.15, and the last map is the counit of the (Rf∗, f

!)-adjunction.

Lemma 5.5.6. Let f : X → Y be a proper morphism of finitely presented R-schemes, Fa ∈
D−acoh(X)a, and Ga ∈ D+

aqc(Y )a. Then the map

Rf∗RalHomX(Fa, f !(Ga))→ RalHomY (Rf∗(F
a),Ga).

is an (almost) isomorphism in D+
aqc(X)a.

Proof. We note that Rf∗RalHomX(Fa, f !(Ga)) lies in D+
aqc(Y )a by Lemma 4.4.10 (4) and Lemma 4.4.9.

Likewise, RalHomY (Rf∗(F
a),Ga) lies in D+

aqc(Y )a by Theorem 5.1.3 and Lemma 4.4.10 (4). There-
fore, it suffices to show

RHomY

(
Ha,Rf∗RalHomX

(
Fa, f ! (Ga)

))
→ RHomY (Ha,RalHomY (Rf∗ (Fa) ,Ga))

is an isomorphism for any Ha ∈ D+
aqc(Y )a. This follows from the following sequence of isomor-

phisms:

RHomY

(
Ha,Rf∗RalHomX

(
Fa, f ! (Ga)

))
' RHomX

(
Lf∗Ha,RalHomX

(
Fa, f ! (Ga)

))
' RHomX

(
Lf∗Ha ⊗LOX Fa, f ! (Ga)

)
' RHomY

(
Rf∗

(
Lf∗Ha ⊗LOX Fa

)
,Ga
)

' RHomY (Ha ⊗Rf∗ (Fa) ,Ga)

' RHomY (Ha,RalHomY (Rf∗ (Fa) ,Ga)) .

The first isomorphism holds by Corollary 3.5.26. The second isomorphism holds by Corollary 3.5.16.
The third isomorphism holds by Theorem 5.5.5. The fourth isomorphism holds by Proposi-
tion 4.4.12. The fifth equality holds by Corollary 3.5.16. �

Theorem 5.5.7. Let f : X → Y be as above. Suppose that f is smooth of pure dimension d. Then
f !(−) ' Lf∗(−)⊗LOX Ωd

X/Y [d]

Proof. It follows from the corresponding statement in the classical Grothendieck Duality. �

We summarize all the results of this section in the following theorem:

Theorem 5.5.8. Let R be a universally coherent ring with an ideal m such that m̃ := m ⊗R m is
R-flat and m2 = m, and FPSR be the category of finitely presented, separated R-schemes. Then
there is a well-defined functor (−)! from FPSR into the 2-category of categories such that

(1) (X)! = D+
aqc(X)a,

https://stacks.math.columbia.edu/tag/0B68
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(2) for a smooth morphism f : X → Y of pure relative dimension d, f ! ' Lf∗(−)⊗LOaX Ωd
X/Y [d].

(3) for a proper morphism f : X → Y , f ! is right adjoint to Rf∗ : D+
aqc(X)a → D+

aqc(Y )a.
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6. Almost Coherence of “p-adic Nearby Cycles”

6.1. Introduction. The main goal of this section is to study the “p-adic Nearby Cycles” sheaves
Rν∗O

+
X♦

and Rν∗O
+
X♦

/p for a rigid-analytic variety X and versions with more general “coefficients”

including O+/p vector bundles in the v-topology, and sheaves of the form O+
X♦

/p⊗F for a Zariski-
constructible sheaf F (see Definition 6.1.7). These complexes turn to be very close to complexes of
coherent sheaves that makes it possible to study étale cohomology groups of rigid-analytic varieties
using (almost) coherent methods on the special fiber.

Before giving precise definitions, let us explain the main motivation to study these sheaves
and their relation with étale cohomology of rigid-analytic varieties in the simplest case of the
“nearby cycles” of the sheaf O+

X−ét/p. In [Sch13], P. Scholze proved ([Sch13, Theorem 5.1]) that

the étale cohomology groups Hi(X,Fp) are finite for any smooth, proper rigid-analytic variety X
over an algebraically closed p-adic non-archimedean field C. There are two important ingredients:
the almost primitive comparison theorem that says that Hi(X,O+

Xét
/p) are almost isomorphic to

Hi(X,Fp)⊗ OC/p, and the almost finiteness of Hi(X,O+
X+ét/p).

The proof of the almost finiteness result in [Sch13] uses properness of the space X in a very
elaborate way; namely, he constructs some “good covering” of X by affinoids and then shows that
there is enough cancelation in the Čech-to-Derived spectral sequence associated with that covering.
We note that the second page of this spectral sequence has all terms being not almost finitely
generated, but mysteriously there is enough cancellations in this spectral sequence so that the
terms on the ∞-page turn out to be almost finitely generated. We refer to [Sch13, §5] for the
details of this proof.

Our main goal is to give a more geometric way to prove that almost finiteness result. Instead
of constructing some explicit “nice” covering of X, we separate the problem into two different
problems. We choose an admissible formal OC-model X of X and consider the associated morphism
of ringed topoi

t : (Xét,O
+
Xét

)→ (XZar,OX)

that induces the morphism

t : (Xét,O
+
X+ét/p)→ (XZar,OX/p) = (X0,OX0)

where X0 := X×Spf OC SpecOC/p is the mod-p fiber of X. Then one can write

RΓ(X,O+
Xét
/p) ' RΓ

(
X0,Rt∗O

+
Xét
/p
)

so one can separately study the “nearby cycles” complex Rt∗O
+
Xét
/p and its derived global sections

on X0.

The key is that now X is proper over Spf OK by [L9̈0, Lemma 2.6]30 (or [Tem00, Corollary 4.4
and 4.5]). Thus the Almost Proper Mapping Theorem 5.1.3 tells us that, for the purpose of proving
almost finiteness of RΓ(X,O+

Xét
/p), it is sufficient only to show that Rt∗O

+
Xét
/p ∈ D+

acoh(X) has
almost coherent cohomology sheaves.

The main advantage now is that we can study the “nearby cycles” Rt∗O
+
Xét
/p locally on the

formal model X. So this holds for any admissible formal model and not only for the proper ones.
Moreover, the only place where we use properness of X in our proof is to get properness of the
formal model X to be able to use the Almost Proper Mapping Theorem 5.1.3. This allows us to

30Strictly speaking, his proof is written under the assumption that OK is discretely valued. However, it can be
easily generalized to the of a general rank-1 complete valuation ring OK .
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avoid all elaborate spectral sequence arguments at the same time making the essential part of the
proof local on X.

Now we discuss how we get almost coherentness of Rt∗O
+
Xét
/p. We will actually prove a much

stronger almost coherentness statement that holds for all O+/p-vector bundle in the v-topology.
However, we find it instructive to discuss the simplest case first.

The main idea of the proof is similar to the idea behind the proof [Sch13, Lemma 5.6]: we reduce
the general case to the case of an affine X with “nice” coordinates, where everything can be reduced
to almost coherentness of certain continuous group cohomology via perfectoid techniques. In order
to make it work, we have to pass to a finer topology that allows towers of finite étale morphisms.
There are different possible choices, we find the formalims of v-topology on the associated diamond
X♦ of X (in the sense of [Sch17]) to be the most convenient for our purposes (see Appendix C.

The case of a general O+
X♦

/p-vector bundle (see Definition 6.1.1) will cause us more trouble;

we will use the structure results from Section C.4 to handle a general O+
X♦

/p-vector bundle. The

main crucial results is that the category of étale O+
Xét
/p-vector bundles is actually equivalent to the

category of O+
X♦

/p-vector bundles and that, locally, any O+
X♦

/p-vector bundle can be trivialized by
some very particular étale covering (see Corollary C.4.10 for both results).

That being said, we can move to the formulation of the main theorem of this section. We
refer to Appendix C for the definition of the quasi-proétale and v-topologies on X♦ for a rigid-
analytic variety over a non-archimedean field K. These sites come with their “integral” structure
sheaves O+

X♦
, O+

X♦qp
, and O+

Xét
(see Definition C.3.1) and a diagram of morphisms of ringed sites

(see Diagram C.1 and C.2):(
X♦v ,O

+
X♦

) (
X♦qproét,O

+

X♦qp

) (
Xét,O

+
Xét

)
(XZar,OX)

ν

λ µ t (6.1)

and the mod-p version(
X♦v ,O

+
X♦

/p
) (

X♦qproét,O
+

X♦qp
/p
) (

Xét,O
+
Xét
/p
)

(XZar,OX0)

ν

λ µ t (6.2)

If there is any ambiguity in the meaning of ν, we then denote it by νX to explicitly specify the
formal model for these functors.

Recall that for a perfectoid field K, the maximal ideal m ⊂ OK is an ideal of almost mathematics
with flat m̃ ' m2 = m by by Lemma B.6. For the rest of this section, we fix a p-adic perfectoid
field K, and always do almost mathematics with respect to the ideal m.

We are ready to formulate our first main result. We thank B. Heuer for suggesting this formula-
tion.

Definition 6.1.1. An O+
X♦

/p-module E is an O+
X♦

/p-vector bundle if, v-locally on X♦, it is iso-

morphic to (O+
X♦

/p)r for some integer r.
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An O+
X♦

/p-module E is a very small O+
X♦

/p-vector bundle if there is a finite étale surjective

morphism V → U such that E|V ♦v ' (O+
V ♦
/p)r for some integer r.

An O+
X♦

/p-module E is a small O+
X♦

/p-vector bundle if, for each point x ∈ X, there is an open
affinoid x ∈ U ⊂ X such that E|U♦ is very small.

Theorem 6.1.2. Let X an admissible formal OK-scheme with adic generic fiber X of dimension d
and mod-p fiber X0, and E an O+

X♦
/p-vector bundle. Then

(1) the nearby cycles Rν∗E ∈ D+
qc,acoh(X0) and (Rν∗E)a ∈ D

[0,2d]
acoh (X0)a;

(2) for an affine admissible X = Spf A with the adic generic fiber X, the natural map

˜
Hi
(
X♦v ,E

)
→ Riν∗ (E)

is an isomorphism for every i ≥ 0;

(3) the formation of Riν∗(E) commutes with étale base change, i.e., for any étale morphism
f : Y→ X with adic generic fiber f : Y → X, the natural morphism

f∗0
(
RiνX,∗(E)

)
→ RiνY,∗ (E|Y ♦)

is an isomorphism for any i ≥ 0;

(4) if X has an open affine covering X =
⋃
i∈I Ui such that E|(Ui,K)♦ is very small, then

(Rν∗E)a ∈ D
[0,d]
acoh(X0)a;

(5) if E is small, there is an admissible blow-up X′ → X such that X′ has an open affine covering
X′ =

⋃
i∈I Ui such that E|(Ui,K)♦ is very small.

In particular, if E is small, there is a cofinal family of admissible formal models {X′i}i∈I
of X such that (

RνX′i,∗E
)a
∈ D

[0,d]
acoh(X′i,0)a.

for each i ∈ I.

Remark 6.1.3. We refer to Definition 4.4.1 and Definition 4.4.2 for the precise definition of all
derived categories appearing in Theorem 6.1.2. In order to avoid any confusion, we explicitly

mention that the expression (Rν∗E)a ∈ D
[0,d]
acoh(X0)a means that it is concentrated in degrees [0, d]

in the derived category of almost sheaves. In particular, this is equivalent that cohomology sheaves
of the complex Rν∗E are almost zero in degrees larger than d.

Remark 6.1.4. We note that Theorem 6.1.2 (1) implies that the nearby cycles Rν∗E is quasi-
coherent on the nose (as opposed to being almost quasi-coherent). This is quite unexpected to
the author since all previous results on the cohomology groups of O+/p were only available in the
almost category.

Remark 6.1.5. If K = C is algebraically closed, the proof gives a non-almost version of cohomo-
logical bound. Namely, we see that

Rν∗ (E) ∈ D
[0,2d]
acoh (X0).

However, we do not know if, under the assumption of Part (4), Rν∗ (E) is concentrated in degrees
[0, d] on the nose.
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Remark 6.1.6. We do not know if an admissible blow-up X′ → X in the formulation of Theo-
rem 6.1.2 is really necessary or just an artefact of the proof. More importantly, we do not know
if, for every O+

X♦
/p-vector bundle E, there is an admissible formal model X such that the “nearby

cycles” sheaf RνX,∗E lies in D
[0,d]
acoh(X0)a.

One can prove a slightly more precise version in case E comes as a tensor product of an Fp-
local system and O+

X♦
/p. More generally, one can slightly generalize the result to the class of

Zariski-constructible sheaves.

Definition 6.1.7. [Han20] An étale sheaf F of Fp-modules is a local system if it is a locally constant
sheaf with finite stalks.

An étale sheaf F of Fp-modules is Zariski-constructible if there is a locally finite stratification
X =

⊔
i∈I Zi into Zariski locally closed subspaces Zi such that F|Zi is a local system.

The category Dzc(X; Fp) is a full subcategory of D(Xét; Fp) consisting of objects with Zariski-
constructible cohomology sheaves.

Remark 6.1.8. Any Zariski-constructible sheaf F is overconvergent, i.e., for any morphism η → s
of geometric points in Xét, the specialization map Fs → Fη is an isomorphism.

Note that any sheaf of Fp-modules on Xét can be treated as a sheaf on any of the sites X♦v ,

X♦qproét, or Xproét via the pullback functors along the morphisms in Diagram 6.1. In what follows,

we abuse notation and implicitly treat a sheaf F as a sheaf on any of those sites. We also denote
the tensor product F ⊗Fp O

+
X/p simply by F ⊗ O+

X/p in what follows.

Now we discuss an integral version of Theorem 6.1.2.

Theorem 6.1.9. Let X be an admissible formal OK-scheme with adic generic fiber X of dimension

d and mod-p fiber X0, and F ∈ D
[r,s]
zc (X; Fp). Then

(1) there is an isomorphism Rt∗

(
F ⊗ O+

Xét
/p
)
' Rν∗

(
F ⊗ O+

X♦
/p
)
;

(2) the nearby cycles Rν∗
(
F ⊗ O+

X♦
/p
)
∈ D+

qc,acoh(X0), and Rν∗
(
F ⊗ O+

X♦
/p
)a ∈ D

[r,s+d]
acoh (X0)a;

(3) for an affine admissible X = Spf A, the natural map

˜
Hi
(
X♦v ,F ⊗ O+

X♦
/p
)
→ Riν∗

(
F ⊗ O+

X♦
/p
)

is an isomorphism for every i ≥ 0;

(4) the formation of Riν∗
(
F ⊗ O+

X♦
/p
)

commutes with étale base change, i.e., for any étale
morphism f : Y→ X with adic generic fiber f : Y → X, the natural morphism

f∗0
(
RiνX,∗

(
F ⊗ O+

X♦
/p
))
→ RiνY,∗

(
f−1F ⊗ O+

Y ♦
/p
)

is an isomorphism for any i ≥ 0;

Definition 6.1.10. An O+
X♦

-module E is an O+
X♦

-vector bundle if, v-locally on X♦, it is isomorphic

to (O+
X♦

)r for some integer r.

An O+
X♦

-vector bundle E is a very small O+
X♦

-vector bundle if E/pE is a very small O+
X♦

/p-vector
bundle (see Definition 6.1.1).

An O+
X♦

-vector bundle E is a small O+
X♦

-vector bundle if E/pE is a small O+
X♦

/p-vector bundle
(see Definition 6.1.1).

Theorem 6.1.11. Let X be an admissible formal OK-scheme with adic generic fiber X of dimension
d, and E an O+

X♦
-vector bundle. Then
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(1) the nearby cycles Rν∗E ∈ D+
qc,acoh(X) and (Rν∗E)a ∈ D

[0,2d]
acoh (X)a;

(2) for an affine admissible X = Spf A with the adic generic fiber X, the natural map

Hi
(
X♦v ,E

)∆
→ Riν∗ (E)

is an isomorphism for every i ≥ 0;

(3) the formation of Riν∗(E) commutes with étale base change, i.e., for any étale morphism
f : Y→ X with adic generic fiber f : Y → X, the natural morphism

f∗
(
RiνX,∗(E)

)
→ RiνY,∗ (E|Y ♦)

is an isomorphism for any i ≥ 0;

(4) if X has an open affine covering X =
⋃
i∈I Ui such that E|(Ui,K)♦ is very small, then

(Rν∗E)a ∈ D
[0,d]
acoh(X)a;

(5) if E is small, there is an admissible blow-up X′ → X such that X′ has an open affine covering
X′ =

⋃
i∈I Ui such that E|(Ui,K)♦ is very small.

In particular, if E is small, there is a cofinal family of admissible formal models {X′i}i∈I
of X such that

(RνX′i,∗E)a ∈ D
[0,d]
acoh(X′i)

a.

for each i ∈ I.

Remark 6.1.12. We refer to Definition 4.8.9 for the precise definition of all derived categories
appearing in Theorem 6.1.11.

Remark 6.1.13. One can also prove a version of Theorem 6.1.11 for Zariski-constructible Zp-
sheaves in the sense of [BH21, Definition 3.32]. However, we prefer not to do this here as it does
not require new ideas but makes the exposition a heavier in terms of terminology.

For the version of Theorem 6.1.11 with the pro-étale site Xproét as defined in [Sch13] and [Sch16],
see Theorem 6.13.6

The rest of the paper is devoted to proving Theorem 6.1.9, Theorem 6.1.2, and Theorem 6.1.11
and discussing their applications. We have decided to work entirely in the v-site of X♦ because
it is quite flexible for different types of arguments (e.g. proper descent, torsors under pro-finite
groups, etc.). However, most of the arguments can be carried over in a more classical pro-étale site
defined in [Sch13]. However, it seems difficult to show that Riν∗E are quasi-coherent (as opposed
to almost quasi-coherent) using that version of the pro-étale site (however the quasi-proétale site is
sufficient for these purposes), and it is also crucial to argue on the level of diamonds for the purpose
of getting a cohomological bound on Riν∗E in the small case.

6.2. Digression: Geometric Points. In this section, we discuss some preliminary results that
will be both used in the proof of Theorem 6.1.9 and in deriving applications out of it.

We start the section by recalling some definitions.

Definition 6.2.1. [Tem21, 2.1.4] An extension of non-archimedean fields31 K ⊂ L is topologically
algebraic if the algebraic closure of K in L is dense in L. Equivalently, K ⊂ L is topologically

algebraic if L is a non-archimedean subfield of K̂ completed algebraic closure of K.

31Recall that non-archimedean fields are complete by our convention.
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Lemma 6.2.2. (1) Let K ⊂ L and L ⊂ M be two topologically algebraic extensions of non-
archimedean fields. Then K ⊂M is also topologically algebraic.

(2) Let

N L

M K

be a commutative diagram of non-archimedean fields such that LM is dense in N and
K ⊂ L is topologically algebraic. Then M ⊂ N is also a topologically algebraic extension.

Proof. (1) : We know that L ⊂ K̂ and M ⊂ L̂ since both extensions are topologically algebraic.

Therefore, M ⊂ L̂ ⊂ K̂ proving that K ⊂M is topologically algebraic.

(2) : First, we note that

LM ⊂ K̂M ⊂ K̂M ⊂ M̂.

Secondly, we note that since LM ⊂ N is dense, the inclusion LM ⊂ M̂ uniquely extends to an

inclusion N ⊂ M̂ proving that M ⊂ N is topologically algebraic. �

Definition 6.2.3. A geometric point above point x ∈ X of an analytic adic space X is a morphism
x : Spa (C(x), C(x)+) → X such that C(x) is an algebraically closed non-archimedean field, and

the corresponding extension of completed residue fields k̂(x) ⊂ C(x) is a topologically algebraic
extension.

Remark 6.2.4. If Spa (C(x), C(x)+)→ X is a geometric point, then C(x) can be identified with

the completed algebraic closure of k̂(x) (or, equivalently, of k(x)) and C(x)+ with a valuation

ring extending k̂(x)
+

(or, equivalently, k(x)+). Therefore, Definition 6.2.3 is more restrictive than
[Hub96, Definition 2.5.1], but coincides with the subclass of geometric points constructed in [Hub96,
(2.5.2)].

Lemma 6.2.5. Let K be a non-archimedean field with an open and bounded valuation sub-ring
K+ ⊂ K and a pseudo-uniformizer $. Let f : X → Y be a morphism of locally of finite type
(K,K+)-adic spaces, and y : Spa (C(y), C(y)+)→ Y be a geometric point above y ∈ Y . Then the
natural morphism

a : i−1(O+
Xét
/$)→ O+

Xy,ét
/$

is an isomorphism where i : Xy → X is the “projection” of the geometric fiber Xy := X ×Y
Spa (C(y), C(y)+) back to X.

Proof. [Hub96, Proposition 2.5.5] ensures that it suffices to show that a is an isomorphism on
stalks above geometric points of Xy. Now note that Lemma 6.2.2 implies that any geometric point
x : Spa (C(x), C(x)+)→ Xy defines a geometric point x′ : Spa (C(x), C(x)+)→ X of X by taking
the compostition of x with i. So it is enough to show that the natural map

(O+
Xét
/$)x′ '

(
i−1(O+

Xét
/$)

)
x
→ (O+

Xy,ét
/$)x (6.3)

is an isomorphism. But [Hub96, Proposition 2.6.1] naturally identifies both sides of (6.3) with
C(x)+/$C(x)+ finishing the proof. �
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Remark 6.2.6. Lemma 6.2.5 is very specific to the adic geometry (and probably quite counter-
intuitive from algebraic point of view). Its scheme-theoretic version with O+/$ replaced with O

is very false. The main feature of analytic adic geometry (implicitly) used in the proof is that the
morphism O+

X,x → k(x)+ becomes an isomorphism after $-adic completion.

Lemma 6.2.7. Let (C,C+) be a Huber pair of an algebraically closed non-archimedean field C,
an open and bounded valuation sub-ring C+ ⊂ C and a pseudo-uniformizer $ ∈ C+. Suppose that
(C,C+) → (D,D+) is a finite morphism of complete Huber pairs with a local ring D. Then the
natural morphism

C+/$C+ → D+/$D+

is an isomorphism.

Proof. Firstly, we show that C+/$C+ → D+/$D+ is injective. Suppose, let c ∈ C+/$C+ be an
element in the kernel, lift it to c ∈ C+. The assumption on c implies that c = $d for some d ∈ D+.
But then d = c/$ ∈ C ∩D+ = C+. Therefore, c = 0 in C+/$C+.

Now we check surjectivity. Since D is a local ring that is finite over an algebraically closed field
C, we conclude that D is an Artin local ring and D/nil(D) ' C. Therefore, for every d ∈ D+,
we can find c ∈ C and d′ ∈ nil(D) such that d = c + d′. Since nil(D) ⊂ D◦◦ ⊂ D+, we conclude
that c = d − d′ ∈ D+ ∩ C = C+. Now note taht d′/$ is still a nilpotent element of D, thus
d′/$ ∈ nil(D) ⊂ D+. Thus,

d = c+$(d′/$)

proving that C+/$C+ → D+/$D+ is surjective. �

Corollary 6.2.8. Let (K,K+) be a Huber pair of a p-adic non-archimedean field K and an open
and bounded valuation sub-ring K+ ⊂ K. Let f : X → Y be a finite morphism of locally finite
type (K,K+)-adic spaces. Then the natural morphism

c : f∗
(
Fp

)
⊗ O+

Yét
/p→ f∗(O

+
Xét
/p)

is an isomorphim on Yét.

Proof. We use [Hub96, Proposition 2.5.5] to ensure that it suffices to show that c is an isomorphism
on stalks at geometric points. Thus [Hub96, Proposition 2.6.1] and Lemma 6.2.5 imply that it
suffices to assume that y = Y = Spa (C,C+) with an algebraically closed p-adic non-archimedean
field C. In this case, X = Spa (D,D+) for some finite morphism of Huber pairs (C,C+)→ (D,D+).
In particular, D is a finite C-algebra, so it is a finite direct product of local artinian C-algebra. By
passing to a direct factor of D (or, geometrically, to a connected component of Spa (D,D+)), we
can assume that D is local. In particular, D does not have any idempotents, and so Spa (D,D+)
is connected. Thus [Hub96, Proposition 2.6.1] ensures that(

f∗Fp ⊗ O+
Yét
/p
)
y
' H0(X,Fp)⊗ C+/pC+ ' C+/pC+,

where H0(X,Fp) ' Fp by the connectivity assumption on Spa (D,D+).

Now we observe that Spa (D,D+)red ' Spa (C,C+), so all étale sheaves on Spa (D,D+) do not
have higher cohomology groups. Thus, we have(

f∗(O
+
Xét
/p)
)
y
' H0(X,O+

Xét
/p) ' D+/pD+.

In particular, the question boils down to showing that the natural map

C+/pC+ → D+/pD+

is an isomorphism. This was already done in Lemma 6.2.7. �
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Corollary 6.2.9. Let K be a p-adic non-archimedean field, f : X → Y a finite morphism of
rigid-analytic varieties over K, and F ∈ Db

zc(X; Fp). Then the natural morphism

c : f∗ (F)⊗ O+
Yét
/p→ f∗

(
F ⊗ O+

Xét
/p
)

is an isomorphim on Yét.

Proof. We recall that [BH21, Proposition 3.6] says that Db
zc(X; Fp) is a thick triangulated subcate-

gory of D(Xét; Fp) generated by objects of the form g∗
(
Fp

)
for finite morphisms g : X ′ → X. Since

both claims in the question satisfy the 2-out-of-3 property and are preserved by passing to direct
summands, it suffices to prove the claim only for F = g∗

(
Fp

)
. In this situation, the claim follows

from Corollary 6.2.8 by a sequence of isomorphisms

f∗
(
g∗
(
Fp

))
⊗ O+

Yét
/p ' (f ◦ g)∗ (Fp)⊗ O+

Yét
/p

' (f ◦ g)∗

(
O+
X′ét
/p
)

' f∗
(
g∗O

+
X′ét
/p
)

' f∗
(
g∗Fp ⊗ O+

Xét
/p
)
.

�

6.3. Applications. The main goal of this section is to discuss some applications of Theorem 6.1.9.

For the rest of the section, we fix a p-adic algebraically closed field C with its rank-1 valuation
ring OC , maximal ideal m ⊂ OC , and a good pseudo-uniformizer $ ∈ OC (see Definition B.1.6). We
always do almost mathematics with respect to the ideal m in this section. If we need to consider a
more general non-archimedean field, we denote it by K.

One non-trivial consequence of Theorem 6.1.11 is that v cohomology groups of O+
X♦

-vector
bundles have bounded p-torsion.

Lemma 6.3.1. Let K be a p-adic perfectoid field, X = Spf A0 an affine admissible formal OK-
scheme the adic generic fiber X, and E an O+

X♦
-vector bundle. Then the cohomology groups

Hi(X♦v ,E) are almost finitely presented over A0. In particular, they are p-adically complete and
have bounded torsion p∞-torsion.

Proof. This is a straightforward consequence of Theorem 6.1.11, Lemma 2.12.5 and Lemma 2.12.7.
�

Remark 6.3.2. Lemma 6.3.1 implies that v cohomology groups of O+
X♦

behave pretty differently

from analytic cohomology groups of O+
X . Indeed, see [Bha, Remark 9.3.4] (that can be easily adapted

to the p-adic situation) for an example of an affinoid with unbounded p-torsion in H1
an(X,O+

X).

Theorem 6.3.3. Let K be a p-adic perfectoid field, X a proper rigid-analytic K-variety of dimen-
sion d, and E an O+

X♦
-vector bundle (resp. O+

X♦
/p-vector bundle). Then

RΓ(X♦v ,E) ∈ D
[0,2d]
acoh (OK)a.

Proof. We firstly deal with the case of an O+
X♦

/p-vector bundle E. We choose choosing an admissible

formal model X of the rigid-analytic variety X. It is necessarily proper by [L9̈0, Lemma 2.6] (or
[Tem00, Corollary 4.4 and 4.5]). Now Theorem 6.1.2 (and [Sch13, Corollary 3.17(i)]) implies that

Rν∗ (E)a ∈ D
[0,2d]
acoh (X0)a.
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Recall that the underlying topological spaces of the mod-p fiber X0 and the special fiber X :=
X ×Spf OC SpecOC/m are the same. Thus [FK18, Corollary II.10.1.11] implies that X0 has Krull
dimension d. Therefore, Theorem 5.1.3, [Sta21, Tag 0A3G] and Lemma 3.3.6 imply that

RΓ(X♦v ,E)a ' RΓ (X0,Rν∗ (E))a ∈ D
[0,3d]
acoh (OK/p)

a.

Now we need to get a better cohomological estimate. Lemma 6.7.4 implies (by choosing an affinoid
cover of X) that

RΓ(X♦v ,E)⊗ OK/p→ RΓ(X♦C,v,E)

is an isomorphism, where C is a completed algebraic closure of K. Then Lemma 2.10.5 and faithful
flatness of OK/pOK → OC/pOC implies that it suffices to prove the claim under the additional
assumption that K = C is algebraically closed. Then we consider

E′ :− Rµ∗Rλ ∗ E,

this is an O+
Xét
/p-vector bundle (concentrated in degree 0) by Theorem C.4.8 and Theorem C.4.5.

So it suffices to show that

RΓ(X♦v ,E) ' RΓ(Xét,E
′)

is concentrated in degrees [0, 2d]. This follows from [Hub96, Corollary 2.8.3] and finishes the proof
for O+

X♦
/p-modules.

Now if E is an O+
X♦

-vector, we see that

[RΓ(X♦v ,E)/p] ' RΓ(X♦v ,E/p) ∈ D
[0,3d]
acoh (OC/p)

a,

and

[RΓ(X♦v ,E)/p] ' RΓ(X♦v ,E/p) ∈ D
[0,2d]
acoh (OC/p)

a

if E is small. So we conclude the claim by Corollary 2.13.3, and Lemma C.3.5 (3). �

Another application of the results in Section 6 is the finiteness properties of Zariski-constructible
sheaves. We show that cohomology groups of a Zariski-constructible sheaf on a proper space are
finite, and that the “p-adic nearby cycles” commute with proper pushforward establishing a similar
behaviour to the algebraic nearby cycles.

We start with the finiteness properties:

Lemma 6.3.4. Let X be a proper rigid-analytic variety over C of dimension d, and F a Zariski-

constructible sheaf of Fp-modules on Xét. Then RΓ(X♦v ,F ⊗ O+
X♦

/p)a ∈ D
[0,2d]
acoh (OC/p)

a.

Proof. The proof is analogous to the proof of Theorem 6.3.3 using Theorem 6.1.9 in place of
Theorem 6.1.2. �

Lemma 6.3.5. Let X be a proper rigid-analytic variety over C of dimension d. Then

RΓ(X,Fp) ∈ D
[0,2d]
coh (Fp)

and the natural morphism

RΓ(X,Fp)⊗ OC/p→ RΓ(X♦v ,O
+
X♦

/p)

is an almost isomorphism.

https://stacks.math.columbia.edu/tag/0A3G
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Proof. Step 1. RΓ(X♦v ,O
[,+
X♦

)a ∈ D
[0,2d]
acoh (O[C)a. We consider the tilted integral structure sheaf O[,+

X♦

(see Definition C.3.4). Lemma C.3.5 (4) ensures that O
[,+
X♦

is derived $[-adically complete and
Lemma C.3.5 (5) implies that

[O[,+
X♦

/$[] ' [O+
X♦

/p] ' O+
X♦

/p.

Therefore, [Sta21, Tag 0BLX] guarantees that RΓ
(
X♦v ,O

[,+
X♦

)
∈ D

(
O[C
)

is derived $[-adically

complete. Moreover, Lemma 6.3.4 implies[
RΓ

(
X♦v ,O

[,+
X♦

)a
/$[

]
' RΓ(X♦v ,O

+
X♦

/p)a ∈ D
[0,2d]
acoh (OC/p)

a.

Thus Corollary 2.13.3 applied to R = C+ = O[C implies that RΓ
(
X♦v ,O

[,+
X♦

)a
∈ D

[0,2d]
acoh (O[C)a.

Step 2. RΓ(X,Fp) ∈ D
[0,2d]
coh (Fp) and the natural morphism RΓ(X,Fp) ⊗ C[ → RΓ(X♦v ,O

[
X♦

)

is an isomorphism. After inverting $[, Step 1 implies that

RΓ(X♦v ,O
[
X♦) ∈ D

[0,2d]
coh (C[).

Now O[
X♦

is a sheaf of Fp-algebras, so there is a natural Frobenius morphism

F : O[,+
X♦

f 7→fp−−−−→ O
[,+
X♦

.

that can be easily seen to be an isomorphism by Lemma C.3.5 (2) (and Remark B.1.3). Now we
use the Artin-Shreier short exact sequence

0→ Fp → O[X♦
F−Id−−−→ O[X♦ → 0

on the v-site X♦v to get the associated long exact sequence32

· · · → Hi(X,Fp)→ Hi(X♦v ,O
[
X♦)

Hi(F )−Id−−−−−−→ Hi(X♦v ,O
[
X♦)→ Hi+1(X,Fp)→ . . .

We already know that each group Hi(X♦v ,O
[
X♦

) is a finitely generated C[-vector space, each Hi(F )

is a frobenius-linear automorphism, and C[ is an algebraically closed field of characteristic p (see
[Sch12, Theorem 3.7]). Thus (the proof of) [Sta21, Tag 0A3L] ensures that Hi(F )− Id is surjective

for each i ≥ 0 (so Hi(X,Fp) ' Hi(X♦v ,O
[
X♦

)F=1) and the natural morphism

Hi(X,Fp)⊗ C[ → Hi(X♦v ,O
[
X♦)

is an isomoprhism. In particular, dimFp Hi(X,Fp) = dimC[ Hi(X♦v ,O
[
X♦

), RΓ(X,Fp) ∈ D
[0,2d]
coh (Fp),

and the natural morphism

RΓ(X,Fp)⊗ C[ → RΓ(X♦v ,O
[
X♦)

is an isomorphism.

Step 3. The natural morphism RΓ(X,Fp)⊗OC/p→ RΓ(X♦v ,O
+
X♦

/p) is an almost isomorphism.
It suffices to show that

RΓ(X,Fp)⊗ O[C → RΓ(X♦v ,O
[,+
X♦

)

is an almost isomorphism. The version with O+
X♦

/p then would follow by taking the derived mod-$[

reduction. Therefore, it is enough to show that

Hi(X,Fp)⊗ O[C → Hi(X♦v ,O
[,+
X♦

)

32We implicitly use that Hi(X,Fp) ' Hi(X♦v ,Fp) by [Sch17, Proposition 14.7, 14.8, and Lemma 15.6].

https://stacks.math.columbia.edu/tag/0BLX
https://stacks.math.columbia.edu/tag/0A3L
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is an almost isomorphism for each i ≥ 0. Consider a commutative diagram

Hi(X,Fp)⊗ O[C Hi(X♦v ,O
[,+
X♦

)

Hi(X,Fp)⊗ C[ Hi(X♦v ,O
[
X♦

).

α

i

β

By Step 2, we know that β is an isomorphism. Since i is injective, we conclude that α is injective
as well. So it only suffices to show that α is almost surjective.

Since β is an isomorphism and Hi(X♦v ,O
[,+
X♦

) is almost coherent by Step 1, it is easy to see that

there is an integer n such that ($[)nx ∈ Im(α) for any x ∈ Hi(X♦v ,O
[,+
X♦

). Now we note that both
the source and the target of α have a natural Frobenius action and α respects those actions: the
action on the source comes from the Frobenius action on O[C and the Frobenius action on the target

comes from the Frobenius action on O
[,+
X♦

. The action on Hi(X,Fp)⊗O[C is an isomorphism because

O[C is perfect, and the action on Hi(X♦v ,O
[,+
X♦

) is an isomorphism because Frobenius is already an

isomorphism on the sheaf O[,+
X♦

by Lemma C.3.5 (2) (and Remark B.1.3). Therefore, it makes sense

to consider the inverse Frobenius action F−1 on both modules and α commutes with this action.

Now we pick any element x ∈ Hi(X♦v ,O
[,+
X♦

). Since F is an isomorphism on Hi(X♦v ,O
[,+
X♦

), there

is x′ ∈ Hi(X♦v ,O
[,+
X♦

) such that Fm(x′) = x. By the discussion above, there is y′ ∈ Hi(X♦v ,Fp)⊗O[C
such that α(y′) = ($[)Nx′. Therefore,(

$[
)N/pm

x = F−m
((

$[
)N

x′
)

= F−m
(
α
(
y′
))

= α
(
F−m

(
y′
))
.

Thus ($[)N/p
m
x = α(y) where y = F−m(y′) ∈ Hi(X,Fp)⊗O[C . Since N/pm can be made arbitrary

small by increasing m, we conclude that α is almost surjective. �

Lemma 6.3.6. LetX be a proper rigid-analytic variety over C of dimension d, and F ∈ Db
zc(X; Fp).

Then
RΓ(X,F) ∈ Dcoh(Fp).

Proof. We recall that [BH21, Proposition 3.6] says that Db
zc(X,Fp) is a thick triangulated sub-

category of D(Xét; Fp) generated by objects of the form f∗(Fp) for finite morphisms f : X ′ → X.
Since both claims in the question satisfy the 2-out-of-3 property and are preserved by passing to
direct summands, it suffices to prove the claim only for F = f∗(Fp). Then the claim follows from
Lemma 6.3.5 since

RΓ
(
X, f∗

(
Fp

))
' RΓ(X ′,Fp) ∈ D

[0,2d]
coh (Fp).

�

Lemma 6.3.7. Let K be a p-adic perfectoid field K, f : X → Y a proper morphism of rigid-analytic
varieties over K, and F ∈ Db

zc(X; Fp). Then the natural morphism

Rf∗F ⊗ O+
Yét
/p→ Rf∗(F ⊗ O+

Xét
/p)

is an almost isomorphism.

Proof. The claim is local on Y , so we can assume that Y is affinoid. Then a similar trick as in the
proof of Corollary 6.3.6 allows us to reduce to the case F = g∗

(
Fp

)
for a finite map g : X ′ → X.

So Corollary 6.2.8 implies that it suffices to prove the claim for the morphism f ◦ g : X ′ → Y and
F = Fp.
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Now [Hub96, Proposition 2.5.5] guarantees that it suffices to show the claim on stalks at geometric
points. Therefore, by Lemma 6.2.5 we reduce the question to showing that, for any proper adic
space X over a geometric point Spa (C,C+), the natural morphism

RΓ(X,Fp)⊗ C+/p→ RΓ(X,O+
Xét
/p).

is an almost isomorphism. Denote by X◦ := X ×Spa (C,C+) Spa (C,C◦). We have an isomorphism
RΓ(X,Fp) ' RΓ(X◦,Fp) by [Hub96, Proposition 8.2.3(ii)], an almost isomorphism

C+/pC+ 'a OC/pOC
by Lemma 2.11.1, and an almost isomorphism RΓ(X,O+

Xét
/p) 'a RΓ(X◦,O+

X◦ét
/p) by Corol-

lary C.3.12 and Corollary C.3.15. Thus we may replace (C,C+) with (C,OC) and X with X◦

to assume that Spa (C,OC) is a geometric point of rank-1. In this case, the claim was already
proven in Lemma 6.3.6. �

Corollary 6.3.8. Let X be a proper rigid-analytic variety over C of dimension d, and F a Zariski-
constructible étale Fp-sheaf. Then

RΓ(X,F) ∈ D
[0,2d]
coh (Fp).

Proof. Lemma 6.3.6 already implies that RΓ(X,F) ∈ Dcoh(Fp), so we only need to show that this
complex is concentrated in degrees [0, 2d]. Now Lemma 6.3.7 (applied to Y = Spa (C,OC)) and
Lemma 6.3.4 ensure that

(RΓ (X,F)⊗ OC/p)
a ' RΓ

(
X,F ⊗ O+

X/p
)a ' RΓ

(
X♦v ,F ⊗ O+

X♦
/p
)a
∈ D

[0,2d]
acoh (OC/p)

a

implying that RΓ(X,F) must be concentrated in degrees [0, 2d]. �

Now we show that p-adic nearby cycles commute with proper morphisms.

Corollary 6.3.9. Let K be a p-adic perfectoid field K, f : X→ Y a proper morphism of admissible
formal OK-schemes with adic generic fiber f : X → Y , and F ∈ Db

zc(X; Fp). Then the natural
morphism

RνY,∗
(
Rf∗F ⊗ O+

Y ♦
/p
)
→ Rf0,∗

(
RνX,∗

(
F ⊗ O+

X♦
/p
))

is an almost isomorphism.

Proof. Firstly, note that Rf∗F has overconvergent cohomology sheaves by [Hub96, Proposition
8.2.3(ii)] and Remark 6.1.8. Therefore, Lemma C.5.10 implies that

RνY,∗
(
Rf∗F ⊗ O+

Y ♦
/p
)
' RtY,∗

(
Rf∗F ⊗ O+

Yét
/p
)
,

where tY :
(
Yét,O

+
Yét
/p
)
→ (Y0,OY0) is the natural morphism of ringed sites. Similarly, we have

an isomorphism

Rf0,∗
(
RνX,∗

(
F ⊗ O+

X♦
/p
))
' Rf0,∗

(
RtX,∗

(
F ⊗ O+

Xét
/p
))

.

Therefore, it suffices to show that the natural morphism

RtY,∗

(
Rf∗F ⊗ O+

Yét
/p
)
→ Rf0,∗

(
RtX,∗

(
F ⊗ O+

Xét
/p
))

is an isomorphism.
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For this, we use a commutative diagram of ringed sites(
Xét,O

+
Xét
/p
)

(X0,OX0)

(
Yét,O

+
Yét
/p
)

(Y0,OY0)

tX

f f0

tY

implies that

Rf0,∗

(
RtX,∗

(
F ⊗ O+

Xét
/p
))
' RtY,∗

(
Rf∗

(
F ⊗ O+

Xét
/p
))

.

Therefore, the morphism

RtY,∗

(
Rf∗F ⊗ O+

Yét
/p
)
→ Rf0,∗

(
RtY,∗

(
F ⊗ O+

Yét
/p
))
' RtY,∗

(
Rf∗

(
F ⊗ O+

Xét
/p
))

is an almost isomorphism by Lemma 6.3.7 and Proposition 3.5.23. �

6.4. Perfectoid Covers of Affinoids. The main goal of this section is to show almost vanishing of
higher v-cohomology groups of a small O+

X♦
/p-vector bundle on an affinoid perfectoid. Later we will

apply it to certain pro-étale coverings of Spa (A,A+) to reduce the computation of v-cohomology
groups to the computation of Čech cohomology groups.

Set-up 6.4.1. We fix

(1) a p-adic perfectoid field K with its rank-1 open and bounded valuation ring OK and a good
pseudo-uniformizer33 $ ∈ OK as in (we always do almost mathematics with respect to the

ideal m =
⋃
n$

1/pnOK = K◦◦),

(2) an affine admissible formal scheme X = Spf A0 with an adic generic fiber X = Spa (A,A+),
and an affinoid perfectoid pair (A∞, A

+
∞) (see Definition B.1.1) with a morphism (A,A+)→

(A∞, A
+
∞) such that Spd (A∞, A

+
∞)→ Spd (A,A+) is a v-covering (see Definition C.1.1 and

Definition C.1.5);

(3) a very small O+
X♦

/p-vector bundle E (see Definition 6.1.1).

Definition 6.4.2. We say that a p-torsionfree (equivalently, $-torsionfree) OK-algebra R is inte-

grally perfectoid if the Frobenius homomorphism R/$R
x 7→xp−−−→ R/$pR = R/pR is an isomorphism.

Remark 6.4.3. This definition coincides with [BMS18, Definition 3.5] for p-torsionfree OK-algebras
by [BMS18, Lemma 3.10]. In particular, A+

∞ is an integral perfectoid OK-algebra by [BMS18,
Lemma 3.20].

Lemma 6.4.4. Under the assumption of Set-up 6.4.1, let f : Spf B0 → Spf A0 be an étale mor-
phism of admissible affine formal OK-schemes. Then B+

∞ := B0⊗̂A0A
+
∞ is p-torsionfree integrally

perfectoid OK-algebra.

Proof. Firstly, we note that A0 → B0 is a flat morphism by [FK18, Proposition I.4.8.1], so B0 ⊗A0

A+
∞ is $-torsion free. Since the $-adic completion of a $-torsionfree algebra is $-torsionfree, we

conclude that B+
∞ = B0⊗̂A0A

+
∞ is $-torsionfree. We see that the only thing we are left to show is

that the Frobenius morphism

B+
∞/$B

+
∞ → B+

∞/$
pB+
∞

33See Definition B.1.6
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is an isomorphism. We consider the commutative diagram

SpecB+
∞/$

Spec
(
B+
∞/$

p ⊗A+
∞/$p

A+
∞/$

)
SpecB+

∞/$
p

SpecA+
∞/$ SpecA+

∞/$
p.

F Φ∗B

f∞/$ Φ∗A×B0

f∞/$p

Φ∗A

We need to show that Φ∗B is an isomorphism. We know that f∞/$
p and f∞/$ are étale morphisms

since f is, and the Frobenious Φ∗A an isomorphism by Remark 6.4.3. Therefore, the morphism

Spec
(
B+
∞/$

p ⊗A+
∞/$p

A+
∞/$

)
→ SpecA+

∞/$

is étale as a base change of étale f∞/$
p, and the morphism

Spec
(
B+
∞/$

p ⊗A+
∞/$p

A+
∞/$

)
→ SpecB+

∞/$
p

is an isomorphism as a pullback of an isomorphism. Thus, we conclude that F is an étale morphism
as a morphism between étale A+

∞/$-schemes. Therefore, Φ∗B is also an étale morphism as a com-
position of an étale morphism and an isomorphism. However, Φ∗B is a bijective radiciel morphism
since it is an absolute Frobenius. Thus we conclude that it must be an isomorphism as any étale,
bijective radiciel morphism is an isomorphism by [Gro63, Théorème 5.1]. �

Corollary 6.4.5. Under the assumption of Set-up 6.4.1, let f : Spf B0 → Spf A0 be an étale
morphism of admissible affine formal OK-schemes. Then

(B∞, B
+
∞) :=

((
B0⊗̂A0A

+
∞
)

[1/p], B0⊗̂A0A
+
∞
)

is a perfectoid pair.

Proof. Lemma 6.4.4 states that B+
∞ = B0⊗̂A0A

+
∞ is a p-torsionfree integral perfectoid. Now B0⊗A0

A+
∞ is integrally closed in B0 ⊗A0 A

+
∞[1/p] because A+ is integrally closed in A and B0 is étale

over A0. Therefore, [Bha, Lemma 5.1.2] ensures that the same holds after completion, i.e. B+
∞

is integrally closed in B∞. Thus [BMS18, Lemma 3.20] guarantees that (B∞, B
+
∞) is a perfectoid

pair. �

Lemma 6.4.6. Under the assumption of Set-up 6.4.1, let f : Spf B0 → Spf A0 be an étale morphism
of admissible affine formal OK-schemes with adic generic fiber Spa (B,B+) → Spa (A,A+). Then
the natural morphism((

B0⊗̂A0A
+
∞
)

[1/p], B0⊗̂A0A
+
∞
)
→
(
B⊗̂AA∞, (B⊗̂AA∞)+

)
is an isomorphism of Huber-Tate pairs.

Proof. By [Hub93b, Lemma 1.6], B⊗̂AA∞ '
(
B0⊗̂A0A

+
∞
)

[1/p]. Now (B⊗̂AA∞)+ is defined to be
the integral closure of the image of the map

B+⊗̂A+A+
∞ → B⊗̂AA∞.

By [Hub93b, Lemma 1.6], we also have

B+⊗̂A+A+
∞ '

(
B+ ⊗A+ A+

∞
)
⊗B0⊗A0

A+
∞

(
B0⊗̂A0A

+
∞
)
.
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Since B+ ⊗A+ A+
∞ is integral over B0 ⊗A0 A

+
∞, we conclude that B+⊗̂A+A+

∞ is integral over
B0⊗̂A0A

+
∞. In particular, we see that (B⊗̂AA∞)+ is integral over B0⊗̂A0A

+
∞. However, Corol-

lary 6.4.5 implies that B0⊗̂A0A
+
∞ is a sub-algebra of B⊗̂AA∞ that is integrally closed in B⊗̂AA∞.

Thus we must have an equality
B0⊗̂A0A

+
∞ ' (B⊗̂AA∞)+.

�

Remark 6.4.7. It will be crucial for our arguments later that (B⊗̂AA∞)+ is equal to B0⊗̂A0A
+
∞

and not simply to its integral closure. Taking an integral closure of these “big” non-noetherian
rings may ruin many finiteness properties.

Lemma 6.4.8. Under the assumption of Set-up 6.4.1, let ME be an A+
∞/pA

+
∞-module

ME := H0
(
Spd (A∞, A

+
∞)v,E

)
.

Then ME is an almost faithfully flat, almost finitely presented A+
∞/pA

+
∞-module, and for every

morphism Spa (D,D+)→ Spa (A∞, A
+
∞) of affinoid perfectoids, the natural morphism

ME ⊗A+
∞/p

D+/p→ H0
(
Spd (D,D+)v,E

)
is an almost isomorphism34. Moreover,

Hi
(
Spd (A∞, A

+
∞)v,E

)
'a 0

for i > 0.

Proof. Step 1. H0 (Spd(A∞, A
+
∞)v,E) is almost flat and almost finitely presented: The very small-

ness assumption implies that there is a finite étale surjection Spa (B,B+) → Spa (A∞, A
+
∞) such

that E|Spd (B,B+) ' (O+
X♦

/p)r for some integer r ≥ 0. The adic space Spa (B,B+) is affinoid
perfectoid by [Sch13, Theorem 7.9].

The natural morphism A+ → B+ is almost finitely presented and almost faithfully flat by [Sch13,
Theorem 7.9] (see also [Bha, Theorem 10.0.9] for the almost faithfully flat part). Since E|Spd (B,B+)

is trivial, Lemma C.3.5 (1) implies that

H0
(
Spd (B,B+)v,E

)
'a (B+/pB+)r.

In particular, it is almost flat and almost finitely presented. We now want to descent these prop-
erties to H0 (Spd (A∞, A

+
∞)v,E). For this, we use Proposition C.1.6 to recall that diamondification

commutes with fiber products, and so

Spd (B,B+)×Spd (A∞,A
+
∞) Spd (B,B+) '

(
Spa (B,B+)×Spa (A∞,A

+
∞) Spa (B,B+)

)♦
' Spd

(
B⊗̂A∞B, (B⊗̂A∞B)+

)
.

By the proof of [Sch12, Proposition 6.18] (and Lemma B.1.7), we see thatB+⊗̂A+
∞
B+ → (B⊗̂A∞B)+

is an almost isomorphism (while, a priori, the latter group is the integral closure of the former one
inside B⊗̂A∞B). In particular,

B+/p⊗A+
∞/p

B+/p 'a (B⊗̂A∞B)+/p(B⊗̂A∞B)+.

Thus

H0
(
Spd

(
B⊗̂A∞B, (B⊗̂A∞B)+

)
v
,E
)
'a
(

(B+/p)
⊗2

A+
∞/p

)r
34We note that E is a sheaf on a (big) v-site of Spd (A,A+), so it makes sense to evaluate E on Spd (D,D+).
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and the natural morphism

H0
(
Spd (B,B+)v,E

)
⊗B+/p (B+/p)

⊗2

A+
∞/p → H0

(
Spd

(
B⊗̂A∞B, (B⊗̂A∞B)+

)
v
,E
)

is an almost isomorphism. We use the sheaf condition and the previous discussion to get an almost
exact sequence

0→ H0(Spd
(
A∞, A

+
∞
)
v
,E)→ H0

(
Spd (B,B+)v,E

)
→ H0

(
Spd (B,B+)v,E

)
⊗B+/p

(
(B+/p)⊗2

)
.

Theorem 2.10.3 applied to the almost faithfully flat morphism A+
∞/pA

+
∞ → B+/pB+ implies

that the natural morphism

H0
(
Spd

(
A∞, A

+
∞
)
v
,E
)
⊗A+

∞/p
B+/p→ H0

(
Spd (B,B+)v,E

)
(6.4)

is an almost isomorphism. By the computation above, we know that H0 (Spd (B,B+)v,E) is almost
faithfully flat and almost finitely presented over B+/pB+. Thus, the faithfully flat descent for
flatness and almost finitely presented modules (see Lemma 2.10.5 and Lemma 2.10.7) implies that
H0 (Spd (A∞, A

+
∞)v ,E) is almost faithfully flat and almost finitely presented over A+

∞/pA
+
∞.

Step 2. H0 (Spd(A∞, A
+
∞)v,E) almost commutes with base change: By the proof of [Sch12,

Proposition 6.18] (and Lemma B.1.7), we know that Spa (B,B+) ×Spa (A∞,A
+
∞) Spa (D,D+) exists

as an adic space and is represented by Spa (R,R+) for a perfectoid pair (R,R+) such that

B+/p⊗A+
∞/p

D+/p→ R+/p (6.5)

is an almost isomorphism. Thus the proof of Step 1 and (6.5) imply that

H0
(
Spd (D,D+)v,E

)
⊗A+

∞/p
B+/p→ H0

(
Spd (R,R+)v,E

)
is an almost isomorphism. Now we wish to show the natural morphism

H0
(
Spd (A∞, A

+
∞)v,E

)
⊗A+

∞/pA
+
∞
D+/pD+ → H0

(
Spd (D,D+)v,E

)
is an almost isomorphism. By the faithfully flat descent, it suffices to check after tensoring against
B+/pB+ over A+

∞/pA
+
∞. Therefore, we use (6.4) and (6.5) to see that it suffices to show that

H0
(
Spd (B,B+)v,E

)
⊗B+/p R

+/p→ H0
(
Spd (R,R+)v,E

)
is an almost isomorphism. Now Lemma C.3.5 (1) almost identifies (in the technical sense) this
morphism with the identity moprhism

(R+/pR+)r → (R+/pR+)r

since E|Spd (B,B+) is a trivial O+/p-vector bundle of rank r.

Step 3. Hi (Spd(A∞, A
+
∞)v,E) is almost zero for i > 0: As above, we use that

Spa (B,B+)→ Spa (A∞, A
+
∞)

is a finite étale morphism of affinoid perfectoids to conclude that all fiber products

Spa (B,B+)j/Spd (A∞,A
+
∞)

are represented by affinoid perfectoids Spa (Bj , B
+
j ) and the natural morphisms

(B+/pB+)
⊗j
A+
∞/pA

+
∞ → B+

j /pB
+
j

are almost isomorphisms. Since each restriction E|Spd (Bj ,B
+
j ) is trivial, Lemma C.3.5 (1) ensures

that higher cohomology of E on Spd (Bj , B
+
j ) almost vanish. Thus RΓ (Spd (A∞, A

+
∞)v,E) is almost
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isomorphism to the Čech complex associated to the covering Spd (B,B+)→ Spd (A∞, A
+
∞). Step 2

implies that this complex is almost isomorphic to the standard Amitsur complex

0→ME →ME ⊗A+
∞/p

B+/p→ME ⊗A+
∞/p

B+/p⊗A+
∞/p

B+/p→ . . .

Almost exactness of this complex follows from Lemma 2.10.4. �

6.5. Strictly Totally Disconnected Covers of Affinoids. The main goal of this section is to
get rid of the almost mathematics in Lemma 6.4.8 under some stronger assumptions on A∞ (and
on E).

Set-up 6.5.1. We fix

(1) a p-adic perfectoid field K with its rank-1 open and bounded valuation ring OK and a good
pseudo-uniformizer $ ∈ OK (we always do almost mathematics with respect to the ideal

m =
⋃
n$

1/pnOK = K◦◦),

(2) an affine admissible formal scheme X = Spf A0 with an adic generic fiber X = Spa (A,A+);

(3) a strictly totally disconnected affinoid perfectoid Spa (A∞, A
+
∞) (see Definition C.2.1) with

a morphism

Spa (A∞, A
+
∞)→ Spa (A,A+)

such that Spd (A∞, A
+
∞)→ Spd (A,A+) is a v-covering and all fiber products

Spa (A∞, A
+
∞)j/Spa (A,A+)

are strictly totally disconnected affinoid perfectoid spaces;

(4) an O+
X♦

/p-vector bundle E such that E|Spd (A∞,A
+
∞) ' (O+

Spd (A∞,A
+
∞)
/p)r for some integer r.

Corollary 6.5.2. Under the assumption of Set-up 6.5.1, let f : Spf B0 → Spf A0 be an étale
morphism of admissible affine formal OK-schemes. Then

(B∞, B
+
∞) :=

((
B0⊗̂A0A

+
∞
)

[1/p], B0⊗̂A0A
+
∞
)

is a perfectoid pair and Spa (B∞, B
+
∞) is a strictly totally disconnected (affinoid) perfectoid.

Proof. Corollary 6.4.5 already implies that Spa (B∞, B
+
∞) is an affinoid perfectoid. Moreover,

Lemma 6.4.6 implies that

Spa (B∞, B
+
∞) ' Spa (B,B+)×Spa (A,A+) Spa (A∞, A

+
∞),

where Spa (B,B+) is the generic fiber of Spf B0. So Spa (B∞, B
+
∞) → Spa (A∞, A

+
∞) is an étale

morphism, and so the claim follows from Lemma C.2.6. �

Lemma 6.5.3. Under the assumption of Set-up 6.5.1, let ME be an A+
∞/pA

+
∞-module

ME := H0
(
Spd (A∞, A

+
∞)v,E

)
.

Then ME is (non-canonically) isomorphic to (A+
∞/pA

+
∞)r, and for every morphism Spa (D,D+)→

Spa (A∞, A
+
∞) of strictly totally disconnected affinoid perfectoids, the natural morphism

ME ⊗A+
∞/p

D+/p→ H0
(
Spd (D,D+)v,E

)
is an isomorphism. Moreover,

Hi
(

Spd (A∞, A
+
∞)j/Spd (A,A+)

v ,E
)
' 0

for i, j ≥ 1.



150 BOGDAN ZAVYALOV

Proof. Once we fixed an isomorphism

E|Spd (A∞,A
+
∞) '

(
O+
X♦

/p
)r |Spd (A∞,A

+
∞),

the isomorphism ME ' (A+
∞/A

+
∞)r follows from Corollary C.3.13. An isomorphism

ME ⊗A+
∞/p

D+/p 'a H0(Spd (D,D+)v,E)

is then clear. And vanishing

Hi
(

Spd (A∞, A
+
∞)j/Spd (A,A+)

v ,E
)
' 0

for i, j ≥ 1 also follows from Corollary C.3.13. because we assume that all fiber products

Spd (A∞, A
+
∞)j/Spd (A,A+)

are representable by strictly totally disconnected (affinoid) perfectoid spaces. �

Corollary 6.5.4. Under the assumption of Set-up 6.5.1, let f : Spf B0 → Spf A0 is an étale
morphism with (B∞, B

+
∞) a perfectoid pair as in Corollary 6.4.5. Then the natural morphism

Γ
(

Spd (A∞, A
+
∞)j/Spd (A,A+)

v ,E
)
⊗A0/pA0

B0/pB0 → Γ
(

Spd (B∞, B
+
∞)j/Spd (B,B+)

v ,E
)
.

is an isomorphism for j ≥ 1.

Proof. By definition, all fiber products Spa (A∞, A
+
∞)j/Spa (A,A+) satisfy the assumption of Set-

up 6.5.1, so Proposition C.1.6 (6) ensures that it suffices to show the claim for j = 1. In this case,
the result follows from Lemma 6.5.3 and Corollary 6.5.2. �

Corollary 6.5.5. Under the assumption of Set-up 6.5.1, let f : Spf B0 → Spf A0 is an étale
morphism with (B∞, B

+
∞) a perfectoid pair as in Corollary 6.4.5. Then the natural morphism

Hi
(
Spd (A,A+)v,E

)
⊗A0/pA0

B0/pB0 → Hi
(
Spd (B,B+)v,E

)
.

is an isomorphism for i ≥ 0.

Proof. Again, by definition, all fiber products Spa (A∞, A
+
∞)j/Spa (A,A+) satisfy the assumption of

Set-up 6.5.1, so Lemma 6.5.3 implies that

Hi
(

Spd (A∞, A
+
∞)j/Spd (A,A+)

v ,E
)
' 0

for i, j ≥ 1. Therefore, cohomology groups Hi(Spd (A,A+)v,E) can be computed via cohomology
of the Čech complex associated to the covering Spd (A∞, A

+
∞)→ Spd (A,A+). By Corollary 6.5.2,

the same applies to Spa (B,B+) and the Čech complex associated to the covering Spd (B∞, B
+
∞)→

Spd (B,B+). Therefore, the claim follows from Corollary 6.5.4. �

Corollary 6.5.6. Under the assumption of Set-up 6.4.1, letK ⊂ C be a completed algebraic closure
of K, and Spa (AC , A

+
C) = Spa (A,A+)×Spa (K,OK) Spa (C,OC). Then the natural morphism

Hi
(
Spd (A,A+)v,E

)
⊗OK/p OC/p→ Hi

(
Spd (AC , A

+
C)v,E

)
.

is an almost isomorphism.

Proof. The proof is similar to that of Corollary 6.5.4 and Corollary 6.5.5. The only change that we
need to make is that the fiber product

Spa (A∞, A
+
∞)×Spa (K,OK) Spa (L,OL)

is a strictly totally disconnected affinoid perfectoid with the +-ring almost isomorphic toA+
∞⊗̂OKOL.

The strictly totally disconnected claim follows from Lemma C.2.6 and almost computation of the
+-ring follows from the proof of [Sch13, Proposition 6.18]. �
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6.6. Perfectoid Torsors. We apply the results of Section 6.4 to certain pro-étale covers of Spa (A,A+)
to see that computation of v-cohomology sheaves can be often reduced to the computation of certain
continuous cohomology groups. To make this precise, we need to define the notion of a G-torsor
under a pro-finite group G.

Definition 6.6.1. A v-sheaf G associated to a pro-finite group G is a v-sheaf G : Perfop → Sets
such that G(S) = Homcont(|S|, G).

A morphism of v-sheaves X → Y is a G-torsor if it is a v-surjection and there is an action
a : G × X → X over Y such that the morphism a ×Y p2 : G × X → X ×Y X is an isomorphism,
where p2 : G×X → X is the canonical projection.

Remark 6.6.2. If a pro-finite group G is a cofiltered limit of finite groups G ' limI Gi, then
G ' limI Gi.

Now we can formulate the precise set-up we are going to work in.

Set-up 6.6.3. We fix

(1) a p-adic perfectoid field K with its rank-1 open and bounded valuation ring OK and a good
pseudo-uniformizer $ ∈ OK (we always do almost mathematics with respect to the ideal

m =
⋃
n$

1/pnOK = K◦◦);

(2) an affinoid rigid-analytic space Spa (A,A+) over K with an admissible formal OK-model
Spa (A0), and a morphism (A,A+) → (A∞, A

+
∞) such (A∞, A

+
∞) is a perfectoid pair and

Spd (A∞, A
+
∞)→ Spd (A,A+) is a ∆∞-torsor under a pro-finite group ∆∞;

(3) a very small O+
X♦

/p-vector bundle E.

We start the section by studying the structure of the fiber products Spd (A∞, A
+
∞)j/Spd (A,A+)

for j ≥ 1. For a general v-cover, we cannot say much about these fiber products. But the situation
is much better in the case of G-torsors.

Lemma 6.6.4. Under the assumption of Set-up 6.6.3, the fiber product Spd (A∞, A
+
∞)j/Spd (A,A+)

is represented by an affinoid perfectoid35 Spa (Tj , T
+
j ) for every j ≥ 0. Moreover, for every j ≥ 0,(

Tj , T
+
j

)
'
(

Mapcont(∆
j−1
∞ , A[∞),Mapcont(∆

j−1
∞ , A[,+∞ )

)
and T ],+j /pT ],+j ' T+

j /$
[T+
j ' Mapcont(∆

j−1
∞ , A+

∞/pA
+
∞).

Proof. We first show that Spd (A∞, A
+
∞)j/Spd (A,A+) are representable by affinoid perfectoids. Since

Spd (A∞, A
+
∞)→ Spd (A,A+) is a ∆∞-torsor, we get

Spd (A∞, A
+
∞)j/Spd (A,A+) ' Spd (A,A+)×∆j−1

∞

' lim
I

(
Spa (A[∞, A

[,+
∞ )×∆j−1

i

)
' lim

I

(
Spa

(
Map(∆j−1

i , A[∞),Map(∆j−1
i , A[,+∞ )

))
is a cofiltered limit of affinoid perfectoid spaces, so it is an affinoid perfectoid space Spa (Tj , T

+
j )

by [Sch17, Proposition 6.5]. Moreover, loc. cit. implies that T+
j is equal to the $[-adic completion

35Recall that Spd (A∞, A
+
∞) is itself represented by an affinoid perfectoid Spa (A[∞, A

[,+
∞ ).
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of the filtered colimit colimI Map(∆j−1
i , A[,+∞ ) and Tj = T+

j [ 1
$[

]. In particular, we already see that

T ],+j /pT ],+j ' T+
j /($)[T+

j '
(

colimI Map(∆j−1
i , A[,+∞ )

)
/($)[

' colimI Map(∆j−1
i , A[,+∞ /($)[A[,+∞ )

' colimI Map(∆j−1
i , A+

∞/$A
+
∞)

' colimI Map(∆j−1
i , A+

∞/pA
+
∞)

' Mapcont(∆
j−1
∞ , A+

∞/pA
+
∞).

Now we compute T+
j and Tj . We start with T+

j :

T+
j ' lim

n

(
colimI Map(∆j−1

i , A[,+∞ )/($[)n
)

' lim
n

(
colimI Map(∆j−1

i , A[,+∞ /($[)nA[,+∞ )
)

' lim
n

Map
(

∆j−1
∞ , A[,+∞ /($[)nA[,+∞

)
' Mapcont

(
∆j−1
∞ , lim

n
A[,+∞ /($[)nA[,+∞

)
' Mapcont

(
∆j−1
∞ , A[,+∞

)
.

Since ∆∞ is compact and A[∞ ' A
[,+
∞ [ 1

$[
], we also have

Tj ' T+
j [1/$[]

' colim×$[,n Mapcont

(
∆j−1
∞ , A[,+∞

)
' Mapcont

(
∆j−1
∞ , colim×$[ A

[,+
∞

)
' Mapcont

(
∆j−1
∞ , A[∞

)
finishing the proof. �

Note that since Spd (A∞, A
+
∞) → Spd (A,A+) is a ∆∞-torsor, there is a canonical continuous

A+-linear action of ∆∞ on A+
∞. Now we want to relate v-cohomology groups of E to the continuous

group cohomology of ∆∞. This is done in the following lemmas:

Lemma 6.6.5. Under the assumption of Set-up 6.6.3, we define ME to be an A+
∞/pA

+
∞-module

H0 (Spd (A∞, A
+
∞)v,E). Then ME is almost faithfully flat, almost finitely presented A+

∞/pA
+
∞-

module, and

H0(Spd (A∞, A
+
∞)j/Spd (A,A+)

v ,E) 'a Mapcont(∆
j−1
∞ ,ME) 'a Mapcont(∆

j−1
∞ , (Ma

E )!),

Hi(Spd (A∞, A
+
∞)j/Spd (A,A+)

v ,E) 'a 0

for every i, j ≥ 1.

Proof. Lemma 6.6.4 implies that all fiber products Spd (A∞, A
+
∞)j/Spd (A,A+) satisfy the assumptions

of Lemma 6.4.8. Thus Lemma 6.4.8 and the computation of fiber products in Lemma 6.6.4 imply
that

Hi
(

Spd (A∞, A
+
∞)j/Spd (A,A+)

v ,E
)
'a 0
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for every i, j ≥ 1, and the natural morphism

ME ⊗A+
∞/pA

+
∞

Mapcont

(
∆j−1
∞ , A+

∞/p
)
→ H0

(
Spd (A∞, A

+
∞)j/Spd (A,A+)

v ,E
)

is an almost isomorphism for every j ≥ 1. Thus it suffices to show that the natural morphism

ME ⊗A+
∞/p

Mapcont

(
∆j−1
∞ , A+

∞/p
)
→ Mapcont(∆

j−1
∞ ,ME)

is an isomorphism. This can be done by writing ∆∞ = limI ∆i and reducing to the case of a finite
group similarly to the proof of Lemma 6.6.4. The almost isomorphism

Mapcont(∆
j−1
∞ ,ME) 'a Mapcont(∆

j−1
∞ , (Ma

E )!)

is achieved similarly using that (−)! commutes with colimits being a left adjoint functor. �

Lemma 6.6.6. Under the assumption of Set-up 6.4.1, we define ME to be an A+
∞/pA

+
∞-module

H0 (Spd (A∞, A
+
∞)v,E). Then there is a canonical continuous action of ∆∞ on (Ma

E )! compatible
with the action of ∆∞ on A+

∞/pA
+
∞, i.e. g(am) = g(a)g(m) for any a ∈ A+

∞/pA
+
∞ and m ∈ME.

Proof. Lemma 6.6.4 ensures that the fiber product Spd (A∞, A
+
∞)×Spd (A,A+)Spd (A∞, A

+
∞) is repre-

sented by an affinoid perfectoid Spa (T2, T
+
2 ). Therefore, we can uniquely write it as Spd (S, S+) for

an untilt of (T2, T
+
2 ) corresponding to the morphism Spa (T2, T

+
2 )→ Spd (A,A+)→ Spd (Qp,Zp).

Lemma 6.4.8 implies that the descent data for the sheaf E provides us with an (S+/pS+)a-
isomorphism (

S+/p
)a ⊗(A+

∞/p)
a (ME)a → (ME)a ⊗(A+

∞/p)
a

(
S+/p

)a
satisfying the cocycle condition. By Corollary 2.2.4 (2), this defines an (A+

∞/pA
+
∞)

a
-linear mor-

phism

(ME)a → (ME)a ⊗(A+
∞/p)

a

(
S+/p

)a
.

By Lemma 6.4.8 and Lemma 6.6.5, this is equivalent to an (A+
∞/pA

+
∞)

a
-linear morphism

(ME)a → Mapcont (∆∞, (M
a
E )!)

a .

By Lemma 2.1.9 (3), this is the same as an (A+
∞/pA

+
∞)-linear morphism

ϕ : (Ma
E )! → Mapcont

(
∆∞, (M

a
E )!

)
.

This defines a morphism

γ : ∆∞ → HomA+
∞/p

((ME)! , (ME)!)

by the rule

γ(g)(m) = (φ(m))(g).

One checks that the cocycle condition translates into the statement that γ is a group homomor-
phism, i.e. it defines an action of ∆∞. Likewise, one checks that A+

∞/pA
+
∞-linearity of φ translates

in to the fact that this action is compatible with the action on A+
∞/pA

+
∞. And continuity of φ

translates into the fact that γ defines a continuous action, i.e. the natural morphism

colimUi/∆∞,open(Ma
E )Ui! → (Ma

E )∆∞
!

is an isomorphism. �

Corollary 6.6.7. Under the assumption of Set-up 6.4.1, we define ME to be an A+
∞/pA

+
∞-module

H0 (Spd (A∞, A
+
∞)v,E). Then

Hi(Spd (A,A+)v,E) 'a Hi
cont(∆∞, (M

a
E )!).
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Proof. Lemma 6.6.5 implies that

Hi
(

Spd (A∞, A
+
∞)j/Spd (A,A+)

v ,E
)
'a 0

for i, j ≥ 1. Therefore, the cohomology groups Hi(Spd (A,A+)v,E) can be almost computed via
cohomology of the Čech complex associated to the covering Spd (A∞, A

+
∞) → Spd (A,A+). More-

over, Lemma 6.6.5 also implies that the terms of this complex can be almost identified with the
bar complex computing continuous cohomology of the pro-finite group ∆∞ with coefficients in the
discrete module (Ma

E )!. We leave it to the reader to verify that the differentials in the Čech complex
coincide with the differentials in the bar complex computing continuous cohomology. �

For the future reference, we also discuss the following base change result:

Lemma 6.6.8. Let G be a pro-finite group, and let M be a discrete R-module that has a continuous
R-linear action of G. Suppose that R → A is a flat homomorphisms of rings. Then the canonical
morphism Hi

cont(G,M)⊗R A→ Hi
cont(G,M ⊗R A) is an isomorphism for i ≥ 0.

Proof. This is a combination of two facts: filtered colimits commute with tensor product, cohomol-
ogy of finite groups commute with flat base change (in particular, invariants commute with base
change). Indeed, Lemma follows from a sequence of isomorphisms

Hi
cont(G,M)⊗R A ∼= (colimH/G,openHi(G/H,MH))⊗R A

' colimH/G,open(Hi(G/H,MH)⊗R A)

' colimH/G,openHi(G/H,MH ⊗R A)

' colimH/G,openHi(G/H, (M ⊗R A)H)

' Hi
cont(G,M ⊗R A)

�

6.7. Nearby Cycles are Quasi-Coherent. We start the proof Theorem 6.1.9 and Theorem 6.1.2
in this Section. Namely, we show that the complex Rν∗(E) are quasi-coherent and commutes with
étale base change for a small O+

X♦
/p-vector bundle E. The main idea is to apply the results of

Section 6.4 to a particular perfectoid covering of X.

For the rest of this section, we fix a perfectoid p-adic field K with a good pseudo-uniformizer
$ ∈ OK (see Definition B.1.6). We always do almost mathematics with respect to the ideal

m =
⋃
n$

1/pnOK .

Lemma 6.7.1. Let X = Spa (A,A+) be a strongly noetherian Tate affinoid over Spa (Qp,Zp),
and E an O+

X♦
/p-vector bundle. Then there is a strictly totally disconnected affinoid perfectoid

Spa (A∞, A
+
∞) with a morphism Spa (A∞, A

+
∞)→ Spa (A,A+) such that

(1) the morphism Spd (A∞, A
+
∞)→ Spd (A,A+) is a v-covering;

(2) all fiber products Spa (A∞, A
+
∞)j/Spa (A,A+) are strictly totally disconnected affinoid perfec-

toids;

(3) E|Spd (A∞,A
+
∞) '

(
O+
X♦

/p
)r |Spd (A∞,A

+
∞) for some integer r.

Proof. Lemma C.2.10 ensures that there is a morphism Spa (A∞, A
+
∞)→ Spa (A,A+) satisfying the

first two properties. Now Lemma C.4.4 ensures that E|Spd (A∞,A
+
∞) '

(
O+
X♦

/p
)r |Spd (A∞,A

+
∞). �
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Lemma 6.7.2. Let X = Spf A0 an admissible affine formal OK-scheme with an affinoid generic
fiber X = Spa (A,A+), and E an O+

X♦
/p-vector bundle. Then Riν∗(E) is quasi-coherent for i ≥ 0.

More precisely, the natural morphism

˜Hi(X♦v ,E)→ Riν∗ (E)

is an isomorphism for any i ≥ 0.

Proof. The universal property of the tilde-construction implies that we do have a natural morphism

c : ˜Hi(X♦v ,E)→ Riν∗(E).

Recall that Riν∗(E) is the sheafification of a presheaf defined by

U 7→ Hi(U♦K,v,E).

Thus, in order to show that c is an isomorphism, it suffices to show that the natural morphism

Hi(X♦v ,E)⊗A0/pA0
(A0/pA0)f → Hi(U♦K,v,E)

is an isomorphism for any open formal subscheme Spf (A0){f} ⊂ Spf A0. We choose a covering

Spa (A∞, A∞) → Spa (A,A+) from Lemma 6.7.1. Then the result follows from Corollary 6.5.5
since (A,A+)→ (A∞, A

+
∞) and E fit into Set-up 6.5.1. �

Theorem 6.7.3. Let X an admissible formal OK-scheme with adic generic fiber X = XK , and E

an O+
X♦

/p-vector bundle. Then Riν∗(E) is quasi-coherent for i ≥ 0. Furthermore, if f : Y → X an
étale morphism with generic fiber f : Y → X, then the natural morphism

f∗0
(
RiνX,∗E

)
→ RiνY,∗

(
E|Y ♦v

)
is an isomorphism for any i ≥ 0.

Proof. Both claims are local on X and Y, so we can assume that X = Spf A0 and Y = Spf B0 are
affine. Then quasi-coherence of Riν∗(E) follows from Lemma 6.7.2. In order to show that

f∗0
(
RiνX,∗E

)
→ RiνY,∗

(
E|Y ♦v

)
,

it suffices to show that the natural morphism

Hi(X♦v ,E)⊗A0/pA0
B0/pB0 → Hi(Y ♦v ,E)

is an isomorphism. This follows from Corollary 6.5.5 using the covering Spa (A∞, A
+
∞)→ Spa (A,A+)

from Lemma 6.7.1. �

For the future reference, we also prove the following result:

Lemma 6.7.4. Let X = Spa (A,A+) be an affinoid rigid-analytic space over K, E an O+
X♦

/p-vector
bundle, and K ⊂ C a completed algebraic closure of K. Then

Hi(X♦v ,E)⊗OK/p OC/p→ Hi(X♦C,v,E)

is an almost isomorphism.

Proof. This follows directly from Corollary 6.5.6 using the covering Spa (A∞, A
+
∞) → Spa (A,A+)

from Lemma 6.7.1. �
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6.8. Nearby Cycles are Almost Coherent for Smooth X and small E. The main goal of
this section is to show that the complex Rν∗(E) has almost coherent cohomology sheaves for an
admissible formal OK-scheme with smooth generic fiber. The main idea is to apply the results of
Section 6.6 to a particular “small” perfectoid torsor cover of X, where one has a good control over
the structure group ∆∞.

For the rest of the section we fix a p-adic perfectoid field K with a good pseudo-uniformizer
$ ∈ OK . We always do almost mathematics with respect to the ideal m =

⋃
n$

1/pnOK .

We first discuss the overall strategy of the proof. We proceed in four steps: firstly, we show the

result for the formal Ĝn
m and E = O+

X♦
/p, then we deduce the result for affine formal schemes such

that the adic generic fiber admits a map to a torus Tn
C that is a composition of finite étale maps

and rational embeddings. After that we show the result in general by choosing a “good” covering
of X possibly after an admissible blow-up of X to finish the proof for E = O+

X♦
/p. We reduce the

general case to the case E = O+
X♦

/p via Corollary C.4.10.

The main ingredient for the third step is Achinger’s result ([Ach17, Proposition 6.6.1]) that any
étale morphism g : Spa (A,A+)→ Dn

K can be replaced with a finite étale morphism

g′ : Spa (A,A+)→ Dn
K .

The proof of this result in [Ach17] is given only for rigid-analytic varieties over the fraction field
of a discrete valuation ring, but we need to apply it in the perfectoid situation that is never
discretely valued. So Appendix D provides the reader with a detailed proof of this result without
any discreteness assumptions.

Now we begin to realize the strategy sketched above. We consider X = Spf OK〈T±1
1 , . . . , T±1

n 〉,
and set R+ := OK〈T±1

1 , . . . , T±1
n 〉 and R+

m := OK〈T±1/pm

1 , . . . , T
±1/pm

n 〉. We note that the map
Spf R+

m → Spf R+ defines a µnpm-torsor, thus µnpm continuously acts on R+
m by R+-linear automor-

phisms.

Now we consider an R-algebra

R+
∞ = OK〈T±1/p∞

1 , . . . , T±1/p∞
n 〉 =

(
colimn R

+
m

)̂
where ̂stands for the p-adic completion. It comes with a continuous R-linear action of the group
∆∞ := Zp(1)n = Tp(µp∞) on R+

∞. We trivialize Zp(1) by choosing some compatible system of pi-th
roots of unity (ζp, ζp2 , ζp3 , . . . ). In order to describe the action of ∆∞ on R+

∞ we need the following
definition:

Definition 6.8.1. For any a ∈ Z[1/p], we define ζa as ζap
l

pl
whenever apl ∈ Z. It is clear to see

that this definition does not depend on a choice of l.

Essentially by definition, the k-th basis vector γk ∈ ∆∞ ' Znp acts on R+
∞ as

γk(T
a1
1 . . . T ann ) = ζakT a1

1 . . . T ann .

Lemma 6.8.2. [Sch13, Lemma 5.5] Let R+, R+
∞ and ∆∞ be as above. Then the cohomology

groups Hi
cont(∆∞, R

+
∞/pR

+
∞) are almost coherent R+/pR+

∞-modules. And the natural map

Hi
cont(∆∞, R

+
∞/p)⊗R+/p A

+/p→ Hi
cont(∆∞, R

+
∞/p⊗R+/p A

+/p)

is an isomorphism for a p-torsionfree R+-algebra A+ and i ≥ 0.

Proof. We note that R+/pR+ is an almost noetherian ring by Theorem 2.11.4. Thus Theorem 2.7.8
implies that Hi

cont(∆∞, R
+
∞/pR

+
∞) is almost coherent if it is almost finitely generated.
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Now [BMS18, Lemma 7.3] says that RΓcont(∆∞, R
+
∞/pR

+
∞) is computed by means of the Koszul

complex K (R+
∞/pR

+
∞; γ1 − 1, . . . , γn − 1). Then, similarly to [Bha18, Lemma 4.6], we can write

K
(
R+
∞/p; γ1 − 1, . . . , γn − 1

)
= K

(
R+/p; 0, 0, . . . , 0

)
⊕

⊕
(a1,...,an)∈(Z[1/p]∩(0,1))n

K
(
R+/p; ζa1 − 1, . . . , ζan − 1

)
We observe that

Hi
(
K
(
R+/pR+; 0, 0, . . . , 0

))
= ∧i

(
R+/pR+

)
is a free finitely presented R+/pR+-module. For each (a1, . . . , an) ∈ (Z[1/p] ∩ (0, 1))n, we can
assume that a1 has the minimal p-adic valuation for the purpose of proving that

K(R+
∞/pR

+
∞; γ1 − 1, . . . , γn − 1)

has almost finitely finitely generated cohomology groups. Then [BMS18, Lemma 7.10] implies
that Hi (K (R+/pR+; ζa1 − 1, . . . , ζan − 1)) is finitely presented over R+/pR+ and ζa1 − 1-torsion
module. Note that

vp(ζ
a1 − 1) = vp(ζpl − 1) =

v(p)

pl − pl−1
→ 0

where a1 = b/pl with gcd(b, p) = 1. Moreover, for any h ∈ Z, there are only finitely many indexes
(a1, . . . , an) ∈ (Z[1/p] ∩ (0, 1))n with vp(aj) ≥ h. This implies that

Hi
cont(∆∞, R

+
∞/pR

+
∞) = Hi

(
K
(
R+
∞/p; γ1 − 1, . . . , γn − 1

))
is a finitely presented R+/pR+-module up to any $1/pn-torsion. In particular, this module is almost
finitely presented.

Now we show that Hi
cont(∆∞, R

+
∞/pR

+
∞) commutes with base change for any OK-flat algebra A+.

In order to show this, we observe the (R+/pR+)[∆∞]-module R+
∞/pR

+
∞ comes as a tensor product

M ⊗OK/p R
+/p for the (OK/pOK)[∆∞]-module

M :=
⊕

(a1,...,an)∈(Z[1/p]∩[0,1))n

(OK/pOK)T a1
1 . . . T ann

where the basis element γk acts by

γk(T
a1
1 . . . T ann ) = ζakT a1

1 . . . T ann .

Therefore, the desired claim follows from a sequence of isomorphisms

Hi
cont(∆∞, R

+
∞/p)⊗R+/p A

+/p '
(
Hi

cont(∆∞,M)⊗OK/p R
+/p

)
⊗R+/p A

+/p

' Hi
cont(∆∞,M)⊗OK/p A

+/p

' Hi
cont(∆∞,M ⊗OK/p A

+/p)

' Hi
cont(∆∞, R

+
∞/p⊗R+/p A

+/p),

where the third isomorphism uses Lemma 6.6.8. �

Lemma 6.8.2 combined with Corollary 6.6.7 essentially settle the first step of our strategy. Now
we move to the second step. We start with the following preliminary result:

Lemma 6.8.3. Let A0 be a topologically finitely presented OK-algebra, and P a topologically free

A0-module, i.e. P =
⊕̂

IA0 for some set I. Then M is A0-flat.
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Proof. We start the proof by noting that [Sta21, Tag 00M5] guarantees that it suffices to show that

TorA0
1 (P,M) = 0 for any finitely presented A0-module M . We choose a presentation

0→ Q→ An0 →M → 0

and observe that Q is finitely presented because A0 is coherent. So vanishing of Tor1 is equivalent
to showing that

P ⊗A0 Q→ P ⊗A0 A
n
0

is injective.

Now note that Q[p∞], An0 [p∞], and M [p∞] are bounded by [Bos14, Lemma 7.3/7], so the same
holds for

⊕
I Q,

⊕
I A

n
0 , and

⊕
IM . Therefore, the usual p-adic completions of

⊕
I Q,

⊕
I A

n
0 and⊕

IM coincide with their derived p-adic completions. Since derived p-adic completion is exact (in
the sense of triangulated categories) and coincides with the usual one on these modules, we get
that the sequence

0→
⊕̂

I
Q→

⊕̂
I
An0 →

⊕̂
I
M → 0

is exact.

Now we want to show that this short exact sequence is the same as the sequence

P ⊗A0 Q→ P ⊗A0 A
n
0 → P ⊗A0 M → 0.

As a consequence, this will prove that P ⊗A0 Q→ P ⊗A0 A
n
0 is injective.

For each A0-module N , there is a canonical map

P ⊗A0 N →
⊕̂

I
N.

So we have a morphism of sequences:

P ⊗A0 Q P ⊗A0 A
n
0 P ⊗A0 M 0

0
⊕̂

IQ
⊕̂

IA
n
0

⊕̂
IM 0.

The map An0 ⊗A0 P →
⊕̂

IA
n
0 is an isomorphism because An0 ⊗A0 P = Pn is already p-adically

complete. This implies that the arrow

M ⊗A0 P →
⊕̂

I
M

is surjective. But then

P ⊗A0 Q→
⊕̂

I
Q

is surjective since M was an arbitrary finitely presented A-module. Now a diagram chase implies
that

M ⊗A0 P →
⊕̂

I
M

is also injective. And, therefore, it is an isomorphism. So

P ⊗A0 Q→
⊕̂

I
Q

is also an isomorphism. Therefore, these two sequences are the same. In particular,

P ⊗A0 Q→ P ⊗A0 A
n
0

is injective. �

https://stacks.math.columbia.edu/tag/00M5
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To establish the second part of our strategy, we will also need a slightly refined version of [Sch13,
Lemma 4.5] specific to the situation of an étale morphism to a torus.

We recall that we have defined

R+ := OK〈T±1
1 , . . . , T±1

n 〉,

R+
m := OK〈T±1/pm

1 , . . . , T±1/pm

n 〉, and

R+
∞ = OK〈T±1/p∞

1 , . . . , T±1/p∞
n 〉 =

(
colimn R

+
m

)̂
.

and a group ∆∞ ' Zmp continuously acts on R+
∞. We also define R (resp. Rm, R∞) as R+[1/p]

(resp. R+
m[1/p], R+

∞[1/p]). For an étale morphism Spa (A,A+) → Spa (R,R+) = Tn we define a
Huber pair (

Am, A
+
m

)
:=
(
Rm ⊗R A, (Rm ⊗R A)+

)
=
(
Rm⊗̂RA, (Rm⊗̂RA)+

)
,

where (Rm ⊗R A)+ is the integral closure of the image of R+
m ⊗R+ A+ in Rm ⊗R A. Similarly, we

define
A+
∞ :=

(
colimn A

+
m

)̂
and A∞ := A+

∞[1/p].

Lemma 6.8.4. [Sch13, Lemma 4.5] Let Spa (A,A+) → Spa (R,R+) = Tn be a morphism that
is a composition of a finite étale maps and rational embeddings. Then (A∞, A

+
∞) is an affinoid

perfectoid pair, Spd (A∞, A
+
∞) → Spd (A,A+) is a ∆∞-torsor, and, for any n ∈ Z, there exists m

such that the morphism
A+
m⊗̂R+

m
R+
∞ → A+

∞

is injective with cokernel annihilated by $1/pn .

Proof. We note that [Sch13, Lemma 4.5] proves that (A∞, A
+
∞) is an affinoid perfectoid (denoted

by (S∞, S
+
∞) there). By construction (and Proposition C.1.6 (6)), Spd (Am, A

+
m) → Spd (A,A+)

is a (Z/pmZ)n-torsor. So Spd (A∞, A
+
∞) ' limm Spd (Am, A

+
m) (see Proposition C.1.6 (5)) is a

∆∞ ' limm (Z/pnZ)n-torsor. Therefore, we are only left to show that, for any n ∈ Z, there exists
m such that the morphism

A+
m⊗̂R+

m
R+
∞ → A+

∞

is injective with cokernel annihilated by $1/pn .

We denote by Ãm the p-adic completion of p-torsionfree quotient of A+
m⊗R+

m
R+
∞ (Ãm is denoted

by Am in [Sch13, Lemma 4.5]). Then [Sch13, Lemma 4.5] shows that, for any n ∈ Z, there exists

m such that the map Ãm → A+
∞ has cokernel annihilated by $1/pn . Moreover, the map becomes

an isomorphism after inverting p. We observe that this implies that Ãm → A+
∞ is injective as the

kernel should be p∞-torsion, but the p-adic completion of a p-torsionfree ring is p-torsionfree. Thus
the only thing we need to show is that A+

m ⊗R+
m
R+
∞ is already p-torsionfree for any m. We note

that R+
∞ is topologically free as an R+

m-module because

R+
∞ = OK〈T±1/p∞

1 , . . . , T±1/p∞
n 〉 =

⊕̂
(b1,...,bn)∈Zn\mZn

OK〈T±1/pm

1 , . . . , T±1/pm

n 〉T 1/pb1
1 . . . T 1/pbn

n

=
⊕̂

(b1,...,bn)∈Zn\mZn
R+
m · T

1/pb1
1 . . . T 1/pbn

n .

Thus, R+
∞ is R+

m-flat for any m by Lemma 6.8.3. Therefore, A+
m ⊗R+

m
R+
∞ is flat over A+

m, so it is,
in particular, OK-flat. As a consequence, it does not have any non-zero p-torsion. This finishes the
proof. �
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Lemma 6.8.5. Let X = Spf A0 be an affine admissible formal OK-scheme with generic fiber
X = Spa (A,A+) that admits a map f : X → Tn = Spa (R,R+) that factors as a composition of
finite étale morphisms and rational embeddings. Then the cohomology groups

Hi(X♦v ,O
+
X♦

/p)

are almost coherent A0/pA0-modules for i ≥ 0.

Proof. We denote the completed algebraic closure of K by C. Then we note that Lemma 6.7.4
implies that

Hi(X♦v ,O
+
X♦

/p)⊗OK/p OC/p→ Hi(X♦C,v,O
+

X♦C
/p)

is an almost isomorphism for all i ≥ 0. Therefore, faithful flatness of the morphism OK/p→ OC/p
and Lemma 2.10.5 imply that it suffices to prove the claim under the additional assumption that
K = C is algebraically closed.

Theorem 2.11.4 ensures that A0 is an almost noetherian ring, thus it suffices to show that
Hi(X♦v ,O

+
X♦

/p) are almost finitely generated A0/pA0-modules.

Now the generic fiber X is smooth over C, so [BGR84, Corollary 6.4.1/5] implies that A+ = A◦

is a flat, topologically finitely type OC-algebra that is finite over A0. Thus Lemma 2.8.3 ensures
that it suffices to show that Hi(X♦v ,O

+
X♦

/p) is almost finitely generated A+/pA+-modules for i ≥ 0.

We note that A+ is almost noetherian as a topologically finitely generated OC-algebra, so almost
coherent and almost finitely generated A+-modules coincide.

We consider a ∆∞-torsor Spd (A∞, A
+
∞) → Spd (A,A+) that is constructed in Lemma 6.8.4.

Thus Corollary 6.6.7 ensures that

RΓ(X♦v ,O
+
X♦

/p) 'a RΓcont(∆∞, A
+
∞/pA

+
∞).

So we reduce the problem to showing that the complex RΓcont(∆∞, A
+
∞/pA

+
∞) has almost finitely

generated cohomology modules.

Now we pick any ε ∈ Q>0 and use Lemma 6.8.4 to find m such that the map

A+
m⊗̂R+

m
R+
∞ → A+

∞

is injective with cokernel killed by pε. Thus we conclude that the map

A+
m/p⊗R+

m/p
R+
∞/p→ A+

∞/p

has kernel and cokernel annihilated by pε. Then it is clear that the induced map

Hi
cont(∆∞, A

+
m/p⊗R+

m/p
R+
∞/p)→ Hi

cont(∆∞, A
+
∞/p)

has kernel and cokernel annihilated by p2ε for any i ≥ 0. Therefore, Lemma 2.5.7 implies that it is
sufficient to show Hi

cont(∆∞, A
+
m/p⊗R+

m/p
R+
∞/p) is almost finitely generated over A+/pA+ for any

m ≥ 0 and any i ≥ 0.

The trick now is to consider the subgroup pm∆∞ that acts trivially on A+
m/pA

+
m to pull it out

of cohomology group by Lemma 6.8.2. More precisely, we consider the Hochschild–Serre spectral
sequence

Ei,j2 = Hi
(

∆∞/p
m∆∞,H

j
cont(p

m∆∞, A
+
m/p⊗R+

m/p
R+
∞/p)

)
⇒ Hi+j

cont(∆∞, A
+
m/p⊗R+

m/p
R+
∞/p)

We recall that group cohomology of any finite group G can be computed by an explicit bar
complex. Namely, for a G-module M , the complex looks like

C0(G,M)
d0

−→ C1(G,M)
d1

−→ . . .
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where
Ci(G,M) =

{
f : Gi →M

}
'M⊕i·#G

and

di(f)(g0, g1, . . . , gi) = g0 · f(g1, . . . , gi) +
i∑

j=1

(−1)jf(g0, . . . , gj−2, gj−1gj , gj+1, . . . , gi) + (−1)i+1f(g0, . . . , gi−1).

In case M is an A+/pA+-module and G acts A+/pA+-linearly on M , all the terms Ci(G,M) have
a natural structure of an A+/pA+-module, and the differentials are A+/pA+-linear. Moreover,
the terms Ci(G,M) are finite direct sums of M as an A+/pA+-module. In particular, they are
almost coherent, if so is M . Thus Lemma 2.6.8 guarantees that all cohomology groups Hi(G,M)
are almost coherent over A+/pA+ if M is almost coherent (equivalently, almost finitely generated)
over A+/pA+.

We now apply this observation (together with Lemma 2.6.8) for

G = ∆∞/p
m∆∞ and M = Hj

cont(p
m∆∞, A

+
m/p⊗R+

m/p
R+
∞/p)

to conclude that it suffices to show Hj
cont(p

m∆∞, A
+
m/p ⊗R+

m/p
R+
∞/p) is almost coherent (equiva-

lently, almost finitely generated) over A+/pA+ for any j ≥ 0, m ≥ 0. We note that A+
m is finite

over A+ by [BGR84, Corollary 6.4.1/5]. Thus Lemma 2.8.3 implies that it is enough to show that

Hj
cont(p

m∆∞, A
+
m/p⊗R+

m/p
R+
∞/p) is almost finitely generated over A+

m/pA
+
m for i ≥ 0 and m ≥ 0.

Now we can use Lemma 6.8.2 to write

Hj
cont(p

m∆∞, A
+
m/p⊗R+

m/p
R+
∞/p) ' Hj

cont(p
m∆∞, R

+
∞/p)⊗R+

m/p
A+
m/p

Moreover, Lemma 6.8.2 guarantees that Hj
cont(p

m∆∞, R
+
∞/p) is almost finitely generated over

R+
m/pR

+
m. Thus Hj

cont(p
m∆∞, R

+
∞/p) ⊗R+

m/p
A+
m/p is almost finitely generated over A+

m/pA
+
m by

Lemma 2.8.1. �

Corollary 6.8.6. Let X = Spf A0 and X = Spa (A,A+) be as in Lemma 6.8.5, and let E be a very
small O+

X♦
/p-vector bundle. Then Hi(X♦v ,E) are almost coherent over A0/pA0.

Proof. Similarly to the proof of Lemma 6.8.5, we can assume that K = C is algebraically closed
and A0 = A◦ = A+ is almost noetherian.

By assumption, we can find a finite étale surjection Y → X that splits E. Since X is noetherian,
we can dominate it by a Galois cover to assume that Y → X is a G-torsor for a finite group G such
that E|Y ♦v ' (O+

Y ♦
/p)r for some r. Then we we have the Hochschild–Serre spectral sequence

Ei,j2 = Hi
(
G,Hj

(
Y ♦v ,

(
O+
Y ♦
/p
)r))⇒ Hi+j(X♦v ,E)

Similarly to the proof of Lemma 6.8.5, the argument with the explicit bar complex computing
Hi(G,−) implies that it is sufficient to show that Hj

(
Y ♦v ,

(
O+
Y ♦
/p
)r)

is almost coherent over

O+
Y ♦

(Y ♦)/p for j ≥ 0. But this is done in Lemma 6.8.5. �

Lemma 6.8.7. Let K be a p-adic perfectoid field, and X an admissible formal OK-scheme with adic
generic fiber X = XK . Let E be a small O+

X♦
/p-vector bundle on X♦v . Then there is a collection of

(1) an admissible blow-up X′ → X,

(2) a finite open affine cover X′ =
⋃
i∈I Ui,
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such that, for every i ∈ I, the restriction E|(Ui,K)♦v
is very small.

Proof. By the smallness assumption, there is a finite open cover X =
⋃
i∈I Ui such that E|(Ui,K)♦v

can be trivialized by a finite étale surjection. Therefore, [Bos14, Lemma 8.4/5] implies that there
is an admissible blow-up X′ → X with a covering X′ =

⋃
i∈I Ui such that Ui,K = Ui. We can refine

U to assume that each Ui = Spf Ai,0 is affine. �

Theorem 6.8.8. Let X be an admissible formal OK-scheme with smooth adic generic fiber X and
mod-p fiber X0. Then

Rν∗(E)a ∈ D+
acoh(X0)a

for any small O+
X♦

/p-vector bundle E.

Proof. Firstly, we note that the claim is clearly Zariski-local on X and descends through rig-
isomorphisms by the Almost Proper Mapping Theorem 5.1.3. Thus Lemma 6.8.7 implies that
it suffices to prove the theorem for X = Spf A0 an affine formal OK-scheme and a very small E.

Now we note that X is rig-smooth in terminology of [BLR95, §3]. Thus, [BLR95, Proposition
3.7] states that there is an admissible blow-up π : X′ → X and a covering of X′ by open affine formal

subschemes U′i with rig-étale morphisms f′i : U
′
i → Âni

OK
, i.e. the adic generic fibers f′i,K : U′i,K → Dni

K

are étale. We apply the Almost Proper Mapping Theorem 5.1.3 again to conclude that it suffices
to show the theorem for X′. Moreover, since the claim is Zariski-local on X, we can even pass to
each U′i separately. So we reduce to the case X = Spf A0 is affine, admits a rig-étale morphism

f′ : : X→ Âd
OK

, and E is very small.

We wish to reduce the question to the situation of Corollary 6.8.6, though we are still not quite

there. The key trick now is to use Theorem D.4 to find a finite rig-étale morphism f : X → Âd
OK

.

In particular, the generic fiber fK : X → Dd
K is a finite étale morphism. So the only thing we are

left to do is to embedd Dd
K into Td

K as a rational subset. This is done by observing that

Dd
K ' Td

K

(
T1 − 1

p
, . . . ,

Td − 1

p

)
⊂ Td

K .

In particular, X admits an étale morphism to a torus that is a composition of a finite étale morphism
and a rational embedding. Therefore, Corollary 6.8.6 implies that

RΓ(X♦v ,E)a ∈ D+
acoh(A0/pA0)a.

Finally, we note that Lemma 6.7.3 ensures that ˜RΓ(X♦v ,E) 'a Rν∗ (E), so

Rν∗ (E)a ∈ D+
acoh(X0)a

by Theorem 4.4.6. �

6.9. Nearby Cycles are Almost Coherent for General X and E. The main goal of this section
is to generalize Theorem 6.8.8 to the case of a general generic fiber X and any O+

X♦
/p-vector bundle

E. The idea is to reduce the general case to the smooth case by means of Lemma 5.4.4, resolution
of singularities, and proper hyperdescent.

For the rest of this section, we fix a perfectoid p-adic field K with a good pseudo-uniformizer
$ ∈ OK (see Definition B.1.6). We always do almost mathematics with respect to the ideal

m =
⋃
n$

1/pnOK .
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Lemma 6.9.1. Let Spf A0 be an admissible affine formal OK-scheme with adic generic fiber
Spa (A,A+). Let f : X → Spa (A,A+) be a proper morphism with smooth X, and E is an
O+

Spd (A,A+)
/p-vector bundle. Then Hi(X♦v ,E) is an almost coherent A0/pA0-module for any i ≥ 0.

Proof. Step 1: E is small. By the theory of formal models (see [BL93, Assertion (c) on p.307]),
we can choose an admissible formal OK-model X of X with a morphism f : X→ Spa A0 such that
fK = f . The map f is proper by [L9̈0, Lemma 2.6] (or [Tem00, Corollary 4.4 and 4.5]). Now we
can compute

RΓ(X♦v ,E) ' RΓ(X0,Rν∗ (E))

Theorem 6.8.8 reads that Rν∗ (E) ∈ D+
acoh(X0) as X is smooth. Thus Theorem 5.1.3 implies that

RΓ(X♦v ,E) ' RΓ(X0,Rν∗ (E)) ∈ D+
acoh(A0/pA0).

Step 2: General E. Lemma 5.4.4 implies that there is a finite étale morphism g : Spa (B,B+)→
Spa (A,A+) such that E|Spd (B,B+) is trivial. Without loss of generality, we can assume that g is a
G-torsor for some finite group G. Then the base change morphism Y = XB → X is also a G-torsor.
Then we we have the Hochschild–Serre spectral sequence

Ei,j2 = Hi
(
G,Hj

(
Y ♦v ,E

))
⇒ Hi+j(X♦v ,E)

Similarly to the proof of Lemma 6.8.5, the argument with the explicit bar complex computing
Hi(G,−) implies that it is sufficient to show that Hj

(
Y ♦v ,E

)
is almost coherent over A0/pA0 for

j ≥ 0. But this follows from Step 1 because Y is smooth and proper over Spa (A,A+). �

Now we recall the notion of a hypercovering that will be crucial for our proof. We refer to [Sta21,
Tag 01FX] and [Con] for more detail.

Definition 6.9.2. Let C be a category admitting finite limits. Let P be a class of morphisms in
C which is stable under base change, preserved under composition (hence under products), and
contains all isomorphisms. A simplicial object X• in C is said to be a P-hypercovering if, for all
n ≥ 0, the natural adjunction map36

X• → coskn(skn(X•))

induces a map Xn+1 → (coskn(skn(X•)))n+1 in degree n+ 1 which is in P. If X• is an augmented
simplicial complex, we make a similar definition but also require the case n = −1 (and we then say
X• is a P-hypercovering of X−1).

Lemma 6.9.3. Let X be a quasi-compact, quasi-separated rigid-analytic variety over K. Then
there is a proper hypercovering a : X• → X such that all Xi are smooth over K.

Proof. First of all, we note that quasi-compact rigid-analytic varieties over Spa (K,OK) admit
resolution of singularities by [Tem12, Theorem 5.2.2]. Thus, the proof of [Con, Theorem 4.16] (or
[Sta21, Tag 0DAX]) carries over to show that there is a proper hypercovering a : X• → X such that
all Xi are smooth over Spa (K,OK). �

Lemma 6.9.4. Let a : X• → X be a proper hypercovering of a rigid-analytic variety X. Then
a♦ : X♦• → X♦ is a v-hypercovering of X♦.

36See [Con, §3] (or [Sta21, Tag 0AMA]) for the definition of the coskeleton functor.

https://stacks.math.columbia.edu/tag/01FX
https://stacks.math.columbia.edu/tag/0DAX
https://stacks.math.columbia.edu/tag/0AMA
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Proof. The functor (−)♦ commutes with fiber products by Proposition C.1.6 (6). So

((coskn(sknX•))n+1)♦ ' (coskn(sknX
♦
• ))n+1.

Therefore, the only thing we need to show that (−)♦ sends proper coverings to v-coverings. This
follows from Lemma C.1.13 and Example C.1.11. �

Theorem 6.9.5. Let X be an admissible formal OK-scheme with adic generic fiber X and mod-p
fiber X0 := X×Spf OK SpecOK/p. Then

Rν∗(E) ∈ D+
acoh(X0)

for any O+
X♦

/p-vector bundle E.

Proof. The claim is Zariski-local on X, so we can assume that X = Spf A0 is affine. Thus
Lemma 6.7.3 and Theorem 4.4.6 ensure that it suffices to show that

RΓ(X♦v ,E) ∈ D+
acoh(A0/pA0).

Lemma 6.9.3 shows that there is a proper hypercovering a : X• → X with smooth Xi, and
Lemma 6.9.4 implies that a : X♦• → X♦ is then a v-hypercovering.

The proof of [Sta21, Tag 01GY] implies that there is a spectral sequence

Ei,j1 = Hj
(
X♦i,v,E

)
⇒ Hi+j(X♦v ,E).

Lemma 6.9.1 guarantees that Hj(X♦i,v,E) is almost coherent over A0/pA0 for every i, j ≥ 0. There-

fore, Lemma 2.6.8 guarantees that Hi+j(X♦v ,E) is almost coherent A0/pA0 for every i+ j ≥ 0. �

6.10. Cohomological Bound on Nearby Cycles. The main goal of this section is to show
that Rν∗ (E) is almost concentrated in degrees [0, d] for a very small vector bundle E. This claim
turns out to be pretty hard. In order to achieve this result we have to use a recent notion of
perfectoidization developed in [BS22] that give a stronger version of the almost purity theorem in
the world of diamonds. Our approach is very much motivated by [Guo19, Proposition 7.5.2].

For the rest of this section, we fix a perfectoid p-adic field K with a good pseudo-uniformizer
$ ∈ OK . We always do almost mathematics with respect to the ideal m =

⋃
n$

1/pnOK .

One may notice that all previous sections did not really use much that we work on the v-site X♦v
of a diamond associated to a rigid-analytic variety X rather than its pro-étale site Xproét. Most
arguments can be carried over in the pro-étale site. However, it is crucial to work on the level of
diamonds in this section. The main observation is that the functor

(−)♦ : {(Pre-)Adic Analytic Spaces} → {Diamonds}
is not fully faithful, so it is a priori possible that a non-perfectoid (pre)-adic space becomes repre-
sentable by an affinoid perfectoid after diamondification. An explicit construction of such examples
is the crux of our argument in this section. In order to construct them, we need the following
theorem of B. Bhatt and P. Scholze:

Theorem 6.10.1. [BS22, Theorem 10.11] Let R be an integral perfectoid ring37. Let R → S
be the p-adic completion of an integral map. Then there exists an integral perfectoid ring Sperfd

together with a map of R-algebras S → Sperfd, such that it is initial among all of the R-algebra
maps S → S′ for S′ being integral perfectoid.

37We use [BMS18, Definition 3.5] as the definition for integral perfectoid rings here. This definition coincides with
Definition 6.4.2 in the p-torsionfree case, but it is less restrictive in general.

https://stacks.math.columbia.edu/tag/01GY
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Now we show how we can use this result to get cohomological bound on Rν ′∗ (E). We recall that
a torus

Td = Spa
(
K〈T±1

1 , . . . , T±1
d 〉,OK〈T

±1
1 , . . . , T±1

d 〉
)

= Spa (R,R+)

admits a map

Td
∞ = Spa

(
K〈T±1/p∞

1 , . . . , T
±1/p∞

d 〉,OK〈T±1/p∞

1 , . . . , T
±1/p∞

d 〉
)
→ Td

such that Td
∞ is an affinoid perfectoid, and the map becomes a ∆∞ = Zp(1)d-torsor after applying

the diamondification functor.

Now we can embed a d-dimensional disk Dd as a rational subdomain

Dd = Td

(
T1 − 1

p
, . . . ,

Tn − 1

p

)
⊂ Td,

so the fiber product

Dd
∞ = Dd ×Td Td

∞ → Dd

is again an affinoid perfectoid covering of Dd by Lemma 6.8.4.

If X = Spa (A,A+) → Dd is an arbitrary finite morphism, then the fiber product X ×Dd Dd
∞

may not be an affinoid perfectoid space (or even an adic space). However, it turns out that the
associated diamond is always representable by an affinoid perfectoid.

Lemma 6.10.2. Let f : X = Spa (A,A+)→ Dd be a finite morphism of rigid-analytic K-varieties.

Then the fiber product X♦∞ := X♦ ×Dd,♦ Dd,♦
∞ is representable to an affinoid perfectoid space (of

characteristic p).

Proof. Let us say that Dd = Spa (S, S+) and D̂d
∞ = Spa (S∞, S

+
∞). The map f defines an integral

morphism S+ → A+, we define

A†∞ := S+
∞⊗̂S+A+.

This is a p-adic completion of an integral morphism over an integral perfectoid ring S+
∞ (see [BMS18,

Lemma 3.20]), so there is a map

A†∞ → (A†∞)perfd

initial to an integral perfectoid ring. We define A∞ to be A†∞[1/p] and A+
∞ to be the integral closure

of A†∞ in A∞. Then (A∞, A
+
∞) is an affinoid perfectoid pair by [BMS18, Lemma 3.21]. Therefore,

it suffices to show that the natural morphism

Spd (A∞, A
+
∞)→ Spd (A,A+)×Spd (S,S+) Spd (S∞, S

+
∞)

is an isomorphism. This can be easily checked on the level of rational point by the universal

property of (A†∞)perfd and the construction of the diamondification functor in Definition C.1.5 (and
[BMS18, Lemma 3.20] that relates affinoid perfectoid pairs and integral affinoid rings). �

Theorem 6.10.3. Let X = Spf A0 be an admissible formal OK-scheme with adic generic fiber
X = Spa (A,A+) of dimension d, and let E be a very small O+

X♦
/p-vector bundle on X. Then

RΓ(X♦v ,E)a ∈ D
[0,d]
acoh(A0/pA0)a.

Proof. Lemma 6.9.1 ensures that RΓ(X♦v ,E) ∈ Dacoh(A0/pA0), so it suffices to show that

Hi(X♦v ,E) 'a 0
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for i > d. Now we note that the Noether Normalization Theorem (see [Bos14, Proposition 3.1.3])

implies that there is a finite morphism f : X → Dd. Now we consider the ∆∞ ' Zp(1)d-torsor

X♦∞ ' X♦ ×Dd,♦ Dd,♦
∞ → X♦.

By Lemma 6.10.2, X♦∞ is represented by an affinoid perfectoid space Spd (A∞, A
+
∞) = Spa (A[∞, A

[,+
∞ ).

Thus we are in the situation of Set-up 6.6.3. So Corollary 6.6.7 implies that

Hi(X♦v ,E) 'a Hi
cont(∆∞, (M

a
E )!),

where ME ' H0(X♦∞,v,E). Therefore, the claim follows from the observation that cohomological

dimension of ∆∞ ' Zp(1)d ' Zdp is d by [BMS18, Lemma 7.3]. �

6.11. Proof of Theorem 6.1.2. The main goal of this section is to give a full proof of Theo-
rem 6.1.2. Basically, we just need to combine all the results we have already achieved together.

For the rest of this section, we fix a perfectoid p-adic field K with a pseudo-uniformizer $ ∈ OK
as in Remark B.1.5. We always do almost mathematics with respect to the ideal m =

⋃
n$

1/pnOK .

Theorem 6.11.1. Let X an admissible formal OK-scheme with adic generic fiber X of dimension
d and mod-p fiber X0, and E an O+

X♦
/p-vector bundle. Then

(1) the nearby cycles Rν∗E ∈ D+
qc,acoh(X0) and (Rν∗E)a ∈ D

[0,2d]
acoh (X0)a;

(2) for an affine admissible X = Spf A with the adic generic fiber X, the natural map

˜
Hi
(
X♦v ,E

)
→ Riν∗ (E)

is an isomorphism for every i ≥ 0;

(3) the formation of Riν∗(E) commutes with étale base change, i.e., for any étale morphism
f : Y→ X with adic generic fiber f : Y → X, the natural morphism

f∗0
(
RiνX,∗(E)

)
→ RiνY,∗ (E|Y ♦)

is an isomorphism for any i ≥ 0;

(4) if X has an open affine covering X =
⋃
i∈I Ui such that E|(Ui,K)♦ is very small, then

(Rν∗E)a ∈ D
[0,d]
acoh(X0)a;

(5) if E is small, there is an admissible blow-up X′ → X such that X′ has an open affine covering
X′ =

⋃
i∈I Ui such that E|(Ui,K)♦ is very small.

In particular, if E is small, there is a cofinal family of admissible formal models {X′i}i∈I
of X such that (

RνX′i,∗E
)a
∈ D

[0,d]
acoh(X′i,0)a.

for each i ∈ I.

Proof. The first part of (1), (2), and (3) follow from Theorem 6.7.3 and Theorem 6.9.5. Now to
show that Rν∗E is almost concentrated in degrees [0, 2d], it suffices to show that, for every affine

U = Spf A0 ⊂ X, the complex RΓ(U♦K,v,E)a (almost) lies in D[0,2d](A0/pA0)a. By Lemma 6.7.4

and full faithful flatness of OK/p→ OC/p, it is sufficient to proof under the additional assumption
that K = C is algebraically closed. Then Theorem C.4.5 and Theorem C.4.8 imply that

E′ := Rµ∗Rλ∗E
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is an O+
Xét
/p-vector bundle concentrated in degree 0. Therefore,

RΓ(U♦C,v,E) ' RΓ(UC,ét,E
′),

and

RΓ(UC,ét,E
′) ∈ D[0,2d](A0/pA0)

by [Hub96, Corollary 2.8.3 and Corollary 1.8.8].

To show (4), we consider an open affine covering X =
⋃
i∈I Ui and denote Ui = Spf Ai. Then

Part (2) implies that it suffices to show that

RΓ((Ui,K)♦v ,E)a ∈ D
[0,d]
acoh(Ai/pAi)

a

for each i ∈ I. This follows from Theorem 6.10.3 and the assumption that E|(Ui,K)♦ is very small.

(5) now follows from Lemma 6.8.7. �

6.12. Proof of Theorem 6.1.9. The main goal of this section is to prove Theorem 6.1.9. Essen-
tially the idea is to use the “classification” of Zariski-constructible sheaves to reduce Theorem 6.1.9
to Theorem 6.1.2.

For the rest of this section, we fix a perfectoid p-adic field K with a pseudo-uniformizer $ ∈ OK
as in Remark B.1.5. We always do almost mathematics with respect to the ideal m =

⋃
n$

1/pnOK .

We recall that we have a diagram of morphisms of ringed sites:

(
X♦v ,O

+
X♦

/p
) (

X♦qproét,O
+

X♦qp
/p
) (

Xét,O
+
Xét
/p
)

(XZar,OX0) .

ν

λ µ t

Both ν∗ and t∗ will play an important role in the proof.

Lemma 6.12.1. Let f : X → Y a finite morphism of admissible formal OK-schemes with adic
generic fiber f : X → Y , and F ∈ Db

zc(X; Fp). Then the natural morphism

RνY,∗
(
f∗F ⊗ O+

Y ♦
/p
)
→ Rf0,∗

(
RνX,∗

(
F ⊗ O+

X♦
/p
))

is an isomorphism in D(Y0).

Proof. Firstly, we note that f is finite, and so f∗ ' Rf∗ by [Hub96, Proposition 2.6.3]. Now the
proof of Corollary 6.3.9 just goes through using Corollary 6.2.9 (that does not use Theorem 6.1.9
as in input) in place of Lemma 6.3.7. �

Lemma 6.12.2. Let f : X → Y be a finite morphism of quasi-compact, quasi-separated rigid-

analytic varieties over K, and F ∈ D
[r,s]
zc (X; Fp) such that

RνX,∗
(
F ⊗ O+

X♦
/p
)a ∈ D

[r,s+d]
acoh (X0)a (resp. RνX,∗

(
F ⊗ O+

X♦
/p
)
∈ D+

qc,acoh(X0))

for any formal OK-model X of X. Then, for any formal OK-model Y of Y ,

RνY,∗
(
f∗F ⊗ O+

Y ♦
/p
)a ∈ D

[r,s+d]
acoh (Y0)a (resp. RνY,∗

(
f∗F ⊗ O+

Y ♦
/p
)
∈ D+

qc,acoh(Y0)).
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Proof. Firstly, we note that we can choose a finite morphism f : X → Y such that its generic fiber
fK is equal to f (for example, this follows from [FK18, Corollary II.5.3.3, II.5.3.4]).

Now Lemma 6.12.1 ensures that we have an equality

RνY,∗
(
f∗F ⊗ O+

Y ♦
/p
)
→ Rf0,∗

(
RνX,∗

(
F ⊗ O+

X♦
/p
))
.

Therefore, RνY,∗
(
f∗F ⊗ O+

Y ♦
/p
)

already lies in Dacoh(Y0)a (resp. Dqc,acoh(Y0)) by Theorem 5.1.3.
The cohomological bound follows from Proposition 3.5.23 and the fact that a finite morphism f0 is
acyclic on quasi-coherent sheaves. �

Lemma 6.12.3. Let X be an admissible formal OK-scheme with adic generic fiber X of dimension

d and mod-p fiber X0, and a complex of sheaves F ∈ D
[r,s]
zc (X; Fp). Then

Rt∗

(
F ⊗ O+

Xét
/p
)
' Rν∗

(
F ⊗ O+

X♦
/p
)
∈ D+

qc,acoh(X0), and

Rν∗
(
F ⊗ O+

X♦
/p
)a ∈ D

[r,s+d]
qc,acoh(X0)a

Proof. We start the proof by noting that an isomorphism

Rt∗

(
F ⊗ O+

Xét
/p
)
' Rν∗

(
F ⊗ O+

X♦
/p
)

is automatic by Lemma C.5.10 and overconvergence of Zariski-constructible sheaves. In what
follows, we will freely identify these sheaves.

Step 1: The case of a local system F. In this case E := F ⊗ O+
X♦

/p fits into the assumption of
Theorem 6.11.1. Since an Fp-local system on any rigid-analytic variety Y splits by a finite étale
cover, so F ⊗ O+

X♦
/p is very small for any open affinoid U ⊂ X. Thus the desired claim follows

from Theorem 6.11.1.

Step 2: The case of a zero-dimensional X. If X is of dimension 0, then any Zariski-constructible
sheaf on X is a local system. So the claim follows from Step 1.

Now we argue by induction on dimX. We suppose the claim is known for every rigid-analytic
variety of dimension less than d (and any Zariski constructible F) and wish to prove the claim for
X of dimensiond d.

Step 3: Reduction to the case of a reduced X. Consider the reduction morphism i : Xred → X.
Then iét is an equivalence of étale topoi, we see that

i∗i
−1F → F

is an isomorphism. Thus the claim follows from Lemma 6.12.2.

Step 4: Reduction to the case of a normal X. Consider the normalization morphism f : X ′ → X.
It is finite by [Con99, Theorem 2.1.2] and an isomorphism outside of a nowhere dense Zariski-closed
subset Z. Therefore, there is an exact triangle

F → f∗f
−1F → i∗G

where i : Z → X is a Zariski-closed immersion with dimZ < dimX and G ∈ D
[r−1,s]
zc (Z). Now the

induction hypothesis and Lemma 6.12.2 ensure that

Rν∗
(
i∗G⊗ O+

X♦
/p
)
∈ D+

qc,acoh (X0) ,

Rν∗
(
i∗G⊗ O+

X♦
/p
)a ∈ D

[r,s+d]
acoh (X0)a .
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Therefore, it suffices to show the claim for f∗f
−1F, and so Lemma 6.12.2 applied to f guarantees

that it suffices to show that

RνX′,∗

(
f−1F ⊗ O+

X′♦
/p
)
∈ D+

qc,acoh

(
X′0
)
,

RνX′,∗

(
f−1F ⊗ O+

X′♦
/p
)a
∈ D

[r,s+d]
acoh

(
X′0
)a

for any admissible formal OK-model X′ of X ′. So we may and do assume that X is normal.

Step 5: Reduction to the case F = Fp. Clearly, it suffices to prove the claim for F concentrated
in degree 0. Then, by definition of a Zariski-constructible sheaf, there is a nowhere dense Zariski-
closed subset i : Z → X with a complement j : U → X and an Fp-local system L on U such that
F|U ' L. In particular, there is a short exact sequence

0→ j!L→ F → i∗F|Z → 0.

Similarly to the argument in Step 4, it suffices to prove the claim for F = j!L.

Then “méthode de la trace” (see [Sta21, Tag 03SH]) implies that there is a finite étale covering
g : U ′ → U such that L′ := L|U ′ is an iterated extension of constant sheaves Fp. Then L is a direct
summand of g∗ (L′). Thus it is enough to prove the claim for

F = j!
(
g∗L

′) .
Moreover, it suffices to prove the claim for F = j!

(
g∗Fp

)
because the claim of Lemma 6.12.3 satisfies

the (2)-out-of-(3) property, and both functors g∗ and j! are exact.

Now we use [Han20, Theorem 1.6] to extend g to a finite morphism g′ : X ′ → X. Then a similar
reduction shows that it is actually sufficient to prove the claim for F = g′∗

(
Fp

)
. Now this case

follows from Step 2 and Lemma 6.12.2. �

Theorem 6.12.4. Let X be an admissible formal OK-scheme with adic generic fiber X of dimension

d and mod-p fiber X0, and a complex of sheaves F ∈ D
[r,s]
zc (X; Fp). Then

(1) there is an isomorphism Rt∗

(
F ⊗ O+

Xét
/p
)
' Rν∗

(
F ⊗ O+

X♦
/p
)
;

(2) the nearby cycles Rν∗
(
F ⊗ O+

X♦
/p
)
∈ D+

qc,acoh(X0), and Rν∗
(
F ⊗ O+

X♦
/p
)a ∈ D

[r,s+d]
acoh (X0)a;

(3) for an affine admissible X = Spf A, the natural map

˜
Hi
(
X♦v ,F ⊗ O+

X♦
/p
)
→ Riν∗

(
F ⊗ O+

X♦
/p
)

is an isomorphism for every i ≥ 0;

(4) the formation of Riν∗
(
F ⊗ O+

X♦
/p
)

commutes with étale base change, i.e., for any étale
morphism f : Y→ X with adic generic fiber f : Y → X, the natural morphism

f∗0
(
RiνX,∗

(
F ⊗ O+

X♦
/p
))
→ RiνY,∗

(
f−1F ⊗ O+

Y ♦
/p
)

is an isomorphism for any i ≥ 0;

Proof. (1) and (2) follow from Lemma 6.12.3. Now (3) follows from Lemma 4.4.4 and the isomor-
phism

RΓ
(
X0,Rν∗

(
F ⊗ O+

X♦
/p
))
' RΓ(X♦v ,F ⊗ O+

X♦
/p).

Now we show (4). By (1), it suffices to show that the natural morphism

f∗0

(
RitX,∗

(
F ⊗ O+

Xét
/p
))
→ RitY,∗

(
f−1F ⊗ O+

Yét
/p
)

https://stacks.math.columbia.edu/tag/03SH
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Moreover, [BH21, Proposition 3.6] ensures that it suffices to prove the claim for F = g∗
(
Fp

)
for

some finite morphism g : X ′ → X. Then we can lift it to a finite morphism g : X′ → X as in the
proof of Lemma 6.12.2. Then we have a commutative diagram

(Y ′ét,O
+
Y ′ét
/p) (Y′0,OY′0

)

(X ′ét,O
+
X′ét
/p) (X′0,OX′0

)

(Yét,O
+
Yét
/p) (Y0,OY0)

(X,O+
Xét
/p) (X0,OX0)

f ′

g′

tY′

f′0

g′0

g

tX′

g0

f

tY

f0
tX

(6.6)

with Y′ = Y×X X′ and Y ′ its adic generic fiber. Then we have a sequence of isomorphisms:

f∗0

(
RtX,∗

(
g∗
(
Fp

)
⊗ O+

Xét
/p
))
' f∗0

(
RtX,∗

(
Rg∗O

+
X′ét
/p
))

' f∗0

(
Rg0,∗

(
RtX′,∗O

+
X′ét
/p
))

' Rg′0,∗

(
f′0
∗
(
RtX′,∗O

+
X′ét
/p
))

' Rg′0,∗

(
RtY′,∗

(
O+
Y ′ét
/p
))

' RtY,∗

(
Rg′∗O

+
Y ′ét
/p
)

' RtY,∗

(
g′∗
(
Fp

)
⊗ O+

Yét
/p
)

' RtY,∗

(
f−1

(
g∗Fp

)
⊗ O+

Yét
/p
)

The first isomorphism holds by (the proof of) Corollary 6.2.9. The second isomorphism is formal
and follows from Diagram 6.6. The third isomorphism holds by flat base change applies to a flat
morphism f0. The fourth isomorphism follows from Theorem 6.11.1 applied to E = O+

X′♦
/p and

étale morphism Y′ → X′. The fifth isomorphism is formal again. The sixth isomorphism follows
from (the proof of) Corollary 6.2.9. Finally the last isomorphism follows from [Hub96, Theorem
4.3.1]. �

6.13. Proof of Theorem 6.1.11. The main goal of this section is to prove Theorem 6.1.11. The
proof is a formal reduction to the case of O+

X♦
/p-vector bundles.

For the rest of this section, we fix a perfectoid p-adic field K with a good pseudo-uniformizer
$ ∈ OK . We always do almost mathematics with respect to the ideal m =

⋃
n$

1/pnOK .

Lemma 6.13.1. Let X be a rigid-analytic variety over K, and E an O+
X♦

-vector bundle on X.
Then E is derived p-adically complete.

Proof. Lemma 6.1.11 implies that it suffices to prove the claim v-locally on X♦v . Therefore, we may
and do assume that E =

(
O+
X♦

)r
for some integer r. Then the claim follows from Lemma C.3.5 (3).

�
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Lemma 6.13.2. Let X = Spf A0 be an affine admissible formal OK-scheme with adic generic fiber
X = Spa (A,A+) of dimension d, and E an O+

X♦
-vector bundle. Then

RΓ
(
X♦v ,E

)a
∈ D

[0,2d]
acoh (A0).

Moreover,

RΓ
(
X♦v ,E

)a
∈ D

[0,d]
acoh(A0)

if E is very small (see Definition 6.1.10).

Proof. Lemma 6.13.1 implies that E is derived p-adically complete. So [Sta21, Tag 0A0G] ensures
that

RΓ
(
X♦v ,E

)
is derived p-adically complete as well. Now Theorem 6.11.1 implies that[

RΓ
(
X♦v ,E

)a
/p
]
' RΓ

(
X♦v ,E/pE

)a
∈ D

[0,2d]
acoh (A0/pA0)a,

and [
RΓ

(
X♦v ,E

)a
/p
]
' RΓ

(
X♦v ,E/pE

)a
∈ D

[0,d]
acoh(A0/pA0)a

if E is very small. So Corollary 2.13.3 ensures that

RΓ
(
X♦v ,E

)a
∈ D

[0,2d]
acoh (A0)a,

RΓ
(
X♦v ,E

)a
∈ D

[0,d]
acoh(A0)a

if E is very small. �

Lemma 6.13.3. Let X = Spf A0 be an admissible affine formal OK-scheme with adic generic fiber
X = Spa (A,A+), and f : Spf B0 → Spf A0 an étale morphism with adic generic fiber f : Y → X,
and E an O+

X♦
-vector bundle on X. Then the natural morphism

r : RΓ
(
X♦v ,E

)
⊗A0 B0 → RΓ

(
Y ♦v ,E

)
.

is an isomorphism.

Proof. The morphism A0 → B0 is flat since f is étale. Now Lemma 6.13.2 and Lemma 2.12.7 ensure
that cohomology groups of both RΓ

(
X♦v ,E

)
⊗A0 B0 and RΓ

(
Y ♦v ,E

)
are (classically) p-adically

complete. In particular, both complexes are derived p-adically complete. So it suffices to show
that r is an isomorphism after taking derived mod-p fiber (see [Sta21, Tag 0G1U]). Then the claim
follows from Theorem 6.11.1 (3) (4). �

Theorem 6.13.4. Let X be an admissible formal OK-scheme with adic generic fiber X of dimension
d and mod-p fiber X0, and E an O+

X♦
-vector bundle. Then

(1) the nearby cycles Rν∗E ∈ D+
qc,acoh(X) and (Rν∗E)a ∈ D

[0,2d]
acoh (X)a;

(2) for an affine admissible X = Spf A with the adic generic fiber X, the natural map

Hi
(
X♦v ,E

)∆
→ Riν∗ (E)

is an isomorphism for every i ≥ 0;

https://stacks.math.columbia.edu/tag/0A0G
https://stacks.math.columbia.edu/tag/0G1U
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(3) the formation of Riν∗(E) commutes with étale base change, i.e., for any étale morphism
f : Y→ X with adic generic fiber f : Y → X, the natural morphism

f∗
(
RiνX,∗(E)

)
→ RiνY,∗ (E|Y ♦)

is an isomorphism for any i ≥ 0;

(4) if X has an open affine covering X =
⋃
i∈I Ui such that E|(Ui,K)♦ is very small, then

(Rν∗E)a ∈ D
[0,d]
acoh(X)a;

(5) if E is small, there is an admissible blow-up X′ → X such that X′ has an open affine covering
X′ =

⋃
i∈I Ui such that E|(Ui,K)♦ is very small.

In particular, if E is small, there is a cofinal family of admissible formal models {X′i}i∈I
of X such that

(RνX′i,∗E)a ∈ D
[0,d]
acoh(X′i)

a.

for each i ∈ I.

Proof. Firstly, we show that Rν∗E ∈ D+
qc,acoh(X) and (Rν∗E)a ∈ D

[0,2d]
acoh (X)a. The claim is local

on X, so we can assume that X = Spf A is affine. Then it suffices to show that, for every étale
morphism Spf B0 → Spf A0 with adic generic fiber Y → X,

Hi(Y ♦v ,E|Y ♦)

is almost coherent for i ≥ 0,

Hi(Y ♦v ,E|Y ♦) 'a

for i > 2d, and the natural morphism

Hi(X♦v ,E)→ Hi(Y ♦v ,E|Y ♦)

is an isomorphism (see Lemma 5.1.8 and its proof). The first claim follows from Lemma 6.13.2
and the second one from Lemma 6.13.3 (and A0-flatness of B0). This already proves (1) and (2).
The proof of (3) is essentially the same using Lemma 4.6.5. Now (4) follows from Lemma (4)
and already established (2). Finally (5) follows from Lemma 6.8.7 since smallness is the condition
mod-p. �

Let us also mention a version of Theorem 6.1.11 for the pro-étale site of X as defined in [Sch13]

and [Sch16]. It will be convenient to have this reference in our future work. In what follows, Ô+
X is

the completed integral structure sheaf on Xproét (see [Sch13, Definition 4.1]), and

ν ′ : (Xproét, Ô
+
X)→ (XZar,OX)

is the evident morphism of ringed sites.

Theorem 6.13.5. Let X be an admissible formal OK-scheme with adic generic fiber X of dimension
d and mod-p fiber X0. Then

(1) the nearby cycles Rν ′∗
(
O+
X/p

)
∈ D+

qc,acoh(X0), and Rν ′∗
(
O+
X/p

)a ∈ D
[0,d]
acoh(X0)a;

(2) for an affine admissible X = Spf A, the natural map

˜Hi
(
Xproét,O

+
X/p

)
→ Riν ′∗

(
O+
X/p

)
is an isomorphism for every i ≥ 0;
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(3) the formation of Riν∗
(
O+
X/p

)
commutes with étale base change, i.e., for any étale morphism

f : Y→ X with adic generic fiber f : Y → X, the natural morphism

f∗0
(
Riν ′X,∗

(
O+
X/p

))
→ Riν ′Y,∗

(
O+
Y /p

)
is an isomorphism for any i ≥ 0;

Proof. By [Sch13, Corollary 3.17], Rν ′∗
(
O+
X/p

)
' Rt∗

(
O+
Xét
/p
)

. So the results follow formally

from Theorem 6.12.4. �

Theorem 6.13.6. Let X be an admissible formal OK-scheme with adic generic fiber X of dimension
d. Then

(1) the nearby cycles Rν ′∗Ô
+
X ∈ D+

qc,acoh(X) and (Rν ′∗Ô
+
X)a ∈ D

[0,d]
acoh(X)a;

(2) for an affine admissible X = Spf A with the adic generic fiber X, the natural map

Hi
(
Xproét, Ô

+
X

)∆
→ Riν ′∗Ô

+
X

is an isomorphism for every i ≥ 0;

(3) the formation of Riν∗(E) commutes with étale base change, i.e., for any étale morphism
f : Y→ X with adic generic fiber f : Y → X, the natural morphism

f∗
(

Riν ′X,∗

(
Ô+
X

))
→ Riν ′Y,∗

(
Ô+
Y

)
is an isomorphism for any i ≥ 0;

Proof. The proof is identical to the proof of Theorem 6.13.4 once one establishes that the sheaf Ô+
X

is p-adically derived complete. For this, see [BMS18, Remark 5.5]. �

Appendix

Appendix A. Derived Complete Modules

The main goal of this section is to collect some standard results on derived complete modules
that seem difficult to find in the literature.

For the rest of the section, we fix a ring R with an element $ ∈ R.

Definition A.1. A complex M ∈ D(R) is $-adically derived complete (or just derived complete)
if the natural morphism M → R limn[M/$n] is an isomorphism.

Remark A.2. This definition coincides with [Sta21, Tag 091S] by [Sta21, Tag 091Z].

Lemma A.3. Let M ∈ D(R) be a derived complete complex. Then

(1) M ∈ D≥d(R) if [M/$] ∈ D≥d(R/$R).

(2) M ∈ D≤d(R) if [M/$] ∈ D≤d(R/$R);

Proof. (1) : By shifting, we can assume that d = 0. Now suppose that [M/$] ∈ D≥0(R/$). Then
we use an exact triangles

[M/$]→ [M/$n]→ [M/$n−1]

to ensure that [M/$n] ∈ D≥0(R/$n) for every n ≥ 0. Now we use that M is derived complete to
see that the natural morphism

M → R lim
n

[M/$nM ]

https://stacks.math.columbia.edu/tag/091S
https://stacks.math.columbia.edu/tag/091Z
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is an isomophism. By passing to cohomology groups (and using that lim has cohomological dimen-
sion 1), we see that

0→ R1 lim
n

Hi−1([M/$n])→ Hi(M)→ lim
n

Hi([M/$n])→ 0

are exact for any integer i. This implies that Hi(M) = 0 for i ≤ 0, i.e. M ∈ D≥0(R).

(2) : Similarly, we can assume that d = 0. Then the same inductive argument shows that
[M/$n] ∈ D≤0(R/$n) and we have short exact sequences

0→ R1 lim
n

Hi−1([M/$n])→ Hi(M)→ lim
n

Hi([M/$n])→ 0.

So we see that M ∈ D≤1(R) and H1(M) = R1 limn H0([M/$n]). Now note that an exact triangle

[M/$]→ [M/$n]→ [M/$n−1]

and the fact that [M/$] ∈ D≤0(R/$) imply that H0([M/$n]) → H0([M/$n−1]) is surjective, so
R1 limn H0([M/$n]) = 0 by the Mittag-Leffler criterion. �

Lemma A.4. Let R be a ring with an ideal of almost mathematics m, and an element $ ∈ m.
Let M ∈ D(R) be a $-adically derived complete complex. Then m̃⊗M is also $-adically derived
complete complex.

Proof. Consider an exact triangle

m̃⊗M →M → Q.

Since m̃ ⊗M → M is an almost isomorphism, we see that cohomology groups of Q are almost
zero. In particular, they are $-torsion, so derived complete. Therefore, Q is derived complete (for
example, by [Sta21, Tag 091P] and [Sta21, Tag 091S]). Now derived completeness of M and Q
implies derived completeness of m̃⊗M . �

Lemma A.5. Let R be a ring with an ideal of almost mathematics m, and an element $ ∈ m. Let
M ∈ D(R) be a $-adically derived complete complex. Then

(1) Ma ∈ D≥d(R)a if [Ma/$] ∈ D≥a(R/$R)a.

(2) Ma ∈ D≤d(R)a if [Ma/$] ∈ D≤a(R/$R)a.

Proof. Lemma A.4 guarantees that m̃ ⊗M is derived $-adically complete. Therefore, the claim
follows from Lemma A.3 applied to m̃⊗M . �

Now we fix an R-ringed site (X,OX).

Definition A.6. A complex M ∈ D(X) is $-adically derived complete (or just derived complete)
if the natural morphism M → R limn[M/$n] is an isomorphism.

Remark A.7. This definition coincides with [Sta21, Tag 0999] by [Sta21, Tag 0A0E].

Lemma A.8. Let B ⊂ Ob(X) be a basis in a site X, and M ∈ D(X). Then M is $-adically
derived complete if and only if RΓ(U,M) is $-adically derived complete for any U ∈ B.

Proof. Suppose that M is $-adically derived complete. Then RΓ(U,M) is derived $-adically
complete for any U ∈ Ob(X) by [Sta21, Tag 0BLX].

Now suppose that RΓ(U,M) is $-adically derived complete for any U ∈ B, and consider the

derived $-adic completion M → M̂ with the associated distinguished triangle:

M → M̂ → Q.

https://stacks.math.columbia.edu/tag/091P
https://stacks.math.columbia.edu/tag/091S
https://stacks.math.columbia.edu/tag/0999
https://stacks.math.columbia.edu/tag/0A0E
https://stacks.math.columbia.edu/tag/0BLX
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We wish to show that Q ' 0. In order to show it, it suffices to establish that RΓ(U,Q) ' 0 for any
U ∈ B. Now we use [Sta21, Tag 0BLX] to conclude that

RΓ(U, M̂) ' ̂RΓ(U,M),

so we get the distinguished triangle

RΓ(U,M)→ ̂RΓ(U,M)→ RΓ(U,M).

Since RΓ(U,M) is derived $-adically complete by the assumption, so we see that the morphism

RΓ(U,M)→ ̂RΓ(U,M)

is an isomorphism. Therefore, we conclude that RΓ(U,Q) ' 0. This finishes the proof. �

Appendix B. Perfectoid Things

The main goal of this Appendix is to recall the main structural results about perfectoid rings.

B.1. Perfectoid Rings.

Definition B.1. [Sch17, Definition 3.6] A non-archimedean field (K, | . |K) is a perfectoid field if
there is a pseudo-uniformizer $ ∈ K such that $p | p in OK = {x ∈ K | |x| ≤ 1} and the p-th
power Frobenius map

Φ: OK/$OK → OK/$
pOK

is an isomorphism.

Definition B.2. A complete valuation ring K+ is a perfectoid valuation ring if K := Frac(K+) is
a perfectoid field with its valuation topology.

A Huber pair (K,K+) is a perfectoid field pair if K is a perfectoid field and K+ is an open and
bounded valuation subring.

Remark B.3. Any perfectoid valuation ring K+ is automatically microbial (see [Sem15, L9, Propo-
sition 9.1.3 and Definition 9.1.4]). Any rank-1 valuation ring K+ ⊂ K++ ⊂ K defines the same
topology on K by [Bou98, Ch. VI, §7.2, Prop. 3]. Therefore, K++ must be equal to K◦ the set of
powerbounded elements. In particular, there is a unique rank-1 valuation ring between K+ and K
that we denote by OK , and the associated rank-1 valuation on K by | . |K : K → R≥0.

Lemma B.4. [Sch17, Proposition 3.8] Let K be a non-archimedean field. Then K is a perfectoid
field if and only if

(1) K is not discretely valued,

(2) |p|K < 1,

(3) the Frobenius morphism Φ: OK/pOK → OK/pOK is surjective.

We wish to show that the ideal m = K◦◦ ⊂ K+ defines an ideal of almost mathematics in K+.
For the future reference, it will be convenient to do in a more general set-up of perfectoid pairs.

Definition B.1.1. [Sch17, Definition 3.1] A complete Tate-Huber pair (R,R+) is a perfectoid pair
if R is a uniform Tate ring containing a pseudo-uniformizer $R ∈ R◦ such that $p

R | p in R◦ and

the Frobenius homomorphism R◦/$RR
◦ x 7→xp−−−→ R◦/$p

RR
◦ is an isomorphism.

A Tate-Huber pair (R,R+) is p-adic perfectoid pair if it is a Huber pair, and R is p 6= 0 in R.

A Tate ring R is a perfectoid ring if (R,R◦) is a perfectoid pair.

https://stacks.math.columbia.edu/tag/0BLX
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Remark B.1.2. It is not, a priori, clear that a perfectoid ring R that is a field is a perfectoid field
(in the sense of Definition B.1). The problem is to verify that R has a non-archimedean topology
on it. This turned out to be always true by [Ked18].

Remark B.1.3. By [Sch17, Proposition 3.5], a complete Tate ring R of characteristic p is perfectoid
if and only if R is perfect as a ring, i.e. the Frobenius morphism is an isomorphism.

Remark B.1.4. In the definition of a perfectoid pair, it suffices to require R◦/$RR
◦ x 7→xp−−−→

R◦/$p
RR
◦ to be surjective. This map actually turns out to be always injective. Moreover, this

condition turns out to be equivalent to the surjectivity of the Frobenius map

R◦/pR◦ → R◦/pR◦.

In particular, it is independent of a choice of a pseudo-uniformizer $p
R | p, see [Sch17, Remark 3.2]

for more detail. Therefore, if R is an algebra over a perfectoid field K with a pseudo-uniformizer
$K ∈ OK , one can always take $R = $K . In particular, every perfectoid ring in the sense of
[Sch12, Definition 5.1] is a perfectoid ring in the sense of Definition B.1.1.

Lemma B.5. [Sch17, Lemma 3.10] Let (R,R+) be a perfectoid pair. Then there is a pseudo-
uniformizer $ ∈ R◦◦ such that

(1) $p | p in R◦;

(2) $ admits a compatible sequence of pn-th root of $1/pn ∈ R+ for n ≥ 0.

In this case, R◦◦ =
⋃
n≥0$

1/pnR+.

Proof. [Sch17, Lemma 3.10] says that there is a pseudo-uniformizer $ ∈ R◦◦ ⊂ R+ such that $p | p
in R◦, and there is a compatible sequence of the pn-th roots $1/pn ∈ R◦ for n ≥ 0. Since R+ is
integrally closed, we conclude that all $1/pn must lie in R+. Since R◦◦ is a radical ideal R+ and
contains $, it clearly contains

⋃
n≥0$

1/pnR+.

Now we pick an element x ∈ R◦◦, and wish to show that x ∈
⋃
n≥0$

1/pnR+. Since x is
topologically nilpotent, we can find an integer m such that

xp
m ∈ $R+

Therefore, xp
m

= $a for a ∈ R+. Thus( x

$1/pm

)pm
= a ∈ R+.

Therefore, x
$1/pm ∈ R+ because R+ is integrally closed in R. So x ∈ $1/pmR+. �

Remark B.1.5. If (R,R+) is a p-adic perfectoid pair, then one can choose $ such that $pR+ =
pR+. Indeed, [BMS18, Lemma 3.20] implies that R+ is perfectoid in the sense of [BMS18, Definition
3.5]. Thus the desired $ exists by [BMS18, Lemma 3.9].

Definition B.1.6. A pseudo-uniformozer $ ∈ R+ of a p-adic perfectoid pair (R,R+) is good if
$R+ = pR+ and $ admits a compatible sequence of p-power roots.

For the rest of the section, we fix a perfectoid pair (R,R+) and an ideal m = R◦◦. Our goal is
to show that m defines a set-up for almost mathematics, i.e. m̃ = m⊗R+ m is R+-flat and m2 = m.

Lemma B.6. Let (R,R+) be a perfectoid pair, and m = R◦◦ the associated ideal of topologically
nilpotent elements. Then m is flat over R+ and m̃ ' m2 = m.
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Proof. Lemma B.5 implies that m is flat as a colimit of free modules of rank-1.

Now we wish to show that m2 = m. We take any element x ∈ m, by Lemma B.5 we know that
x = $1/pna for some integer n and a ∈ R+. Therefore,

x =
(
$1/pn+1

)p−1 (
$1/pn+1

a
)
∈ m2.

Now we consider a short exact sequence

0→ m→ R+ → R+/m→ 0.

By flatness of m, we conclude that it remains exact after applying the tensor product against m.
Therefore, the sequence

0→ m̃→ m→ m/m2 → 0

is exact. Since m2 = m, we conclude that

m̃ ' m2 = m.

�

Lemma B.1.7. Let (R,R+) be a perfectoid pair. Then the natural inclusion ι : R+ → R◦ is an
almost isomorphism.

Proof. Clearly, the map ι : R+ → R◦ is injective, so it suffices to show that its cokernel is almost
zero, i.e. annihilated by any ε ∈ m. Pick an element x ∈ R◦, then εx ∈ R◦◦ ⊂ R+. Therefore we
conclude that ε(Coker ι) = 0 finishing the proof. �

B.2. Universal Perfectoid Cover. The main goal of this section is to give a construction of a
“universal cover” perfectoid cover of an affinoid (pre-)adic38 affinoid space X = Spa (A,A+) over
Spa (Qp,Zp). Throughout this section, we assume that (A,A+) is a Tate-Huber pair over (Qp,Zp)
with no non-trivial idempotents in A. We do not assume that A is sheafy.

Our assumption on (A,A+) implies that SpecA is connected. We choose a geometric point

x : Spec Ω→ SpecA

for an algebraically closed field Ω, and consider the category of pointed, connected, finite étale
Galois morphisms

{(SpecAi, xi)→ (SpecA, x)}i∈I (B.1)

A standard argument shows that this system is cofiltered (we point out that it uses the connect-
edness assumption). Now we want to make this system into a system of (pre-)adic spaces over
Spa (A,A+).

We define A+
i to be the integral closure of A+ in Ai. We show that each (Ai, A

+
i ) is a Huber

pair if we put the natural topology on Ai (see [Zav21b, Appendix D.3]).

Lemma B.2.1. Let (A,A+) be a complete Tate-Huber pair with a pair of definition (A0 ⊂ A+, $),
and A → B is a finite étale morphism. Then (B,B+) is a complete Tate-Huber pair where B+ is
the integral closure of A+ in B.

Proof. Step 1: B is complete in its natural topology. Since B is finite étale, B is a projective A-
module of finite rank. Then there is another finite A-module M such that B⊕M ' A⊕n. Consider
the projection p : A⊕n → B, the natural topology on B coincide with the quotient topology (see
[Zav21b, Lemma B.3.2]). Using that A is Huber ring, it is not difficult to show that the quotient
topology on B should coincide with the subspace topology. Since A⊕n is complete, we conclude

38We do not assume that it is sheafy.
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that the natural topology on B is separated. Therefore, the same applies to M as we never used
the ring structure on B. Then B is closed in A as a kernel of a continuous homomorphism with
a separated target. In particular, B is complete in its subspace (equivalently, quotient) topology,
and as discussed above, this topology coincides with the natural topology. So it is complete in its
natural topology.

Step 2: B admits a finite set of A-module generators x1, . . . , xn that are integral over A0. Pick
any finite set x′1, . . . , x

′
n ∈ B of A-module generators. It suffices to show that xi = $cx′i ∈ B are

integral over A0 for some integer c. So it is enough to show that, for any b ∈ B, there is an integer
c such that $cb is integral over A0.

By definition, b is integral over A. So we can find a monic equaition

bn + an−1b
n−1 + · · ·+ a0 = 0

with ak ∈ A for k = 0, . . . , n−1. Then there is an integer c such that $cak ∈ A0 for k = 0, . . . , n−1.
Thus the equation

($cb)n + an−1$
c($cb)n−1 + · · ·+ a0$

cn = 0

shows that $cb is integral over A0.

Step 3: An A0-subalgebra B0 of B generated by x1, . . . , xn is finite as an A0-module. Clearly
this algebra is finitely generated over A0 as an algebra and every element is integral. Therefore, it
is finite.

Step 4: B0 is open in B and the induced topology coincides with the $-adic one. Choose some
A0-module generators b1, . . . , bm ∈ B0. Clearly, B0

[
1
$

]
= B, so the A-linear morphism

q :
m⊕
i=1

Aei → B

sending ei to bi is surjective. By [Hub94, Lemma 2.4(i)], q is open. In particular, the topology on
B is the quotient topology along q. Therefore, B0 is open in B as q−1(B0) is a subgroup containing
an open subgroup ⊕mi=1A0ei. Moreover, the topology on B0 is $-adic since B0 = q(⊕mi=1A0ei), the
topology on ⊕mi=1A0ei is already $-adic, and q is open.

Step 5. (B,B+) is a complete Huber pair: We have already showed that B is complete in its
natural topology and (B0, $) is a pair of definition for this topology. Therefore, B is a Huber
ring. It suffices to show that B+ is open, integrally closed and lies in B◦. Openness is clear since
B0 ⊂ B+, and B+ is integrally closed by definition. One also easily show that B+ ⊂ B◦ because
B+ is integral over A+ ⊂ A◦. �

Corollary B.2.2. Let (Ai, A
+
i ) as above. Then, for every j > i, the natural morphism Spa (Aj , A

+
j )→

Spa (Ai, A
+
i ) is a (finite étale) surjection.

Proof. Note that SpecAj → SpecAi is surjective as it is finite étale (so open and closed) and
SpecAi is connected. Since both Ai and Aj are Galois over A, it is clear that Aj is Galois over Ai.
Denote its Galois group by G. Then Ai = (Aj)

G and A+
i = (A+

j )G. Now [Zav21b, Lemma 4.2.1]

implies that (Ai, A
+
i )′ with the subspace topology is a Tate-Huber pair. Clearly the morphism

(Ai, A
+
i )→ (Ai, A

+
i )′ is continuous and surjective, so it is a homeomorphism by the Banach Open

Mapping Theorem [Hub93a, Lemma 2.4]. Therefore, | Spa (Ai, A
+
i )| = |Spa (Aj , A

+
j )/G| by [Han,

Theorem 3.1]. In particular, it is surjective. �
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Corollary B.2.2 that {Spa (Ai, A
+
i )→ Spa (A,A+)}i∈I gives a cofiltered pro-system of finite étale

covers of Spa (A,A+). We want to say that its limit is a “perfectoid universal cover” of Spa (A,A+).
In order to make rigirous sense of it, we need to show some preliminary results.

We define A :− colimI Ai, A
+

= colimI A
+
i , A+

∞ to be the p-adic completion of A
+

(even if the

colimit topology does not coincide with the p-adic topology) and A∞ := A+
∞[1

p ]. We now study

properties of these rings.

Lemma B.2.3. The scheme SpecA is connected and any finite étale cover splits.

Proof. Connectedness of SpecA is equivalent to the fact that A has no non-trivial idempotents. It
can be easily seen that any idempotent should come from a finite level, so any idempotent must be
trivial because SpecAi is connected for every i.

Now we show that any finite étale cover f : SpecB → SpecA splits. Since finite étale morphism
are finitely presented and A = colimiAi is a filtered colimit of rings, we can use the spreading
out techniques from [Gro66] to assume that f comes as a base change of a finite étale morphism
fi : SpecBi → SpecAi for some i ∈ I. It suffices to show that fi has a section after a pullback
along vj,i : SpecAj → SpecAi for some j ≥ i.

We recall that SpecBi has a finite number of connected components by [Sta21, Tag 07VB]. It
implies that each connected of SpecBi is open and closed. Since a finite étale morphism is open and
closed, we can replace SpecBi by its connected component to assume that SpecBi is connected.
Now we use [Sta21, Tag 0BN2] and [Sta21, Tag 0BNB] to say that fi is dominated by a finite
Galois cover X → SpecAi, so we can replace SpecBi with X to assume fi is Galois. But then,
after choosing a geometric point in SpecBi over the geometric point xi → SpecAi, we conclude
that SpecBi → SpecAi is equal to some transition map SpecAj → SpecAi in the cofiltered system
{SpecAi, vi,j}. Clearly, SpecBi splits after a pullback along SpecAj = SpecBi → SpecAi. �

We topologize A∞ by declaring A+
∞ with its p-adic topology to be a ring of definition in A∞

(recall that (A,A+) is assumed to be a Tate-Huber pair over (Qp,Zp)).

Lemma B.2.4. Let (A∞, A
+
∞) be as above. Then (A∞, A

+
∞) is a Tate-Huber pair, SpecA∞ is

connected and every finite étale cover splits.

Proof. Clearly, A
+

is integrally closed in A. Thus A+
∞ is integrally closed in A∞ by [Bha, Lemma

5.1.2]. By definition A+
∞ is open and bounded in A∞, so (A∞, A

+
∞) is a Tate-Huber pair with a

pseudo-uniformizer p ∈ A+
∞.

Now we show that A∞ does not have non-trivial idempotents. Any idempotent is clearly inte-
gral over Z, so must lie in A+

∞. Thus it suffices to show that A+
∞ does not have any non-trivial

idempotents.

In order to verify this, we show that A
+

and A+
∞ are p-adically henselian. Lemma B.2.1 implies

that every (Ai, A
+
i ) is a Huber-Tate pair for every i, so any element ai ∈ A+

i lies in some ring of

definition Ai,0 ⊂ A+
i by [Hub93b, Corollary 1.3]. In particular, A+

i = colimAi,0 where the colimit

is taken over all ring of definitions in A+
i . Since each Ai,0 is p-adically complete, the colimit A+

i

is p-adically henselian. Thereover A
+

is also p-adically henselian as a filtered colimit of p-adically
henselian rings. Clearly, A+

∞ is also p-adically henselian as it is p-adically complete. Now [Ray70,
XI, §2, Proposition 1] reads that we have bijections

Idem(A+
∞) = Idem(A+

∞/p) = Idem(A
+
/p) = Idem(A

+
).

So it suffices to show that A
+

has no non-trivial idempotents. This is done in Lemma B.2.3.

https://stacks.math.columbia.edu/tag/07VB
https://stacks.math.columbia.edu/tag/0BN2
https://stacks.math.columbia.edu/tag/0BNB
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Now we show that there are no non-split finite étale covers of SpecA∞. We apply [GR03,

Proposition 5.4.53] to a p-adically henselian ring A
+

to get an equivalence of categories

(A∞)fét ' Afét

But SpecA has no non-split finite étale covers by Lemma B.2.3 (we leave to the reader to check
that covers on both sides also coincide). �

Lemma B.2.5. The pair (A∞, A
+
∞) is a perfectoid pair.

Proof. Lemma B.2.4 guarantees that (A∞, A
+
∞) is a Tate-Huber pair. By Remark B.1.4, it suffices

to show that A∞ is uniform, there is a pseudo-uniformizer $ such that $p | p, and the Frobenius
morphism

A◦∞/$A
◦
∞ → A◦∞/$

pA◦∞
is surjective.

Clearly, A+
∞ is an algebra over OCp , so $ = p1/p ∈ OCp is a pseudo-uniformizer such that $p | p.

We show that the Frobenius map

Φ: A◦∞/p
1/pA◦∞ → A◦∞/pA

◦
∞

is surjective. For any class f ∈ A◦∞/pA
◦
∞, we pick a lift f ∈ A◦∞ and consider the equation

T p − pT − f . Clearly,
SpecA∞[T ]/(T p − pT − f)→ SpecA∞

is finite étale. So by Lemma B.2.4, it has a section. Thus there is some element g ∈ A∞ such that
gp − pg = f . Clearly, it is integral over A◦∞, so g ∈ A◦∞. Therefore, its class g ∈ A◦∞/p1/pA◦∞ is an
element such that Φ(g) = f .

Finally, we show that A∞ is uniform. Note again that A+
∞ is an OCp-algebra, so it makes sense

to consider almost mathematics with respect to the ideal m =
⋃∞
n=1 p

1/nOCp . We use [Sch12,

Lemma 5.3 (iv)] and Lemma 2.1.10 to conclude that (A+
∞)∗ is p-adically complete and so [Bha,

Lemma 5.1.2] reads that (A+
∞)∗ is integrally closed in A∞. Therefore, [Bha, Proposition 5.2.5 and

Proposition 5.2.6] (A+
∞ is p-root closed in A∞ because A+

∞ is integrally closed in A∞) imply that
A◦∞ = (A+

∞)∗ is uniform finishing the proof. �

Now we summarize what we got so far.

Lemma B.2.6. Let (A,A+) be a Tate-Huber pair over (Qp,Zp). Then there is a a cofiltered
system of morphisms {Spa (Ai, A

+
i )→ Spa (A,A+)}i∈I and of finite groups {∆i}i∈I with surjective

transition maps ∆i → ∆j for i > j such that

(1) Spa (Ai, A
+
i )→ Spa (Aj , A

+
j ) is finite étale and surjective for i ≥ j;

(2) Spa (Ai, A
+
i )→ Spa (A,A+) is a ∆i-torsor;

(3) Spa (A∞, A
+
∞) in the notation as above, is a connected affinoid perfectoid space such that

its every finite étale cover splits.

Proof. The first part is Corollary B.2.2. For the second part, by construction, SpecA→ SpecAi is
a ∆i-torsor for some finite group ∆i. This means that the natual morphism

Ai ⊗A Ai → Ai ⊗A (A[∆i])

is an isomorphism. To see that Spa (Ai, A
+
i )→ Spa (A,A+) is a ∆i-torsor, we need to show that

Ai⊗̂AAi → Ai ⊗A (A[∆i])
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is an isomorphism. Now note that the topology on Ai ⊗A Ai coincides with the natural topology
by [Zav21b, Lemma B.3.5]. Therefore, it is already complete by Lemma B.2.1. Thus, Ai⊗̂AAi '
Ai ⊗A Ai ' Ai ⊗A A[∆i] as we wanted.

For the third part, Lemma B.2.4 and Lemma B.2.5 imply that Spa (A∞, A
+
∞) is an affinoid

perfectoid. In particular, it is sheafy. So to show that it is connected, it suffices to show that A∞
does not have any idempotents. This is done in Lemma B.2.4. Now [Sch12, Proposition 7.6 and
Theorem 7.9] reads that Spa (A∞, A

+
∞)fét ' (A∞)fét. Note that any finite étale surjective cover of

Spa (B,B+) → Spa (A∞, A
+
∞) corresponds to a finite étale surjective cover of SpecB → SpecA∞.

Indeed, any maximal ideal m ⊂ A∞ is a support of some valuation in Spa (A∞, A
+
∞). Therefore,

SpecB → SpecA∞ is surjective onto the set of closed points. Since an étale map is open, we
conclude that SpecB → SpecA∞ must be surjective. So we conclude that every finite étale cover
of Spa (A∞, A

+
∞) splits by Lemma B.2.4. �

Appendix C. The pro-étale and v-sites

The main goal of this section is to recall certain comparison results about étale, quasi-proétale,
and v-topologies. We will freely use the notion of perfectoid spaces and their tilts from [Sch12] and
[Sch17].

C.1. The v-topology. We start by discussing of the v-topology on an adic space X and certain
structure sheaves attached to this space.

One of the problems with the category of adic spaces is that this category does not have limits.
Therefore, in order to speak about pro-étale morphisms, we had to work with pro-systems and
distinguish objects of the pro-étale site of X (that is, a priori, just a cofiltered diagram) and their
realizations as adic spaces (whenever they exist). It turns out that this type of problems can
be resolved by considering an adic space as a sheaf X� on the category of perfectoid spaces of
characteristic p > 0. This may sound very counter-intuitive to consider a p-adic rigid-analytic
variety as a sheaf on characteristic p objects, but it turns out to be a very useful thing. The main
idea is that an S = Spa (R,R+)-point of X♦ should be a choice of an untilt S# of S (this is a mixed
characteristic object) and a morphism S# → X. This procedure turns out to remember a lot of
information about X (e.g. étale cohomology), but not all information on X (see Warning C.1.8)

Definition C.1.1. [Sch17, Definitions 8.1, 12.1, and 14.1] The category Perf is the category of
characteristic p perfectoid spaces.

The v-topology on Perf is defined by saying that a family {fi : Xi → X}i∈I of morphisms in Perf is
a covering if, for any quasi-compact open U ⊂ X, there is a finite subset I0 ⊂ I and quasi-compact
opens {Ui ⊂ Xi}i∈I0 such that U ⊂ ∪i∈I0fi(Ui).

A small v-sheaf is a v-sheaf Y on Perf such that there is a surjective map of v-sheaves Y ′ → Y
for some perfectoid space Y ′.

The v-site Yv of a small v-sheaf Y is the site whose objects are all maps Y ′ → Y from small
v-sheaves Y ′, with coverings given by families {Yi → Y }i∈I such that ti∈IYi → Y is a surjection of
v-sheaves.

Remark C.1.2. The v-site of a small v-sheaf Y has all finite limits by [Sch17, Proposition 12.10]
and [Sta21, Tag 002O].

In what follows, we denote by AdQp the category of adic spaces over Spa (Qp,Zp) and by pAdQp

the category of pre-adic spaces over Spa (Qp,Zp) as defined in [SW13, Definition 2.1.5] and [KL15,

https://stacks.math.columbia.edu/tag/002O
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Definition 8.2.3]39. The category of pre-adic spaces has the following list of useful properties (see
[SW13, Proposition 2.1.6] or [KL15, §8.2.3]):

(1) There is a fully faithful functor AdQp → pAdQp
from the category of adic spaces over

Spa (Qp,Zp),

(2) every pre-adic affinoid space40 Spa (A,A+) is naturally an object of pAdQp
,

(3) for an adic space S and a pre-adic affinoid space Spa (A,A+), the set of morphisms is given
by

HompAdQp
(S, Spa (A,A+)) = Homcont((A,A

+), (OS(S),O+
S (S))),

(4) pAdQp
has all finite limits,

(5) for a pseudo-adic space X, one can functorially associate an underlying topological space
|X| such that it coincides with | Spa (A,A+)| if X = Spa (A,A+) a pre-adic affinoid space
and it coincides with the usual underlying topological space |X| if X = (|X|,OX ,O+

X) is an
adic space,

(6) for every pre-adic space X ∈ pAdQp
, one can functorially associate an étale site Xét such

that, for X a strongly noetherian or perfectoid space, Xét coincides with the étale site
defined in [Hub96] and [Sch12] respectively.

Warning C.1.3. In general it is not true that HompAdQp
(Spa (B,B+),Spa (A.A+)) is equal to

Homcont((A,A
+), (B,B+)) unless Spa (B,B+) is sheafy.

Definition C.1.4. [SW13, Definition 2.4.1] Let Xi be a cofiltered inverse system of pre-adic spaces
with quasi-compact and quasi-separated transition maps, X a pre-adic space, and fi : X → Xi a
compatible family of morphisms.

We say that X is a tilde-limit of Xi, X ∼ limI Xi if the map of underlying topological spaces
|X| → limI |Xi| is a homeomorphism, and if there is an open cover of X by affinoid Spa (A,A+) ⊂
X, such that the map

colimSpa (Ai,A
+
i )⊂Xi Ai → A

has dense image, where the filtered colimit runs over all open affinoid

Spa (Ai, A
+
i ) ⊂ Xi

over which Spa (A,A+) ⊂ X → Xi factors.

Definition C.1.5. [Sch17, Definition 15.5] The diamond associated to X ∈ pAdQp
is a presheaf

X♦ : Perfop → Sets

such that, for any perfectoid space S of characteristic p, we have

X♦(S) =
{((

S], ι
)
, f : S] → X

)}
/isom

where S] is a perfectoid space, and ι : (S])[ → S is an identification of a S] as an untilt of S.
The diamantine spectrum Spd (A,A+) of Spa (A,A+) is a presheaf Spa (A,A+)♦.

We list the main properties of this functor:

39These spaces are called adic in [SW13], we prefer to call them pre-adic to distinguish with adic spaces in the
sense of Huber

40By a pre-adic affinoid space, we mean a space Spa (A,A+) for a not necessarilly sheafy Huber pair (A,A+).
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Proposition C.1.6. The diamondification functor factors through the category of v-sheaves. And
the functor (−)♦ : pAdQp

→ Shv(Perfv) satisfies the following list of properties:

(1) if X is a perfectoid space, X♦ ' X[,

(2) X♦ is a small v-sheaf for any X ∈ pAdQp

41,

(3) if {Xi → X}i∈I is an open (resp. étale) covering in pAdQp
, the family {X♦i → X♦}i∈I is

an open (resp. étale) covering of X♦,

(4) there is a functorial homeomorphism |X| ' |X♦| for any X ∈ pAdQp
,

(5) if X is a perfectoid space such that X ∼ limI Xi in pAdQp
with quasi-compact quasi-

separated transition maps, the natural functor X♦ → limI X
♦
i is an isomorphism,

(6) the functor (−)♦ : : pAdQp
→ Shv(Perfv) commutes with fiber products.

Proof. The first claim follows from [Sch17, Corollary 3.20] and the definition of the diamondification.
As for the second claim, [Sch17, Proposition 15.6] implies that X♦ is a diamond, and it so it is a
small v-sheaf by [Sch17, Proposition 11.9] and the definition of a diamond (see [Sch17, Definition
11.1]). The third and the fourth claims follow from [Sch17, Lemma 15.6]. The proof of the fifth
claim is identical to [SW13, Proposition 2.4.5] (the statement makes the assumption that X and
Xi are defined over a perfectoid field, but it is not used in the proof).

We now give a proof of the sixth claim. Let U → V , W → V be morphisms in pAdQp
with a

fiber product U ×V W . We fix a perfectoid space S of characteristic p. Then we have a sequence
of identifications

(U ×V W )♦(S) =
{((

S], ι
)
, S] → U ×V W

)}
/isom

=
{((

S], ι
)
, S] → U

)}
/isom×{((S],ι),S]→V )}/isom

{((
S], ι

)
, S] →W

)}
/isom

= U♦(S)×V ♦(S) W
♦(S)

that is functorial in S. Therefore, this defines an isomorphism

(U ×V W )♦ → U♦ ×V♦W♦.

�

Warning C.1.7. The functor (−)♦ does not send the final object to the final object. In particular,
it does not commute with all finite limits.

Warning C.1.8. The functor (−)♦ : pAdQp
→ Shv(Perfv) is not fully faithful. This is actually

crucial for our proofs in Section 6.10.

The next goal is to discuss example of v-covers of X♦ that will be of essential interest for our
purposes.

Definition C.1.9. A family of morphisms {fi : Xi → X}i∈I in pAdQp
is a naive v-covering if,

for any quasi-compact open U ⊂ X, there is a finite subset I0 ⊂ I and quasi-compact opens
{Ui ⊂ Xi}i∈I0 such that |U | ⊂ ∪i∈I0 |fi|(|Ui|).

Remark C.1.10. Using that the natural morphism |X ×Y Z| → |X| ×|Y | |Z| is surjective, it is
easy to see that a pullback of a naive v-covering is a naive v-covering.

41It is even a diamond in the terminology of [Sch17], but we will never need this
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Example C.1.11. A quasi-compact surjective morphism X → Y is a naive v-cover. A family of
jointly surjective étale morphisms {Xi → X} is a naive v-cover.

Our next goal is to show that the diamondification functor (−)� sends naive v-covers to surjections
of small v-sheaves.

Lemma C.1.12. Let f : X → Y be a quasi-compact (resp. quasi-separated) morphism in pAdQp
.

Then f♦ : X♦ → Y ♦ is quasi-compact (resp. quasi-separated) in the sense of [Sch17, p.40].

Proof. We first deal with quasi-compact f . Choose a morphism S → Y ♦ from an affinoid perfectoid
S, it corresponds to a morphism S] → Y with an affinoid perfectoid source S]. To check that f♦ is
quasi-compact, it suffices to show S×Y ♦X♦ is quasi-compact. By Proposition C.1.6, S×Y ♦X♦ '
(S] ×Y X)♦. By [Sch17, Lemma 15.6],

|S ×Y ♦ X♦| ' |S] ×Y X|
quasi-compact by our assumption on f . Now S ×Y♦ X♦ is quasi-compact by [Sch17, Proposition
12.14(iii)] and the fact that (S] ×Y X)♦ is locally spatial by [Sch17, Lemma 15.6].

The case of a quasi-separated f follows from Proposition C.1.6 and the quasi-compact by con-
sidering the diagonal morphism ∆f : X → X ×Y X. �

Lemma C.1.13. Let {fi : Xi → X}i∈I be a naive v-covering in pAdQp
. Then {f♦i : X♦i → X♦}i∈I

is a v-covering.

Proof. We can find a covering {Uj → X}j∈J by open affinoids. Since {U♦j → X♦} is a v-covering

by Proposition C.1.6, it suffices to show that {fi,j : Xi,j := Xi ×X Uj → Uj}i∈I is a v-covering for
every j ∈ J . Since naive v-covers are preserved by open base change, we reduce to the case X is
an affinoid.

Moreover, we know that X♦ is a small v-sheaf, so there is a v-surjection f : S → X♦ from a
perfectoid space S (by the proof of [Sch17, Proposition 15.4], S can be chosen to be affinoid). By
definition, the map f corresponds to a map g : S] → X. Since diamondization commutes with
finite fiber products by Proposition C.1.6, it is enough to show that {(Xi ×X S])♦ → (S])♦}i∈I is
a v-covering. In other words, we can assume that X = S] is an affinoid perfectoid space.

Now we can find a covering {Ui,j → Xi}j∈Ji by open affinoids for each i ∈ I. Then the family

{Ui,j → X}i∈I,j∈Ji is also a naive v-covering, and so it suffices to show that {U♦i,j → X♦}i∈I,j∈Ji is
a v-covering. In other words, we can assume that X is an affinoid perfectoid and that Xi are all
affinoids. A similar argument allows us to assume that Xi are affinoid perfectoid.

Finally, we note that under our assumption that X and Xi are (affinoid) perfectoids, {Xi →
X}i∈I is a naive v-covering if and only if {X♦i → X♦}i∈I is a v-covering since |X♦i | ' |Xi| and

|X♦| = |X| by [Sch17, Lemma 15.6]. �

C.2. The Quasi-proétale Topology. The main goal of this section is remind the reader the main
notions of a quasi-proétale topology. This topology will be play an important intermediate role in
relating the v-topology to the étale topology.

In order to recall the definition of a quasi-proétale topology, we need to recall some definitions
from [Sch17].

Definition C.2.1. A perfectoid space X is totally disconnected if X is quasi-compact, quasi-
separated, and every open cover of X splits.

A perfectoid space X is strictly totally disconnected if X is quasi-compact, quasi-separated, and
every étale cover of X splits.
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Lemma C.2.2. Let X be a totally disconnected perfectoid space, and Y → X a quasi-compact
separated étale morphism of perfectoid spaces. Then Y is totally disconnected.

Proof. By [Sch17, Lemma 7.2], it suffices to show that every connected component T ⊂ X has a
unique closed point. Clearly f(T ) is connected, so it lies in a connected component of X that is
isomorphic to Spa (K,K+) for some perfectoid field pair (K,K+) due to [Sch17, Lemma 7.3]. So it
is enough to show that Y ×X Spa (K,K+) is totally disconnected for every connected component
Spa (K,K+) ⊂ X. In other words, we can assume that X is an adic spectrum of a perfectoid field
pair.

Now [Sch17, Lemma 9.9] implies that Y is a quasi-compact open in a finite étale morphism
Y → X. Since Y is finite étale over X, it is of the form

n⊔
i=1

Spa (Ki,K
+
i )→ Spa (K,K+)

where K ⊂ Ki is a finite separable extension of perfectoid fields, and K+
i is an integral closure of

K+ in Ki. Therefore, [Ked18] ensures that (Ki,K
+
i ) is a perfectoid field pair (i.e. K+

i ⊂ Ki is an
open and bounded valuation ring in Ki).

Now any open adic subspace of Spa (Ki,K
+
i ) is of the form Spa (Ki,K

′
i
+) for some other open

and bounded valuation ring K ′i
+ ⊂ Ki. Theefore, Y is of the form

n⊔
i=1

Spa (Ki,K
′
i
+

)

that is a totally disconnected perfectoid space. �

Lemma C.2.3. Let X be a totally disconnected perfectoid space such that every finite étale cover
of X splits. Then X is strictly totally disconnected.

Proof. By [Sch17, Proposition 7.16], it suffices to show that, for every point x ∈ X, the completed

residue field K(x) = k̂(x) is algebraically closed. Since completed residue fields do not change
under specialization, we can assume that x is the unique closed point in its connected component.

Now suppose that K(X) is an algebraically closed, so there is a finite separable extension K(x) ⊂
L defining an finite étale morphism of perfectoid spaces Spa (L,L+) → Spa (K(x),K(x)+). Since
Spa (K(x),K(x)+) ⊂ X is a connected component (see [Sch17, Lemma 7.3]), it is an intersection
of clopen subset containing x. Therefore, [Sch17, Proposition 6.4(i)] implies that there is a clopen
subset U ⊂ X containng x and a finite étale morphism

V → U

such that its pullback on Spa (K(x),K(x)+) coincides with Spa (L,L+)→ Spa (K(x),K(x)+). But
then

V t (X \ U)→ X

is a finite étale cover of X that does not split. Contradiction with our assumption on X. �

For the next definition, we assume that f : X = Spa (S, S+) → Y = Spa (R,R+) is a morphism
of adic spaces such that each X and Y is either an affinoid perfectoid or a strongly noetherian Tate
affinoids.
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Definition C.2.4. [Sch17, Definition 7.8] A morphism f : Spa (S, S+)→ Spa (R,R+) is an affinoid
pro-étale morphism if there is a cofiltered system of étale morphisms Spa (Ri, R

+
i ) → Spa (R,R+)

such that each (Ri, R
+
i ) is either a strongly noetherian Huber pair or a perfectoid pair, and S+

is the $-adic completion of colimI R
+
i (for some compatible choice of pseudo-uniformizers), and

S = S+[ 1
$ ].

A morphism f : Spa (S, S+)→ Spa (R,R+) is pro-(finite étale) if it is affinoid pro-étale and each
Spa (Ri, R

+
i )→ Spa (R,R+) can be chosen to be finite étale.

An morphism f : Spa (S, S+) → Spa (R,R+) is pro-(open) if it is affinoid pro-étale and each
Spa (Ri, R

+
i )→ Spa (R,R+) can be chosen to be a disjoint union of rational subdomains.

For the next definition, we assume that f : X → Y is a morphism of adic spaces such that each
X and Y is either perfectoid or locally noetherian.

Definition C.2.5. [Sch17, Definition 7.8] A morphism of adic spaces f : X → Y is pro-étale if, for
every point x ∈ X, there is an open affinoid x ∈ U ⊂ X and an open affinoid f(x) ∈ V ⊂ Y such
that f |U : U → V is affinoid pro-étale.

Lemma C.2.6. Let X be a strictly totally disconnected perfectoid space, and Y → X be an
affinoid pro-étale morphism. Then Y is strictly totally disconnected.

Proof. This follows directly from [Sch17, Lemma 7.19]. �

Now we are ready to define quasi-proétale morphisms.

Definition C.2.7. [Sch17, Definition 10.1 and 14.1] A morphism of small v-sheaves f : X → Y
is quasi-proétale if it is locally separated, and for every morphism S → Y with a strictly totally
disconnected perfectoid S, the fiber product XS := X ×Y S is represented by a perfectoid space
and XS → S is pro-étale.

The quasi-proétale site Xqproét of a small v-sheaf is the site whose objects are quasi-proétale
morphisms Y → X, with coverings given by families {Yi → Y }i∈I such that ti∈IYi → Y is a
surjection of v-sheaves.

Lemma C.2.8. Let f : X → Y be a pro-étale morphism with X and Y being either a space or a
locally noetherian. Then f♦ : X♦ → Y ♦ is quasi-proétale. Furthermore, if f is a naive v-covering,
then f♦ is a v-covering.

Proof. It is easy to see that a morphism of affinoids X → Y induces a separated morphism of
diamonds f♦ : X♦ → Y ♦ (for example, it is quasi-separated by Lemma C.1.12 and then the
valuative criterion of [Sch17, Proposition 10.9] is easy to verify). Then, for the purpose of proving
that f♦ is quasi-proétale, it suffices to show f♦ pro-étale after any base S → Y ♦ with a strictly
totally disconnected perfectoid S. By definition, an S-point of Y ♦ corresponds to a morphism
S] → Y and Proposition C.1.6 (6) implies that

S ×Y ♦ X♦ ' (S] ×Y X)♦.

Since pro-étale morphisms are stable under base change, we can assume that Y is a strictly totally
disconnected perfectoid space. Proposition C.1.6 (3) ensures that we can prove the claim locally
on X and Y , so we may assume that f is affinoid perfectoid. Then we can write X = Spa (S, S+)
as a tilde-limit of étale morphisms

X ∼ lim
I
Xi = Spa (Ri, R

+
i )→ Y
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with each Xi an affinoid perfectoid space. Now Proposition C.1.6 (1) and Proposition C.1.6 (5)
imply that

f♦ : X♦ = lim
I
X[
i → Y [.

is a pro-étale morphism (see [Sch17, Proposition 6.5] to ensure that limit is computed via the
formula in Definition C.2.4). If f is a naive v-covering, f♦ is a v-covering by Lemma C.1.13. �

Lemma C.2.9. (1) LetX = Spa (A,A+) be a strongly noetherian Tate affinoid over Spa (Qp,Zp).
Then there is a pro-(finite étale) surjective morphism Y → X with an affinoid perfectoid
Y .

(2) Let X = Spa (A,A+) be an affinoid perfectoid space. Then there is a pro-(open) surjective
morphism Y → X with a totally disconnected perfectoid Y .

(3) Let X = Spa (A,A+) be a totally disconnected perfectoid space. Then there is a pro-(finite
étale) surjective morphism Y → X with a strictly totally disconnected perfectoid Y .

Proof. (1) : Since X is a strongly noetherian Tate affinoid, it has finite number of connected com-
ponents (because A has finite number of non-trivial idempotents). Therefore, we can assume that
X is connected. Then the claim follows from Lemma B.2.6.

(2) : This follows directly from [Sch17, Proposition 7.12].

(3) : Fix a family of all finite étale surjective morphisms {Xi → X}i∈I . This diagram is not
cofiltered, but we are going to make another cofiltered diagram out of it. For each finite subset
J ⊂ I, we define XJ :=

∏
j∈J Xj . Then each XJ → X is still finite surjective, and the evident

transition maps XJ → XJ ′ for J ′ ⊂ J are still finite étale. In particular, {XJ → X}J⊂I,finite is a
cofiltered family, so we can define the limit (in the category of perfectoid spaces) affinoid perfectoid
space

X∞ = lim
J
XJ → X.

It is pro-(finite étale) over X, and every finite étale cover of X splits in X∞ (because it is an element
of the limit). Note that each XJ is totally disconnected by Lemma C.2.2. So any open covering of
XJ splits, then any open covering of X∞ splits by [Sch17, Proposition 6.4(0)]. Therefore, X∞ is
totally disconnected.

Now we define Xi
∞ iteratively as X1

∞ = X∞ and Xn+1
∞ = (Xn

∞)∞. Finally, we define

X∞∞ = lim
n
Xn
∞.

The same approximation argument as above shows that X∞∞ is totally disconnected. Furthermore,
[Sch17, Proposition 6.4] implies that every finite étale covering of X∞∞ is defined over some Xn

∞,
and thus splits over Xn+1

∞ . Thus any finite étale covering of X∞∞ splits. So X∞∞ is a strictly totally
disconnected by Lemma C.2.3. It is clear that X∞∞ → X is surjective morphism of affinoids, so a
naive v-covering. The only thing we are left to show is that X∞∞ → X is pro-(finite étale). This
follows from the fact that pro-(finite étale) covers of affinoid perfectoids are preserved by cofiltered
limits. This, in turn, can be deduced from [Sch17, Proposition 6.4(i)] via a standard spreading out
argument, we leave details to the reader. �

Corollary C.2.10. Let X = Spa (A,A+) be a strongly noetherian Tate affinoid over Spa (Qp,Zp).
Then there is a morphism Spa (A∞, A

+
∞)→ Spa (A,A+) such that

(1) Spd (A∞, A
+
∞)→ Spd (A,A+) is a quasi-proétale covering;

(2) the fiber products Spa (A∞, A
+
∞)j/Spa (A,A+) are strictly totally disconnected (affinoid) per-

fectoids for j ≥ 1.
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Proof. Take Spa (A∞, A
+
∞)→ Spa (A,A+) to be the composition of three covering from Lemma C.2.9.

Then
Spd (A∞, A

+
∞) = Spa (A[∞, A

[,+
∞ )→ Spd (A,A+)

is a quasi-proétale covering by Lemma C.2.8. Now the claim about higher products follows from
Lemma C.2.6 since each

Spa (A∞, A
+
∞)j/Spa (A,A+) → Spa (A∞, A

+
∞)

is a composition of affinoid proétale morphisms. �

C.3. Structure Sheaves. The main goal of this section is to define various structure sheaves on
(a diamond of) a pre-adic spaces over Qp, and discuss a precise relation between them.

Firstly, we note that for any pre-adic space X over Qp, its étale, quasi-proétale, and v-sites are
related by a sequence of morphisms of sites:

X♦v X♦qproét Xét.
λ µ

(C.1)

Now we define different structure sheaves on each of these sites.

Definition C.3.1. Let X be a pre-adic space over Spa (Qp,Zp).
An integral “untilted” structure sheaf O+

X♦
is a v-sheafification of a pre-sheaf

{S → X♦} 7→ O+
S]

(S])

with the evident transition map42.
An rational “untilted” structure sheaf OX♦ is O+

X♦
[1
p ].

A mod-p structure sheaf O+
X♦

/p is the quotient of O+
X♦

by p in the v-topology on X♦.

A quasi-proétale integral “untilted” structure sheaf O+

X♦qp
is the restriction of O+

X♦
on the quasi-

proétale site of X♦, i.e. O+

X♦qp
= λ∗O

+
X♦

.

A quasi-proétale mod-p structure sheaf O+
X♦

/p is the quotient of O+
X♦

by p in the quasi-proétale

topology on X♦.
An étale mod-p structure sheaf O+

Xét
/p is the quotient of O+

Xét
by p in the étale topology on X,

where O+
Xét

is the usual integral structure sheaf on Xét.

Remark C.3.2. Note that it is, a priori, not clear if O+

X♦qp
/p ' λ∗

(
O+
X♦

/p
)
. The issues is that we

former is defined via taking the quotient by p in the quasi-proétale topology, and the latter in the
v-topology. However, we will show later that they always coincide.

Remark C.3.3. The relation between O+

X♦qp
/p and O+

Xét
/p is even more mysterious. The first

is roughly defined via descent from perfectoid spaces. While the other is defined using the étale
topology of Xét, so if X is a noetherian adic space, it does not have any direct relation with
perfectoid spaces.

Essentially by definition, these structure sheaves promote Diagram (C.1) to a diagram of mor-
phisms of ringed sites:

(
X♦v ,O

+
X♦

/p
) (

X♦qproét,O
+

X♦qp
/p
) (

Xét,O
+
Xét
/p
)
.λ µ

(C.2)

42Recall that a morphism S → X♦ is, by definition, a data of an untilt S] with a morphism S] → X and an
isomorphism (S])[ ' S. Thus a pair of morphisms T → S → X♦ defines a pair T ] → S] → X
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We also have ‘tilted’ versions of the structure sheaves:

Definition C.3.4. Let X be a pre-adic space over Spa (Qp,Zp).

An integral “tilted” structure sheaf O[,+
X♦

is a v-sheafification of a pre-sheaf

{S → X♦} 7→ O+
S (S)

with the evident transition map.
If X is a pre-adic space over a p-adic perfectoid pair (R,R+) with a good pseudo-uniformizer

$ ∈ R+ (see Definition B.1.6), a rational “tilted” structure sheaf O[
X♦

is O
[,+
X♦

[ 1
$[

].

We start with some easy properties of the structure sheaves:

Lemma C.3.5. Let X ∈ pAdQp
be a pre-adic space over Spa (Qp,Zp). Then

(1) for any affinoid perfectoid Y = Spa (S, S+)→ X♦, H0(Y,O+
X♦

) = S],+, and Hi(Y,O+
X♦

) 'a
0 for i ≥ 1;

(2) for any affinoid perfectoid Y = Spa (S, S+)→ X♦, H0(Y,O+,[
X♦

) = S+, and Hi(Y,O+,[
X♦

) 'a 0
for i ≥ 1;

(3) the sheaf O+
X♦

is derived p-adically complete and p-torsionfree;

(4) ifX is pre-adic space over a perfectoid pair (R,R+) with a good pseudo-uniformizer$ ∈ R+,

the sheaf O+,[
X♦

is derived $[-adically complete and $[-torsionfree;

(5) ifX is pre-adic space over a perfectoid pair (R,R+) with a good pseudo-uniformizer$ ∈ R+,

there is a canonical isomorphism O+
X♦

/p ' O
+,[
X♦

/$[.

Proof. (1) and (2) follow directly from [Sch17, Theorem 8.7 and Proposition 8.8].

(3): Clearly, in order to show that O+
X♦

is p-torsionfree, it suffices to show that O+
X♦

(U) is

p-torsionfree on a basis of X♦v . Therefore, it is enough to show that

O+
X♦

(Y )

is p-torsionfree for any affinoid perfectoid Y → X♦. Thif follows from (1).

Lemma A.8 ensures that, for the purpose of proving that O+
X♦

is p-adically derived complete, it
suffices to show that

RΓ(S,O+
X♦

)

is derived p-adically complete for any affinoid perfectoid Y = Spa (S, S+)→ X. Then it suffices to
show that each cohomology group Hi(Y,O+

X♦
) is derived p-adically complete. Now (1) implies that

H0(Y,O+
X♦

) = S],+

is p-adically complete, and thus it is derived p-adically complete (see [Sta21, Tag 091R]). Moreover,
(1) implies that all higher cohomology groups

Hi(Y,O+
X♦

) 'a 0

are almost zero. In particular, they are p-torsion, and so derived p-adically complete. Thus,
RΓ(S,O+

X♦
) is derived p-adically complete finishing the proof.

(4) : This is completely analogous to the proof of (3) using (2) in place of (1).

(5) : Denote by F the presheaf quotient of O+
X♦

by p, and by G the presheaf quotient of O[,+
X♦

. It
suffices to construct a functorial isomorphism

F(U) ' G(U)

https://stacks.math.columbia.edu/tag/091R
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on a basis of X♦v . Therefore, it suffices to construct such an isomorphism for any affinoid perfectoid
U . Then (1) and (2) ensure that, for an affinoid perfectoid U = Spa (S, S+)→ X♦,

F(U) ' S],+/pS],+, and G(U) ' S+/$[S+.

Essentially by the definition of a tilt, we have a canonical isomorphism

S],+/pS],+ ' S+/$[S+

finishing the proof. �

Our next goal is to show a precise relation between O+
X♦

/p, O+

X♦qp
/p, and O+

Xét
/p. If one is willing

to work in the almost world, this relation is quite easy (and essentially boils down to Lemma C.3.5).
However, for the purpose of understanding the relation between O+/p-vector bundles in different
topologies, it is essential to eliminate any almost mathematics in this relation.

Lemma C.3.6. Let X ∈ pAdQp
be a pre-adic space over Qp. Then the natural morphism

O+

X♦qp
/p→ λ∗

(
O+
X♦

/p
)
,

is an isomorphism. If X is a perfectoid space or a locally noetherian space over Qp, then the natural
morphisms

µ−1
(
O+
Xét
/p
)
→ O+

X♦qp
/p,

O+
Xét
/p→ Rµ∗

(
O+

X♦qp
/p
)

are isomorphisms as well.

Proof. The first result is [MW20, Proposition 2.13]. For the second result, we note that [MW20,
Lemma 2.7] ensures that, for a perfectoid or locally noetherian X, O+

X♦qp

43 is isomorphic to the sheaf

Ô+
Xqp

:= lim
n
µ−1

(
O+
Xét
/pn
)
.

Now note the quasi-proétale site of a diamond is replete (in the sense of [BS15, Definition 3.1.1])
due to [MW20, Lemma 1.2]. Therefore, the fact that O+

Xét
is p-torsionfree and [BS15, Proposition

3.1.10] imply that

Ô+
Xqp
' R limµ−1

(
O+
Xét
/pn
)
' ̂µ−1(O+

Xét
)

is the derived p-adic completion of µ−1
(
O+
Xét

)
. Since O+

X♦qp
is also p-torsionfree by Lemma C.3.5,

the universal property of derived completion implies that

O+

X♦qp
/p '

[
O+

X♦qp
/p
]

' [ ̂µ−1(O+
Xét

)/p]

' µ−1
(
O+
Xét
/p
)
.

Finally, [Sch17, Proposition 14.8 and Lemma 15.6] imply that

O+
Xét
/p ' Rµ∗µ

−1
(
O+
Xét
/p
)
' Rµ∗

(
O+

X♦qp
/p
)
.

�

43This is denoted by Ô+

X♦ in [MW20].
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Our next goal is to compare Rλ∗
(
O+
X♦

/p
)

with O+

X♦qp
/p. In order to do this, we need a number

of preliminary results.

Remark C.3.7. The proof of the isomorphism µ−1
(
O+
Xét
/p
)
' O+

X♦qp
/p in Lemma C.3.6 essentially

uses only [MW20, Lemma 2.7] that was established only in the perfectoid or locally noetherian
situation. One can check that the proof carries over to the situation of an adic space strongly
sheafy in the sense of [HK21, Definition 4.1]. In particular, Lemma C.3.6 stays correct for a
“smoothoid” X in the sense of [Heu]. It is possible that the result stays correct for all pre-adic
spaces over Spa (Qp,Zp).

Lemma C.3.8. Let {Xi = Spa (Si, S
+
i )}i∈I be a cofiltered system of affinoid perfectoid spaces

over (Qp,Zp), and let X∞ = Spa (S∞, S
+
∞), where S+

∞ is the p-adic completion of colimI S
+
i and

S∞ = S+
∞[1

p ]. Then the natural morphism

colimI f
−1
i O+

Xi,ét
/p→ O+

X∞,ét
/p

is an isomorphism, where fi : X∞ → Xi are the obvious morphisms.

Proof. Note that [Sch17, Proposition 6.5] implies that X∞ = limI Xi in the category of perfectoid
spaces.

Now we observe that an affinoid perfectoid site Xi,étaff induce the same étale topos as the full
étale site Xi,ét. Therefore, it suffices to prove the claim on the affinoid étale site. Moreover, it
suffices to show the claim on the presheaf level. Namely, let Fi be the presheaf quotient of OXi,ét

by p for i ∈ I or i =∞. Then it suffices to show that

colimI(f
−1
i Fi(U))→ F∞(U)

is an isomorphism44 for any U ∈ X∞,étaff.

Pick any étale morphism U∞ → X∞ with an affinoid perfectoid U∞. Then [Sch17, Proposition
6.4(iv)] implies that, for some i0 ∈ I, there is an affinoid perfectoid Ui0 with an étale morphism
Ui0 → Xi0 such that

Ui0 ×Xi0 X∞ ' U∞.
For any j ≥ i0 or j = ∞, define Uj := Ui0 ×Xi0 Xj . Since fiber products commute with limits, we
get that

U∞ = lim
I
Ui

in the category of perfectoid spaces. Now an easy application of [Sch17, Proposition 6.4(iv)] ensures

colimI(f
−1
i Fi(U)) = colimI O

+
Ui

(Ui)/p.

Thus it suffices to show that the natural morphism

colimI O
+
Ui

(Ui)/p→ O+
U∞

(U∞)/p

is an isomorphism. The fact that U∞ = limI Ui and [Sch17, Proposition 6.5] ensure that O+
U∞

(U∞)

is the p-adic completion of colimI O
+
Ui

(Ui). Therefore, the natural morphism

colimI O
+
Ui

(Ui)/p→ O+
U∞

(U∞)/p

is clearly an isomorphism finishing the proof. �

44Here f−1
i is understood to be a presheaf pullback
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Corollary C.3.9. Let X be a pre-adic space over Spa (Qp,Zp), and X∞ = limI Xi is a cofiltered

limit of characteristic p affinoid perfectoid spaces over X♦. Then the natural morphism

colimI Hi
(
Xi,v,O

+
X♦

/p
)
→ Hi

(
X∞,v,O

+
X♦

/p
)

is an isomorphism for every i ≥ 0.

Proof. A morphism Xi → X♦ defines an untilt X]
i → X of Xi over X. So we may replace X with

X]
i for some i ∈ I to assume that X is an affinoid perfectoid space over Spa (Qp,Zp).

In this case, we write Xi = Spa (Ri, R
+
i ) and X∞ = Spa (R∞, R

+
∞) and denote their untilts

corresponding to a morphism to X♦ by

X]
i = Spa (R]i , R

],+
i ) = Spa (Si, S

+
i ), X]

∞ = Spa (R]i , R
],+
i ) = Spa (S∞, S

+
∞).

Now [Sch17, Corollary 3.20] ensures that

Spa (S∞, S
+
∞) ' lim

I
Spa (Si, S

+
i )

in the category of perfectoid spaces. In particular,

S+
∞ ' ̂colimI S

+
i

is the p-adic completion of colimI S
+
i . Lemma C.3.6 implies that it suffices to show that the natural

morphism

colimI H0(X]
i,ét,OX]

i,ét
/p)→ H0(X]

∞,ét,OX]
∞,ét

/p)

is an isomorphism. Now the result is a formal consequence of Lemma C.3.8 and [Sch17, Proposition
6.4] (for example, argue as in [Fu11, Proposition 5.9.2]). �

Lemma C.3.10. Let Y be a strictly totally disconnected perfectoid space, and Z → Y a v-cover
by an affinoid perfectoid space. Then there is a presentation Z = limI Zi → Y as cofiltered limit
of affinoid perfectoid spaces over Y such that each Zi → Y admits a section.

Proof. The proof of [MW20, Lemma 2.11] carries over in this case if one replace a reference to
[Sch17, Lemma 9.5] with [Heu21, Lemma 2.23]. �

Corollary C.3.11. Let X ∈ pAdQp
be a pre-adic space over Spa (Qp,Zp). Then the natural

morphism
O+

X♦qp
/p→ Rλ∗

(
O+
X♦

/p
)
,

is an isomorphism.

Proof. Lemma C.3.6 ensures that O+

X♦qp
/p → λ∗

(
O+
X♦

/p
)

is an isomorphism. Thus, it suffices to

show that
Rjλ∗

(
O+
X♦

/p
)
' 0

for j ≥ 1. Since strictly totally disconnected spaces form a basis for the quasi-proétale topology of
any diamond, it suffices to show that

Hj(Y,O+
X♦

/p) = 0

for a totally strictly disconnected perfectoid Y → X and j ≥ 1. Pick a class x ∈ Hj(Y,O+
X♦

/p), it
is killed by some v-covering Z → Y by an affinoid perfectoid space Z. Now Lemma C.3.10 implies
that Z = limI Zi → Y is cofiltered limit of affinoid perfectoid spaces over Y such that each Zi → X
admits a section. Then Corollary C.3.9 implies that

Hj(Z,O+
X♦

/p) ' colimI Hj(Zi,O
+
X♦

/p).
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Therefore, the class x ∈ Hj(Y,O+
X♦

/p) is killed under a morphism Hj(Y,O+
X♦

/p)→ Hj(Zi,O
+
X♦

/p)

for some i ∈ I. More presicely, π∗i (x) = 0 ∈ Hj(Zi,O
+
X♦

/p) for the structure morphism πi : Zi → Y .
Now we use a section si : Y → Zi to see that

x = s∗i (π
∗
i (x)) = 0 ∈ Hj(Y,O+

X♦
/p).

�

Corollary C.3.12. Let X be a perfectoid or locally noetherian adic space over Spa (Qp,Zp). Then
the natural morphisms

RΓ(X,O+
Xét
/p)→ RΓ(X♦qproét,O

+

X♦qp
/p)→ RΓ(X♦v ,O

+
X♦

/p)

are isomorphisms.

Proof. It follows directly from Lemma C.3.6 and Corollary C.3.11. �

Corollary C.3.13. Let X = Spa (R,R+) be a strictly totally disconnected perfectoid space over
Spa (Qp,Zp). Then Hi(X♦v ,O

+
X♦

/p) ' 0 for i ≥ 1, and H0(X♦v ,O
+

X♦v
/p) ' R+/pR+.

Remark C.3.14. We emphasize that we have an actual vanishing of higher cohomology groups as
opposed to almost vanishing (that can be deduced from Lemma C.3.5).

Proof. By Corollary C.3.12, we know that

RΓ(X♦v ,O
+
X♦

/p) ' RΓ(X,O+
Xét
/p).

But X is a strictly totally disconnected space, so any étale sheaf has no higher cohomology groups.
This implies that Hi(X♦v ,O

+
X♦

/p) ' 0 for i ≥ 1, and

H0(X♦v ,O
+
X♦

/p) ' H0(X,O+
Xét

)/p ' R+/pR+.

�

Corollary C.3.15. Let K be a p-adic non-archimedean field, K+ ⊂ K an open and bounded
valuation subring, and X a locally noetherian adic space over Spa (K,K+), and X◦ := X×Spa (K,K+)

Spa (K,OK). Then the natural morphism

RΓ(X♦v ,O
+
X♦

/p)⊗K+/p OK/p→ RΓ(X◦,♦v ,O+
X◦,♦

/p)

is an isomorphism. In particular, if (K,K+) is a perfectoid field pair, then the natural morphism

RΓ(X♦v ,O
+
X♦

/p)→ RΓ(X◦,♦v ,O+
X◦,♦

/p)

is an almost isomorphism.

Proof. The proof is local on X, so we can assume that X = Spa (A,A+) is affinoid. Then we can
find a morphism Spd (A∞, A

+
∞)→ Spd (A,A+) such that all fiber products

Spa (A∞, A
+
∞)j/Spa (A,A+) = Spa (Bj , B

+
j )

are strictly totally disconnected (affinoid) perfectoid spaces for j ≥ 1. Thus Corollary C.3.13 implies
that

Hi
(

Spd (Bj , B
+
j )v,O

+
X♦

/p
)
' 0

for i, j ≥ 1, and

H0
(

Spd (Bj , B
+
j )v,O

+
X♦

/p
)
' B+

j /pB
+
j
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for j ≥ 1. Therefore, one can compute Hj(X♦v ,O
+
X♦

/p) via the Čech cohomology groups of the

covering Spd (A∞, A
+
∞)→ Spa (A,A+). Thus, one gets an isomorphism

Hi(X♦v ,O
+
X♦

/p) ' Hi(B+
1 /p→ B+

2 /p→ . . . ).

Now the morphism Spa (K,OK)→ Spa (K,K+) is an pro-open immersion, so the fiber products

Spa (Bj , B
+
j )×Spa (K,K+) Spa (K,OK)

are strictly totally disconnected affinoid perfectoids represented by45

Spa (Bj , Bj⊗̂K+OK).

In particular, the same argument as above implies that O+/p cohomology of X◦,♦ can be computed
as follows:

Hi(X◦,♦v ,O+
X♦

/p) ' Hi(B+
1 /p⊗K+/p OK/p→ B+

2 /p⊗K+/p OK/p→ . . . ).

Finally, the isomorphism

RΓ(X♦v ,O
+
X♦

/p)⊗K+/p OK/p→ RΓ(X◦,♦v ,O+
X◦,♦

/p)

follows from the flatness of the morphism K+ → OK since OK is an algebraic localization of K+

by [Mat80, Theorem 10.1]. If K is perfectoid, the almost isomorphism

RΓ(X♦v ,O
+
X♦

/p)→ RΓ(X◦,♦v ,O+
X◦,♦

/p)

now follows from Lemma B.1.7. �

C.4. Vector Bundles in Different Topologies. The main goal of this section is to show that
the categories of v, quasi-proétale, and étale O+/p vector bundles are all equivalent.

The results of this section are mostly due to B. Heuer. The author learnt Theorems C.4.5 and C.4.8
from him. A version of these results is going to appear in [Heu]. We present a slightly different
argument that avoids considering “smoothoids” and non-abelian cohomology. We heartfully thank
B. Heuer for various discussion around these questions and for allowing the author to present a
variation of his ideas in this section.

For the next definition, we fix a pre-adic space X over Spa (Qp,Zp).

Definition C.4.1. An O+
X♦

/p-module (in the v-topology on X♦) E is a O+
X♦

/p-vector bundle

if, v-locally on X♦, it is isomorphic to (O+
X♦

)r for some integer r. We denote the category of

O+
X♦

/p-vector bundles by VectvX .

An O+

X♦qp
/p-module (in the quasi-proétale topology on X♦) E is a O+

X♦qp
/p-vector bundle if, quasi-

proétale locally on X♦, it is isomorphic to (O+

X♦qp
)r for some integer r. We denote the category of

O+

X♦qp
/p-vector bundles by Vectqp

X .

An O+
Xét
/p-module (in the étale topology on X) E is a O+

Xét
/p-vector bundle if, étale locally on

X, it is isomorphic to (O+
Xét

)r for some integer r. We denote the category of O+
Xét
/p-vector bundles

by Vectét
X .

45For example, the proof of Lemma 6.4.6 goes through without any changes as OK is an algebraic localization of
K+.
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Remark C.4.2. Note that O+
X♦

/p-vector bundles are “big sheaves”, i.e. it is defined on the (big)

v-site X♦v . In particular, it makes sense to evaluate it on only small v-sheaf Y → X♦ of X♦.

But O+

X♦qp
/p and O+

Xét
/p vector bundles are “small sheaves”; they are defined only on a (small)

quasi-proétale and étale sites respectively.

The main goal of this section is to show that all these notions of O+/p-vector bundles are
equivalent.

Firstly, we define functors. Lemma C.3.6 implies that µ−1
(
O+
Xét
/p
)
' O+

X♦qp
/p. Therefore, µ−1

carries O+
Xét
/p-vector bundles to O+

X♦qp
/p-vector bundles. So it defines a functor

µ∗ := µ−1 : Vectét
X → Vectqp

X .

Unfortunately, it is not true that λ−1
(
O+

X♦qp
/p
)
' O+

X♦v
/p because we the quasi-proétale topology

was defined to be “small”, and the v-topology was defined to be “big”. Therefore, we let λ∗ be the
“O+/p-module pullback” functor

λ∗ : Vectqp
X → VectvX .

defined by the formula
λ∗E := λ−1E⊗λ−1O+

X♦qp
/p O

+
X♦

/p.

Our goal is to show that both λ∗ and µ∗ are equivalences. Before we do this, we need some
preliminary lemmas:

Lemma C.4.3. Let X be a pre-adic space over Spa (Qp,Zp), E is a O+
X♦

/p-vector bundle, and

Z → X is a cofiltered limit of affinoid perfectoid spaces over X♦. Then the natural morphism

colimI Hi(Zi,E)→ Hi(Z,E)

is an isomorphism for every i ≥ 0.

Proof. Without loss of generality, we can assume that I has a final object 0. Then, by the sheaf
condition and exactness of filtered colimits, it suffices to show the claim v-locally on X0. Therefore,
we may assume that E|Z ' (O+

X♦
/p)|dZ is a trivial vector bundle. Then the claim follows from

Corollary C.3.9. �

Lemma C.4.4. Let Y be a strictly totally disconnected perfectoid space over Spa (Qp,Zp). Then
any O+

Y ♦
/p-vector bundle E is trivial.

Proof. By assumption, there is a v-covering by an affinoid perfectoid Z → Y ♦ = Y [ such that there
is an isomorphism

f : E|Z
∼−→ (O+

Y ♦
/p)|dZ .

Lemma C.3.10 implies that Z = limI Zi → Y [ is cofiltered limit of affinoid perfectoid spaces over
Y [ such that each Zi → Y [ admits a section.

Step 1. Approximate f . Lemma C.4.3 ensures that we can find i ∈ I and a morphism

fi : E|Zi → (O+
Y ♦
/p)|dZi

such that fi|Z = f .

Step 2. Approximate f−1. We note that the dual sheaf

E∨ = HomO+

X♦
/p

(
E,O+

X♦
/p
)



196 BOGDAN ZAVYALOV

is also an O+
X♦

/p-vector bundle. So we can apply the same argument as in Step 1 to

(f−1)∨ : (O+
Y ♦
/p)|dZ → E∨|Z = HomO+

X♦
/p

(
E,O+

X♦
/p
)
|Z

to find (after possible enlarging i ∈ I) a morphism

g′ : (O+
Y ♦
/p)|dZi → E∨|Zi

such that g′|Z = (f−1)∨. By dualizing, we get a morphism

gi : E|Zi → (O+
Y ♦
/p)|dZi

such that gi|Z = f−1.

Step 3. Show that fi ◦ gi = Id and gi ◦ fi = Id after possibly enlarging i ∈ I. We show the first
claim, the second is proven in the same way (and even easier). We think of IdE|Zi

and fi ◦ gi as

sections of the internal Hom sheaf, i.e.

IdE|Zi
, fi ◦ gi ∈

(
EndO+

X♦
/p (E)

)
(Zi) .

For brevity we denote EndO+

X♦
/p (E) by End. Note that End is again an O+

X♦
/p-vector bundle,

and so Lemma C.4.3 ensures that

colimI End(Zi) = E(Z).

Thus if fi ◦ gi and Id are equal in the limit, they are equal on some large Zi.

Step 4. Finish the proof. In Steps 1-3, we constructed morphisms

fi : E|Zi → (O+
Y ♦
/p)|dZi ,

gi : E|Zi → (O+
Y ♦
/p)|dZi

such that fi = g−1
i . Therefore, E is already trivial on Zi. But Zi → Y [ admits a section by

construction, so we can pullback fi and gi along this section to trivialize E on Y [. �

Theorem C.4.5. (see also [Heu]) Let X be a pre-adic space over Qp. Then the functor

λ∗ : Vectqp → Vectv

is an equivalence of categories. Furthermore, for any O+

X♦qp
/p-vector bundle E, the natural morphism

E→ Rλ∗λ
∗E

is an isomorphism.

Proof. We start the proof by showing that the natural morphism

E→ Rλ∗λ
∗E

is an isomorphism. The claim is quasi-proétale local, so we can assume that E is a trivial O+

X♦qp
/p-

vector bundle. In this case, the claim follows from Corollary C.3.11.

This already implies full faithfulness of α∗. Indeed, it follows from a sequence of isomorphisms:

HomO+

X♦
/p (λ∗E1, λ

∗E2) ' HomO+

X♦qp
/p (E1, λ∗λ

∗E2)

' HomO+

X♦qp
/p (E1,E2) .
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To show that λ∗ is essentially surjective, it is enough to show that, for an O+
X♦

/p-vector bundle

E, λ∗E is an O+

X♦qp
/p-vector bundle and the natural morphism

E→ λ∗λ∗E

is an isomorphism. Both claims are quasi-proétale local on X♦, so we can assume that X is a strictly
totally disconnected perfectoid space. Then E is a trivial vector bundle due do Lemma C.4.4. Then
λ∗E is a trivial O+

X♦qp
/p-vector bundle by Lemma C.3.6. Thus, the natural morphism

E→ λ∗λ∗E

is evidently an isomorphism. �

Lemma C.4.6. Let X be an affinoid perfectoid or a strongly noetherian Tate affinoid over
Spa (Qp,Zp), Y → X be a pro-(finite étale) or pro-open morphism. Then the natural morphism

colimI Hj(Y ♦i ,E)→ Hj(Y ♦,E)

is an isomorphism for any j ≥ 0

Proof. Without loss of generality, we can assume that I has a final object 0. Then, by the sheaf
condition and exactness of filtered colimits, it suffices to show the claim quasi-proétale locally on
Y0. Therefore, we may assume that X = Y0 is affinoid perfectoid, and E ' (O+

X♦qp
/p)d is a trivial

vector bundle. In this case, each Yi is also an affinoid perfectoid space. And the natural morphism

Y ♦ → lim
I
Y ♦i

is an isomorphism. Then the claim follows from Corollary C.3.9 and Corollary C.3.11. �

Lemma C.4.7. Let X be an affinoid perfectoid or a strongly noetherian Tate affinoid over
Spa (Qp,Zp), and E is an O+

X♦qp
/p-vector bundle. Then there is

(1) a finite étale surjective morphism X ′ → X;

(2) a finite covering by rational subdomains {X ′i → X ′}i∈I ;
(3) a finite étale surjective morphism X ′′i → X

such that E|X′′i is a trivial O+

X♦qp
/p-vector bundle.

Proof. Any O+

X♦qp
/p-vector bundle on a strictly totally disconnected perfectoid space is trivial by

Theorem C.4.5 and Lemma C.4.4.

Lemma C.2.9 implies that there is a composition

X3
f3−→ X2

f2−→ X1
f1−→ X

such that f3 is a pro-(finite étale) covering, f2 is a pro-open covering, and f1 is a pro-(finite étale)
covering, and X3 is strictly totally disconnected. Then we know that E|X♦3 is trivial by the above

discussion.

Now an approximation argument as in the proof of Lemma C.4.4 using Lemma C.4.6 in place of
Lemma C.4.3 implies that there is a finite étale covering

X ′3 → X2
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such that E|
X′3
♦ is already trivial. [Sch17, Proposition 6.5] ensures that, if X2 = limX2,i → X1 is

a pro-open representation for X2 → X1, then X ′3 comes as a pullback from a finite étale covering
X ′3,i0 → X2,i0 for some i0 ∈ I. Define X ′3,i := X ′3,i0 ×X2,i0

X2,i for any i ≥ i0. Then

X ′3 = lim
i≥i0

X ′3,i,

so the same approximation argument as above ensures that E is already trivial on X ′3,i for some i.

Now we are in the situation that there is a pro-(finite étale) covering X1 → X, and a morphism
X ′3,i → X1 such that E|

X′3,i
♦ is a trivial O+/p-vector bundle, and the X ′3,i → X1 is a composition

of an open covering by rational subdomain and a finite étale covering. Now we apply the approxi-
mation argument once again (using [Sch17, Proposition 11.23] in place of [Sch17, Proposition 6.5])
to get the desired the desired covering of X that trivializes E. �

Theorem C.4.8. (see also [Heu]) Let X be a perfectoid or locally noetherian adic space over
Spa (Qp,Zp). Then the functor

µ∗ : Vectét
X → Vectqp

X

is an equivalence of categories. Furthermore, for any O+

X♦ét

/p-vector bundle E, the natural morphism

E→ Rµ∗µ
∗E

is an isomorphism.

Proof. The proof is completely analogous to the proof of Thereom C.4.5 using Lemma C.4.7 in
place of Lemma C.4.4. �

Remark C.4.9. Similarly to Remark C.3.7, Theorem C.4.8 stays correct for all stably sheafy
spaces. In particular, Theorem C.4.8 holds for smoothoids in the sense of [Heu]. We do not give
details as we will never need this level of generality.

Now we collect the main results of this section in one corollary (but not in the most optimal
way).

Corollary C.4.10. Let X be a perfectoid or locally noetherian adic space over Spa (Qp,Zp). Then

the categories Vectét
X , Vectqp

X , and VectvX are equivalent. Furthermore, if X is affinoid, and E is an

O+
X♦

/p-vector bundle. Then there is

(1) a finite étale surjective morphism X ′ → X;

(2) a finite covering by rational subdomains {X ′i → X ′}i∈I ;
(3) a finite étale surjective morphism X ′′i → X

such that E|X′′i is a trivial O+
X♦

/p-vector bundle.

C.5. Étale Coefficients. The main goal of this section is to relate the v-cohomology of O+/p with
“étale coefficients” to the corresponding étale cohomology groups.

More precisely, we note that any sheaf F of Fp-modules on Xét can be considered as a sheaf

on any of Xproét, X
♦
qproét, or X♦v via the morphisms in Diagram (C.1). In what follows, we abuse

the notation and denote (λ−1µ−1F) ⊗Fp O
+
X♦

/p simply by F ⊗ O+
X♦

/p for any F ∈ Shv(Xét; Fp).

Similarly, we denote by (µ−1F)⊗Fp O
+

X♦qp
/p simply by F ⊗ O+

X♦qp
/p.

Before we go to the comparison results, we need to discuss some preliminary results on sheaves
on pro-finite sets. They turn out to be tied up with overconvergent étale sheaves on strictly totally
disconnected spaces.
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Definition C.5.1. Let S be a pro-finite set, a sheaf of Fp-modules F is constructible if there exists
a finite decomposition of S into disjoint union of clopen subsets S =

⊔n
i=1 Si such that F|Si is a

constant sheaf of finite rank.

Lemma C.5.2. Let S be a pro-finite set, and f : F → G be a morphism of constructible sheaves
of Fp-modules. Then ker f and Coker f are constructible.

Proof. Since S is pro-finite, each point s ∈ S admits a clopen subset s ∈ Us ⊂ S such that both F|Us
and G|Us are constant. Since S is quasi-compact, we can find a finite disjoint union decomposition
S = tni=1Ui such that both F|Ui and G|Ui are constant. So we can assume that both F and G are
constant. Then it is easy to see that kernel and cokernel are constant as well. �

Lemma C.5.3. Let S be a pro-finite set, and F a sheaf of Fp-vector spaces. Then F ' colimI Fi
for a filtered system of constructible sheaves Fi.

Proof. We use [Sta21, Tag 093C] with B being the collection of clopen subsets of S to write F is a
filtered colimit of the form

F ' colimI Coker

 m⊕
j=1

Fp,Vj →
n⊕
i=1

Fp,Ui

 .

Now Lemma C.5.2 implies that each cokernel is constructible finishing the proof. �

Definition C.5.4. An sheaf of Fp-modules F on Xét is overconvergent if, for every specialization
η → s of geometric points of X, the specialization map Fs → Fη is an isomorphism.

Definition C.5.5. An étale sheaf of Fp-modules F on a strictly totally disconnected perfectoid
space X is special if there exists a finite decomposition of X into disjoint union of clopen subsets
X =

⊔n
i=1Xi such that F|Xi is a constant sheaf of finite rank.

Lemma C.5.6. Let X be a strictly totally disconnected perfectoid space, and F an overconvergent
étale sheaf of Fp-modules. Then Then F ' colimI Fi for a filtered system of special sheaves Fi of
Fp-modules.

Proof. Since X is strictly totally disconnected, the étale and analytic sites of X are equivalent. So
we can argue on the analytic site of X. By [Sch17, Lemma 7.3], there is a continuous surjection
π : X → π0(X) onto a pro-finite set π0(X) of connected components.

Step 1. The natural map π∗π∗F → F is an isomorphism: It suffices to check that it is an
isomorphism on stalks. Pick any point x ∈ X, [Sch17, Lemma 7.3] implies that the connected
component of x has a unique closed point s. Then after unravelling all definitions, one gets that
the map (π∗π∗F)x → Fx is naturally identified with the specialization map Fs → Fx that is an
isomorphism by the overconvergent assumption.

Step 2. Finish the proof: Lemma C.5.3 ensures that π∗F ' colimI G
′
i is a filtered colimit of

constructible sheaves. Since pullback commutes with all colimits, we get F ' π∗π∗F ' colimI π
∗G′i.

This finishes the proof since each Gi := π∗G′i is special. �

Lemma C.5.7. Let X be a pre-adic space over Spa (Qp,Zp), and F an overconvergent étale sheaf
of Fp-modules. Then the natural morphism

O+

X♦qp
/p⊗ F → Rλ∗(O

+
X♦

/p⊗ F)

is an isomorphism.

https://stacks.math.columbia.edu/tag/093C
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Proof. Since strictly totally disconnected spaces form a basis for the quasi-proétale topology on X♦,
it suffices to show that a is an isomorphism on such spaces. Then we can write F ' colimI Fi as
filtered colimit of special sheaves by Lemma C.5.6. One easily checks that α is a coherent morphism
of algebraic topoi, so each Riλ∗(O

+
X♦

/p⊗−) commutes with filtered colimits by [AGV72, Exp. VI,
Theoreme 5.1]. Thus it suffices to prove the claim for a special F. By definition of a special sheaf,
there exists a disjoint decomposition X =

⊔n
i=1Xi into clopen subsets such that F|Xi is constant

of finite rank. Since the question is local on X♦qproét, we can replace X with each Xi to assume that

F is constant. In this case the claim follows from Corollary C.3.11. �

Remark C.5.8. We do not know if Lemma C.5.7 holds for non overconvergent étale sheaves F.

Now we discuss the relation between étale and quasi-proétale topology.

Lemma C.5.9. Let X be a perfectoid or locally noetherian adic space over Spa (Qp,Zp), and F

an étale sheaf of Fp-modules on X. Then the natural morphism

O+
Xét
/p⊗ F → Rµ∗(O

+

X♦qp
/p⊗ F)

is an isomorphism.

Proof. By Lemma C.3.6, the right hand side is canonically isomorphism to

Rµ∗µ
−1
(
O+
Xét
/p⊗ F

)
.

So the result follows from [Sch17, Proposition 14.8]. �

Now we combine all these results together (but not in the most optimal form):

Lemma C.5.10. Let X be a perfectoid or locally noetherian adic space over Spa (Qp,Zp), and F

an overconvergent étale sheaf of Fp-modules on X. Then the natural morphisms

O+
Xét
/p⊗ F → Rµ∗

(
O+

X♦qp
/p⊗ F

)
,

O+

X♦qp
/p⊗ F → Rλ∗

(
O+

X♦v
/p⊗ F

)
are isomorphisms.

Appendix D. Achinger’s Result in the Non-Noetherian Case

Recall that P. Achinger proved a remarkable result [Ach17, Proposition 6.6.1] that says that an
affinoid rigid-analytic variety X = Spa (A,A+) that admits an étale map to a closed unit disc Dn

K
also admits a finite étale map to Dn

K provided that K is the fraction field of a complete DVR R
with residue field of characteristic p. This result is an analytic analogue of a more classical result of
Kedlaya ([Ked05] and [Ach17, Proposition 5.2.1]) that an affine k-scheme X = SpecA that admits
an étale map to an affine space An

k also admits a finite étale to An
k provided that k has characteristic

p.
We generalize P. Achinger’s result to the non-noetherian setting. The proof essentially follows

the ideas of [Ach17], we only need to be slightly more careful at some places due to non-noetherian
issues. We also show its formal counterpart.

Lemma D.1. Let k be a field of characteristic p, and let A be a finite type k-algebra such that
dimA ≤ d for some integer d. Suppose that x1, . . . , xd ∈ A some elements of A, and m is any
integer m ≥ 0. Then there exist elements y1, . . . , yd ∈ A such that the map f : k[T1, . . . , Tn] → A,

defined as f(Ti) = xi + yp
m

i is finite.
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Proof. We extend the set x1, . . . , xd to some set of generators x1, . . . , xd, . . . , xn of A as a k-algebra.
This defines a presentation A = k[T1, . . . , Td, . . . , Tn]/I for some ideal I ⊂ k[T1, . . . , Tr, . . . , Tn]. We
prove the claim by induction on n− d.

The case of n− d = 0 is trivial as then the map f : k[T1, . . . , Td]→ A, defined by f(Ti) = xi, is
surjective. Therefore, it is finite.

Now we do the induction argument, so we suppose that n− d ≥ 1. We consider the elements

x′i = xi − xp
im′

n , i = 1, . . . , n− 1

for some integer m′ ≥ m. Now the assumption n ≥ d+ 1 and Krull’s principal ideal theorem imply
that we can choose some non-zero element g ∈ I, thus we have an expression

g(x′1 + xp
m′

n , x′2 + xp
2m′

n , . . . , x′n−1 + xp
(n−1)m′

n , xn) = 0

Now [Mum99, §1] implies that there is some large m′ such that this expression is a polynomial
in xn with coefficients in k[x′1, . . . , x

′
n−1] and a non-zero leading term. We may and do assume

that this leading term is 1. So xn is integral over a subring of R generated by x′1, . . . , x
′
n−1, we

denote this ring by R′. Since xi = x′i + xp
im′

n , we conclude that R is integral over R′. Moreover,
R is finite over R′ as it is finite type over k. Now we note that [Mat86, Theorem 9.3] implies
that dimR′ ≤ dimR ≤ d, and R′ is generated by x′1, . . . , x

′
n−1 as a k-algebra. So we can use the

induction hypothesis to find some elements

y′1, . . . , y
′
d ∈ R′

such that the morphism f ′ : k[T1, . . . , Td]→ R′, defined as f ′(Ti) = x′i + (y′i)
pm , is finite. Therefore,

the composite morphism

f : k[T1, . . . , Td]→ R

is also finite. We now observe that

f(Ti) = x′i + (y′i)
pm = xi + xp

im′

n + (y′i)
pm = xi + (xp

im′−m
n + y′i)

pm

Therefore, the set (yi := xp
im′−m
n + y′i)i=1,...,d does the job. �

Lemma D.2. Let O be a complete valuation ring of rank-1 with the maximal ideal m and the
residue field k. Suppose that f : A → B is a morphism of topologically finitely generated OK-
algebras. Then f is finite if and only if f ⊗O k : A⊗O k → B ⊗O k is finite.

Proof. The “only if” part is clear, so we only need to deal with the “if” part. We recall that
[Mat80, Lemma (28.P), p. 212] says that A → B is finite if and only if A/π → B/π is finite for
some pseudo-uniformizer π ∈ O. So we only need to show that finiteness of A ⊗O k → B ⊗O k
implies that there is a pseudo-uniformizer π ∈ O such that A/π → B/π is finite. Then we note
that the maximal ideal m is a filtered colimit of its finitely generated subideal {Ij}j∈J . Moreover,
the valuation property of the ring O implies that this colimit is actually direct and that Ij = (πj) is
principal for any j ∈ J . We also observe that each πj is a pseudo-uniformizer since O is of rank-1.
Thus we see that

A⊗O k → B ⊗O k = colimj∈J (A/πj → B/πj)

and A/πj → B/πj is a finite type morphism by the assumption that both A and B are topologically
finitely generated. Then [Sta21, Tag 07RG] implies that there is j ∈ J such that A/πj → B/πj is
finite. Therefore, A→ B is finite as well. �

https://stacks.math.columbia.edu/tag/07RG
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Before going to the proof Theorem D.4, we need to show a result on the dimension theory
of rigid-analytic varieties spaces that seem to be missing in the literature. It seems that there
is no generally accepted definition of a dimesion of an adic spaces. We define the dimension as
dimX = supx∈X dimOX,x, this is consistent with the definition of dimension in [FK18, Definition

II.10.1.1]. We denote by Xcl ⊂ X the set of all classical points of X.

Lemma D.3. Let f : X = Spa (B,B+)→ Y = Spa (A,A+) be an étale morphism of rigid-analytic
varieties over a complete rank-1 field K, then dimB ≥ dimA. If Y is equidimensional, i.e.
dimOY,y = dimY for any classical point y ∈ Y cl, then we have an equality dimB = dimA.

In particular, if f : Spa (A,A+)→ Dd
K is étale, then dimA = d.

Proof. We note that [FK18, Proposition II.10.1.9 and Corollary II.10.1.10] imply that

dimX = dimB = sup
x∈Xcl

(dimOX,x), and dimY = dimA = sup
y∈Y cl

(dimOY,y).

Since f is topologically finite type, it sends classical points to classical points. Therefore, [Hub96,
Lemma 1.6.4, Corollary 1.7.4, Proposition 1.7.9] imply that the map OY,f(x) → OX,x is finite étale

for any x ∈ Xcl. Thus we see that

dimB = sup
x∈Xcl

(dimOX,x) = sup
x∈Xcl

(dimOY,f(x)) ≤ dimY

It is also clear that this inequality becomes an equality, if Y is equidimensional.
Finally, we claim that Dd

K = Spa (K〈T1, . . . , Td〉,OK〈T1, . . . , Td〉) = Spa (A,A+) is equidimen-

sional. Pick any classical point x ∈ (Dd
K)cl and a corresponding maximal ideal mx ∈ K〈T1, . . . , Td〉.

Then we know that Amx and ODd
K ,x

are noetherian by [FK18, Proposition 0.9.3.9, Theorem II.8.3.6],

and ÔDd
K ,x
' Âmx by [FK18, Proposition II.8.3.1]. Therefore, we get

dimODd
K ,x

= dim ÔDd
K ,x

= dim Âmx = dimAmx = d

where the last equality comes from [FK18, Proposition 0.9.3.9]. �

For the rest of the section we fix a complete rank-1 valuation ring O with the fraction field K
and the characteristic p residue field k. We refer to [Hub96, §1.9] for the construction of the adic
generic fiber of a topologically finitely generated formal O-scheme. The only thing we mention here
is that it sends an affine formal scheme Spf A to the affinoid adic space Spa (A⊗O K,A

+), where
A+ is the integral closure of the image Im(A→ A⊗O K).

Theorem D.4. In the notation as above, let g : Spf A→ Âd
O be a morphism of flat, topologically

finitely generated formal O-schemes such that the adic generic fiber gK : Spa (A⊗O K,A
+)→ Dd

K

is étale. Then there is a finite morphism f : Spf A→ Âd
O that is étale on adic generic fibers.

Proof. First of all, we note that Lemma D.3 says that dimA ⊗O K = d. Now [FK18, Theorem
9.2.10] says that there exists an finite injective morphism

ϕ : O〈T1, . . . , Td〉 → A

with the OK-flat cokernel. This implies that K〈T1, . . . , T
′
d〉 → A ⊗O K is finite and injective.

Therefore, [Mat86, Theorem 9.3] implies that

d = dimA⊗O K = dimK〈T1, . . . , T
′
d〉 = d′

Thus we get that d = d′. Flatness of Cokerϕ says that the map

k[T1, . . . , Td]→ A⊗O k
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is also finite and injective. Then the similar argument shows that dimA⊗O k = d. Now we finish
the proof in two slightly different ways depending on characteristic of K.

Case 1, charK = p: We consider the morphism g# : O〈T1, . . . , Td〉 → A induced by g. We define
xi := g#(Ti) for i = 1, . . . , d. Since dimA⊗O k = d we can apply Lemma D.1 for the residue classes
x1, . . . , xd and m = 1 to get elements y1, . . . , yd ∈ A⊗O k such that the map

f# : k[T1, . . . , Td]→ A⊗O k, defined as f#(Ti) = xi + yi
p for i = 1, . . . , d

is finite. We lift yi in an arbitrary way to elements yi ∈ A, and define

f# : O〈T1, . . . , Td〉 → A

as f#(Ti) = xi + ypi for any i = 1, . . . , d. This map is finite by Lemma D.2.
Now we note that X := Spa (A ⊗O K,A

+) is smooth over K, so [BLR95, Proposition 2.6] says
that étaleness of fK : X → Dd

K is equivalent to bijectivity of the map

f∗KΩ1
Dd
K/K

→ Ω1
X/K

This easily follows from étaleness of gK and the fact that d(xi + ypi ) = d(xi) in characteristic p.

Case 2, charK = 0: We denote Spf A by X and its adic generic fiber Spa (A ⊗O K,A
+) by X.

Then we use [BLR95, Proposition 2.6] once again to see that the map

g∗KΩ1
Dd
K/K

→ Ω1
X/K

is an isomorphism. Since (Ω̂1
X/O)K ' Ω1

X/K and the same for Âd
O and Dd

K , we conclude that the

fundamental short exact sequence ([FK18, Proposition I.3.6.3, Proposition I.5.2.5 and Theorem
I.5.2.6])

g∗Ω̂1
Âd

O
/O
→ Ω̂1

X/O → Ω̂1
X/Âd

O

→ 0

implies that

(
Ω̂1
X/Âd

O

)
K

= 0. More precisely, we know that

Ω̂1
X/Âd

O

∼=
(

Ω̂1
A/O〈T1,...,Td〉

)∆
for a finite A-module Ω̂1

A/O〈T1,...,Td〉 ([FK18, Corollary I.5.1.11]). We denote this module by Ω̂1
g for

the rest of the proof, and recall that the condition

(
Ω̂1
X/Âd

O

)
K

= 0 is equivalent to Ω̂1
g ⊗O K = 0.

Using finiteness of Ω̂1
g and adhesiveness of A, we conclude that there is an integer k such that

pkΩ̂1
g = 0

as p is a pseudo-uniformizer in O. Now, similarly to the case of charK = p, we consider the
morphism

g# : O〈T1, . . . , Td〉 → A

and define xi := g#(Ti) for i = 1, . . . , d. Again, using that dimA⊗Ok = d we can apply Lemma D.1
for the residue classes x1, . . . , xd and m = k + 1 to get elements y1, . . . , yd ∈ A⊗O k such that the
map

f# : k[T1, . . . , Td]→ A⊗O k, defined as f#(Ti) = xi + yi
pk+1

for i = 1, . . . , d,
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is finite. We lift yi to some elements yi ∈ A and define

f# : O〈T1, . . . , Td〉 → A

by f#(Ti) = xi + yp
k+1

i . The map f# is finite by Lemma D.2.
We are only left to show that the induced map

f : X → Âd
O

is étale on adic generic fibers. We claim that pk(Ω̂1
f ) = 0. Indeed, we use [FK18, Proposition

I.5.1.10] to trivialize Ω̂1
O〈T1,...,Td〉/O ' ⊕

d
i=1dTi, so we have the fundamental exact sequence

d⊕
i=1

AdTi
dTi 7→d(xi+y

pk+1

i )
−−−−−−−−−−−→ Ω̂1

A/O → Ω̂1
f → 0

As d(yp
k+1

i ) is divisible by pk+1. Therefore, we see that modulo pk+1 this sequence is equal to

d⊕
i=1

A/pk+1dTi
dTi→d(xi)−−−−−−→ Ω̂1

A/O/p
k+1 → Ω̂1

f/p
k+1 → 0

Thus we see that Ω̂1
f/p

k+1 ' Ω̂1
g/p

k+1. In particular,(
pkΩ̂1

f

)
/p
(
pkΩ̂1

f

)
=
(
pkΩ̂1

g

)
/p
(
pkΩ̂1

g

)
= 0

by the choice of k. Therefore, pkΩ̂1
f = 0 by [Mat80, Lemma (28.P), p. 212]. By passing to the adic

generic fiber we get that fK : X → Dd
K such that the map

d(fK) : f∗KΩ1
Dd
K/K

→ Ω1
X/K

is surjective. However, we recall that X and Dd
K are both smooth rigid-analytic varieties of (pure)

dimension d. Thus df∗K is a surjective map of vector bundles of the same dimension d, so it must

be an isomorphism. Finally, [BLR95, Proposition 2.6] implies that fK is étale. �

Corollary D.5. Let K be a complete rank-1 valuation field with a valuation ring OK , and the
residue field k of characteristic p. Suppose that g : X = Spa (A,A+) → Dd

K is an étale morphism

of affinoid rigid-analytic K-varieties. Then there exists a finite étale morphism f : X → Dd
K .

Proof. First of all, we note that [Hub94, Lemma 4.4] implies that A+ = A◦. So the map g
corresponds to the map

g# : (K〈T1, . . . , Td〉,OK〈T1, . . . , Td〉)→ (A,A◦)

of Tate-Huber pairs. We note that it suffices to find a topologically finitely generated ring of
definition A0 ⊂ A such that the map OK〈T1, . . . , Td〉 → A◦ factors through A0. Then Theorem D.4
will imply the corollary.

We choose some surjection ϕ : K〈X1, . . . , Xn〉� A and consider a ring

A′0 := ϕ(OK〈X1, . . . , Xn〉)

This ring is open by the Banach Open Mapping Theorem ([Hub94, Lemma 2.4 (i)]). It is also
bounded as any map of Tate rings is adic, so it preserves boundedness. Therefore, A′0 is a ring of
definition in A.
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Now we use the universal property of Tate algebras ([Hub94, Lemma 3.3]) to get the unique
K-linear continuous homomorphism

ψ : K〈T1, . . . , Td, X1, . . . , Xn〉 → A

such that ψ(Ti) = g#(Ti) and ψ(Xj) = ϕ(Xj). Then a similar argument implies that

A0 := ψ(OK〈T1, . . . , Td, X1, . . . , Xn〉)
is a topologically finitely generated ring of definition in A such that the map g+,# : OK〈T1, . . . , Td →
A◦ factors through A0. We note that A0 is OK flat as it is torsionfree. Therefore, we can apply

Theorem D.4 to the map Spf A0 → Âd
OK

to construct a finite K-étale map f : Spf A0 → Âd
OK

.

Then the adic generic fiber fK : Spa (A,A◦)→ Dd
K

46 is the desired finite étale map. �
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